Evaluation of identification cases involving forensic dentistry in the city of Pelotas, RS, Brazil, 2004–2006

Fernanda Nedel¹, Ana Paula Nedel², Ricardo Henrique Alves da Silva³, Rafael Guerra Lund⁴

¹Undergraduate student, Dental School, Universidade Federal de Pelotas (UFPe), Pelotas (RS), Brazil
²DDS, MSc, Postgraduate student in Social Politics, Universidade Católica de Pelotas (UCPEL), Pelotas (RS), Brazil
³DDS, MSc, PhD, Professor, Department of Pediatric Clinic, Community and Preventive Dentistry, Dental School of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto (SP), Brazil
⁴DDS, MSc, PhD, Assistant professor, Department of Biochemistry, Institute of Chemistry and Geosciences, UFPe, Pelotas (RS), Brazil

Abstract

Aim: This study investigated the use of dental arch examination as a forensic technique for body identification at the Institute of Forensic Medicine (IML, acronym in Portuguese) of Pelotas (RS), a city located in the South of Brazil.

Methods: The data collected for the study referred to the period between 2004 and 2006, when a forensic dentist was part of the IML staff. The post-mortem records with regard to the entry of unidentified bodies that had undergone dental identification by the forensic dentists were analyzed quantitatively.

Results: Ten unidentified bodies entered the IML and all of them were submitted to dental arch examination for body identification. However, the conclusive identification was based on the analysis of DNA, because the victims' dental records were not accurate, complete and updated. Only five assessed bodies had been referred from Pelotas police station, two from Pedro Osório police station, one from Capão do Leão police station, one from Arroio Grande police station and one had no information about its origin.

Conclusions: The current configuration of Pelotas IML staff does not include a forensic dentist, and the presence of this professional is needed, for the city is reference for referral of forensic cases from the surrounding region.

Keywords: forensic dentistry; human identification; tooth; forensic anthropology.

Introduction

Forensic Dentistry is the specialty that investigates psychological, physical, chemical and biological phenomena that can reach human beings (alive, dead or body fragments), comprehending aspects of human identification; criminal, civil, labor and administrative forensic investigation; forensic tanatology; legal documents; forensic traumatology; image examinations (e.g.: X-ray, tomography); saliva analysis and other aspects involving a multidisciplinary approach¹.

Recent events have emphasized the important role that forensic dentistry plays in the identification of victims of air and industrial accidents, natural disasters and terrorist attacks²³. Furthermore, forensics dentistry also uses its expertise to identify the relation between aggressor and victim in crimes involving rape, murder, body injury and child abuse in which damage has occurred by leaving remaining bite marks⁴.

The identification of human remains is usually made by photographs, comparison of radiographic images, fingerprints and, more recently, DNA-based techniques. However, these
Material and methods

The research protocol was reviewed and approved by the Research Ethics Committee of the Universidade Federal de Pelotas, Brazil. The data collected for the study referred to the period between 2004 and 2006, when a forensic dentist was incorporated in the staff of the IML of Pelotas (RS), Brazil. The post-mortem records referring to the entry of unidentified bodies that had undergone dental identification by the forensic dentist were analyzed quantitatively. The records comprised a complete tooth diagram (odontogram), detailed description of the upper and lower dental arches and information about age, skin color and gender.

Results

Data analysis revealed that, between 2004 and 2006, ten unidentified bodies entered the IML and were subjected to dental arch examination for body identification. From these, only five had been referred to the IML from Pelotas police station, two from Pedro Osório police station, one from Capão do Leão police station, one from Arroio Grande police station and one case had no information about the body’s origin (Figure 1).

Several methods of corpse identification are used in the expertise routine at Pelotas’ IML. Firstly and immediately, the clothes are carefully examined, photographed, described in the necropsy report and stored. Within the clothes, it is possible to find, for example, an identity card, a driver’s license and personal objects in the pockets. These things give information about the possible places that the corpse had been to or where it had passed by, the social status of the victim, etc. All these data are extremely valuable to reach initial conclusions about corpse identification. After the necropsy, the Human Identification Department searches for fingerprints in order to compare them to those registered in their files and identify the corpse by the datiloscopic method. This is when the forensic dentist may help in the identification of the corpse. The forensic dentist has to fill in a form with the corpse data, such as skin color, age, odontogram and the description of the upper and lower dental arches.

Discussion

Modern society was characterized by the high concentration of people in urban areas and consequent agglomerations in buildings, schools and restaurants, increasing the possibility of mass accidents, as seen in the attacks to the World Trade Center occurred on September 11, 2001.11,12

Forensic dentistry has been requested in these scenarios, helping in the identification of bodies in major accidents. Teeth have been widely used as source of information for human identification, especially when soft tissues cannot provide reliable information. However, according to the Brazilian law 5081/66, dentists acting in the field...
of forensic dentistry have access to neck and head region and are not limited to the dentition. By means of an anthropometric study of elements of the skull and teeth, the forensic dentist can estimate height, sex, racial group (extremely questionable because of miscegenation) and age14,15.

Forensic techniques are used worldwide. It is important to have in mind that, in cases of major accidents, the traumatic forces of the accident are so intense that the fragmentation and confagration permit only the preservation of the most resistant post-mortem tissues of the victims, which are those derived from the human dentition. In these cases, the teeth are the main source for identification of the corpses14,15. Forensic dentistry can be very helpful on the identification of victims of mass disasters and, sometimes, in the differentiation of human remains of people victimized by situations like natural catastrophes, such as the tsunamis occurred in 200416,17, bus accidents involving body carbonization18,19, plane crashes20–22, fires23,24, train accidents25, military accidents and wars26.

In Brazil, there were two airplanes mass disasters in less than ten months with national flight companies. The first one happened on September 29th 2006, in Mato Grosso State, when a 737-800 New Generation Boeing struck against a N600L Legacy jet, resulting in 154 victims27. The second accident was on July 17th 2007, in Congonhas airport, São Paulo, when an Airbus 320 lost control while landing, resulting in 199 casualties27.

In this context, the cooperation of Forensic Dentistry in the processes of post-mortem human identification has an irrefutable value, developing a fundamental status in the identification of bodies that cannot be identified by visual inspection or other traditional means29–31. Therefore, dentists must have better working conditions to provide a most specialized contribution in cases of mass accidents and other types of collective disasters in the future31.

Furthermore, the identification of human remains depends on the availability of antemortem information collected from records and family members, and the existence of sufficient post-mortem material32–35. However, the process of dental identification is limited due to a number of reasons such as lack of standardization of dental documentation necessary for human identification, difficulty in gathering complete dental information for each individual, the incompleteness or inaccuracy of dental information, which compromises the quality of identification, and limitation of qualified personnel32. Other conditions such as nature of the accident, nationality and home country of the victims, previous dental treatment, and severity of dental injury can determine the success of identification36.

In a recent study, the relevance of dental records in the ‘tsunami mass disaster’ in Thailand was evaluated. This study was interesting because the large number of tourists involved in that event, especially from Europe, allowed a comparison of dental records from different countries. Ninety percent of the victims from Europe, North America, Oceania and Africa were identified mainly by means of dental records, indicating not only the existence, but the quality of these records. In contrast, 90% of the dental records from Thailand were useless for identification of the victims37.

According to the Brazilian Federal Council of Dentistry (CFO), dental record should contain the professional data (full name and the inscription number of the regional council) and the patient’s identification data (full name, sex, date of birth, home address etc), anamnesis (main reason to seek dental service, medical history and dental history), clinical examination (extraoral and intraoral exams and the use of an odontogram before and after the dental treatment), treatment planning, development and intercurrence of the treatment, prescriptions, complementary tests37.

Dental treatment records offer a valuable resource for establishing the identification of deceased people by means of dental comparison, as required for forensic purposes. The creation, maintenance, storage and custody of such records are legal and ethical duties of each dentist. They are also required by law to record and report evidence of child abuse observed in the course of treatment. Furthermore, when dental records are required for forensic purposes, certain procedures should be followed for their release and collection38.

The data collected in the present survey showed that all bodies that entered the IML of the city of Pelotas between years 2004 and 2006, period in which the institute had a forensic dentist in its team, were subjected to dental examination for identification purposes. However, the conclusive identification was based on DNA analysis because the victims’ dental records were not accurate, complete and updated. In contrast, dental identification has been used around the world with promising results. For example, in a bus accident that occurred in Spain, 28 passengers lost their lives and dental identification was established in 57% of the cases39. Also, in 1994, an M/S Estonia ferry sank, 94 victims were recovered and 60% could be identified by comparing antemortem and post-mortem dental data40. The Lyon-Strasbourg airline disaster in 1992 had a positive dental identification in 52% of cases and a partial match was achieved in 14% of cases37.

Currently, the IML of Pelotas does not have a forensic dentist and so the unidentified bodies have to be transferred to the IML of Porto Alegre (capital of Rio Grande do Sul State) or a forensic dentist has to be brought to Pelotas, which is a disturbing situation. In the present survey, 40% of the cases were from areas surrounding Pelotas, a reference for smaller cities. This situation illustrates that, in Brazil, the forensic dentist is not appreciated as an important member of the forensic staff and that relevant information for human identification is not obtained. On the other hand, there is a demand for this technique since the IML received ten cases in only two years, which aggravates the problem of the current absence of a hired forensic dentist for the city of Pelotas.

According to Meléndez37, the unsatisfactory presence of forensic dentist in forensic institutes and the negligence of general dentists with forensic matters can be justified by the few number of theoretical and practical hours in the discipline of forensic dentistry during graduation, the small number of forensic dentistry teachers with expertise in this field, lack of a PhD programs in the area. However, a promising future can be anticipated for forensic dentistry since most Latin American IMLs have already recognized the importance of having a forensic dentist in their staff.
It is extremely important that the IMLs have a forensic dentist in their team of specialists, for this professional can aggregate knowledge and contribute remarkably with cases in which the identification of human remains is difficult or in mass disasters. However, it is also of paramount importance that dentists keep complete, accurate and updated their patient’s records for providing reliable information so it can be actually used by forensic dentists. In the IML of Pelo-tas, the presence of this professional is necessary because this city is the reference referral from smaller cities of the surrounding region.

References


