Banner Portal
TGF-β1 induces the proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth
PDF

Keywords

Cell differentiation
Stem cells
Transforming growth factor beta
Extracellular matrix proteins

How to Cite

1.
Fernandes AP, Araújo LB, Colombo FA, Ambrosio ECP, Silveira ABV da, Prado Bergamo MTO, et al. TGF-β1 induces the proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. Braz. J. Oral Sci. [Internet]. 2025 Mar. 5 [cited 2025 Apr. 19];24(00):e254024. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8674024

Abstract

Aim: This study evaluated the effect of different concentrations of transforming growth factor beta 1 (TGF-β1) on stem cells from human exfoliated deciduous teeth (SHED) viability, proliferation, migration and differentiation into odontoblasts. Methods: SHED was treated with different concentrations of TGF-β1 (1.0, 5.0 and 10.0 ng/mL). Sulforhodamine B and MTT assays evaluated the cell proliferation and viability at 1, 3, 5, and 7 days and Migration assay at 24h. RT-PCR verified Dentin matrix protein1 (DMP-1) and Dentin Sialophosphoprotein (DSPP) mRNA expression for 1, 7 and 14 days. The data were analyzed by one-way and two-way ANOVA, followed by Tukey test (p<0.05). Results: All tested TGF-β1 concentrations increased SHED proliferation compared with the negative control (untreated), from day 3 of treatment (p=0.000), with no loss of cell viability. Cell migration was higher in media containing TGF-β1 (1.0-10.0 ng/mL) than in negative and positive control media, with 10 or 20% Fetal Bovine Serum, respectively (p=0.000). Treatment with TGF-β1 for up to 14 days induced the expression of the odontoblast markers DMP- 1 and DSPP. DMP-1 expression was intense early after treatment with 10.0 ng/mL TGF-β1 and increased progressively from days 1-14 of treatment with 1.0 and 5.0 ng/mL TGF-β1. In contrast, DSPP expression was detected after 14 days of treatment with 10.0 ng/mL TGF-β1. Conclusion: Different concentrations of TGF-β1 on SHED promoted positive effect on proliferation and migration, with no loss of cell viability. The concentrations of 10.0 ng/mL TGF-β1 for 14 days induced the expression of the odontoblast markers DMP-1 and DSPP.

https://doi.org/10.20396/bjos.v24i00.8674024
PDF

References

Nör JE. Tooth regeneration in operative dentistry. Oper Dent. 2006 Nov-Dec;31(6):633-42. doi: 10.2341/06-000.

Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H480-7. doi: 10.1152/ajpheart.01232.2003.

Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007 Jun;109(11):4761-8. doi: 10.1182/blood-2006-12-062471.

Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental pulp tissue engineering. Braz Dent J. 2011;22(1):3-13. doi: 10.1590/s0103-64402011000100001.

Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nör JE. Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res. 2011 Jul;23(3):325-32. doi: 10.1177/0022034511405325.

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003 May;100(10):5807-12. doi: 10.1073/pnas.0937635100.

Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008 Aug;34(8):962-9. doi: 10.1016/j.joen.2008.04.009.

Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010 Aug;89(8):791-6. doi: 10.1177/0022034510368647.

Liu J, Jin T, Chang S, Ritchie HH, Smith AJ, Clarkson BH. Matrix and TGF-beta-related gene expression during human dental pulp stem cell (DPSC) mineralization. In Vitro Cell Dev Biol Anim. 2007 Mar-Apr;43(3-4):120-8. doi: 10.1007/s11626-007-9022-8.

Hara K, Yamada Y, Nakamura S, Umemura E, Ito K, Ueda M. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology. J Endod. 2011 Dec;37(12):1647-52. doi: 10.1016/j.joen.2011.08.023.

Coyac BR, Chicatun F, Hoac B, Nelea V, Chaussain C, Nazhat SN, et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells. J Dent Res. 2013 Jul;92(7):648-54. doi: 10.1177/0022034513488599.

Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009 Nov;35(11):1536-42. doi: 10.1016/j.joen.2009.07.024.

Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010 Mar;1(1):5. doi: 10.1186/scrt5.

Wang X, Sha XJ, Li GH, Yang FS, Ji K, Wen LY, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol. 2012 Sep;57(9):1231-40. doi: 10.1016/j.archoralbio.2012.02.014.

Ma L, Makino Y, Yamaza H, Akiyama K, Hoshino Y, Song G, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One. 2012;7(12):e51777. doi: 10.1371/journal.pone.0051777.

Farea M, Husein A, Halim AS, Abdullah NA, Mokhtar KI, Lim CK, et al. Synergistic effects of chitosan scaffold and TGFbeta1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol. 2014 Dec;59(12):1400-11. doi: 10.1016/j.archoralbio.2014.08.015.

Lee S, An S, Kang TH, Kim KH, Chang NH, Kang S, et al. Comparison of mesenchymal-like stem/progenitor cells derived from supernumerary teeth with stem cells from human exfoliated deciduous teeth. Regen Med. 2011 Nov;6(6):689-99. doi: 10.2217/rme.11.95.

Alipour R, Adib M, Masoumi Karimi M, Hashemi-Beni B, Sereshki N. Comparing the immunoregulatory effects of stem cells from human exfoliated deciduous teeth and bone marrow-derived mesenchymal stem cells. Iran J Allergy Asthma Immunol. 2013 Aug;12(4):331-44.

Laurent P, Camps J, About I. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012 May;45(5):439-48. doi: 10.1111/j.1365-2591.2011.01995.x.

Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000 Feb;28(2):77-92. doi: 10.1016/s0300-5712(99)00047-0.

Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006 May;27(14):2865-73. doi: 10.1016/j.biomaterials.2005.12.020.

Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ. 2003 Jun;67(6):678-89.

Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007 Apr;33(4):377-90. doi: 10.1016/j.joen.2006.09.013.

Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med. 2001;12(5):425-37. doi: 10.1177/10454411010120050501.

Sloan AJ, Smith AJ. Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Dis. 2007 Mar;13(2):151-7. doi: 10.1111/j.1601-0825.2006.01346.x.

Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nor JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res. 2010 Jun;89(6):603-8. doi: 10.1177/0022034510364487.

He H, Yu J, Liu Y, Lu S, Liu H, Shi J, et al. Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int. 2008 Jul;32(7):827-34. doi: 10.1016/j.cellbi.2008.03.013.

Niwa T, Yamakoshi Y, Yamazaki H, Karakida T, Chiba R, Hu JC, et al. The dynamics of TGF-beta in dental pulp, odontoblasts and dentin. Sci Rep. 2018 Mar;8(1):4450. doi: 10.1038/s41598-018-22823-7.

Salkin H, Gonen ZB, Ergen E, Bahar D, Cetin M. Effects of TGF-beta1 overexpression on biological characteristics of human dental pulp-derived mesenchymal stromal cells. Int J Stem Cells. 2019 Mar;12(1):170-82. doi: 10.15283/ijsc18051.

Li Y, Lu X, Sun X, Bai S, Li S, Shi J. Odontoblast-like cell differentiation and dentin formation induced with TGF-beta1. Arch Oral Biol. 2011 Nov;56(11):1221-9. doi: 10.1016/j.archoralbio.2011.05.002.

Tziafas D, Papadimitriou S. Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo. Eur J Oral Sci. 1998 Jan;106 Suppl 1:192-6. doi: 10.1111/j.1600-0722.1998.tb02175.x.

Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F. Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res. 2000 Sep;79(9):1689-96. doi: 10.1177/00220345000790090901.

Nie X, Tian W, Zhang Y, Chen X, Dong R, Jiang M, et al. Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int. 2006 Apr;30(4):295-300. doi: 10.1016/j.cellbi.2005.12.001.

Zhang W, Walboomers XF, Jansen JA. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-beta1. J Biomed Mater Res A. 2008 May;85(2):439-44. doi: 10.1002/jbm.a.31558.

Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, et al. Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am. 2012 Jul;56(3):563-75. doi: 10.1016/j.cden.2012.05.001.

Gonçalves LF, Fernandes AP, Cosme-Silva L, Colombo FA, Martins NS, Oliveira TM, et al. Effect of EDTA on TGF-beta1 released from the dentin matrix and its influence on dental pulp stem cell migration. Braz Oral Res. 2016 Dec;30(1):e131. doi: 10.1590/1807-3107BOR-2016.vol30.0131.

Ogawa T, Akazawa T, Tabata Y. In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-beta1 release. J Biomater Sci Polym Ed. 2010;21(5):609-21. doi: 10.1163/156856209X434638.

Xu JG, Zhu SY, Heng BC, Dissanayaka WL, Zhang CF. TGF-beta1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther. 2017 Jan;8(1):10. doi: 10.1186/s13287-016-0459-0.

Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev. 2010 Apr;16(2):219-55. doi: 10.1089/ten.TEB.2009.0562.

Howard C, Murray PE, Namerow KN. Dental pulp stem cell migration. J Endod. 2010 Dec;36(12):1963-6. doi: 10.1016/j.joen.2010.08.046.

Yongchaitrakul T, Pavasant P. Transforming growth factor-beta1 up-regulates the expression of nerve growth factor through mitogen-activated protein kinase signaling pathways in dental pulp cells. Eur J Oral Sci. 2007 Feb;115(1):57-63. doi: 10.1111/j.1600-0722.2007.00420.x.

Chen K, Xiong H, Xu N, Shen Y, Huang Y, Liu C. Chondrogenic potential of stem cells from human exfoliated deciduous teeth in vitro and in vivo. Acta Odontol Scand. 2014 Nov;72(8):664-72. doi: 10.3109/00016357.2014.888756.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Ana Paula Fernandes, Leandro Borges Araújo, Fábio Antonio Colombo, Eloá Cristina Passucci Ambrosio, Ana Beatriz Vieira da Silveira, Mariel Tavares Oliveira Prado Bergamo, Paula Karine Jorge, Maria Aparecida Andrade Moreira Machado, Thais Marchini Oliveira, Vivien Thiemy Sakai

Downloads

Download data is not yet available.