Abstract
Aim: this study is to evaluate the effect of corrosion on flexural fracture resistance in orthodontic mini-implants composed of two materials and submerged in salivary substitutes with or without fluoride. Methods: twenty mini-implants were used, 10 from SIN Company (Ti6AL4V alloys) and 10 from Morelli (steel alloys), (G1: Ti6AL4V in fluoride-free saliva solution; G2: Ti6AL4V in saliva solution with 1500 ppm of fluoride; G3: Steel in saliva without fluoride; and G4: Steel in saliva with 1500 ppm of fluoride). The samples were taken to a potentiostat to evaluate the corrosion, and then were evaluated under scanning electron microscopy (SEM). Then, the mini-implants underwent flexural fracture resistance tests. Kruskal-Wallis test with the Student-Newman-Keuls comparison evaluated the corrosion and pitting potentials of each group. ANOVA and Tukey’s comparison test at a 1% significance level. Results: All groups suffered corrosion potential and pitting potential, but those that were in solutions with the presence of fluoride showed less resistance to the formation of corrosion pits (G1 and G3). In the SEM analysis after flexural resistance, small cavities suggestive of pitting corrosion were noted. The G4 was the only one that formed the passivation potential. In the fracture resistance test, mini-implants manufactured by Ti6AL4V fractured with less force applied (G1 and G2). Most steel mini-implants (G3 and G4) only deformed with a higher force application. Conclusion: Fluoride acts to corrode mini-implants, regardless of their manufacturing material. Regarding flexural resistence, the corrosion rate of the mini implants did`nt influence the fracture resistance values.
References
Mattos CT, Ruellas ACO, Elias CN. Is it possible to re-use mini-implants for orthodontic anchorage? Results of an in vitro study. Mat Res. 2010;13(4):521-5. doi: 10.1590/S1516-14392010000400015.
Cadosch D, Chan E, Gautschi OP, Filgueira L Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening - Current concepts. J Biomed Mater Res. 2009;91(4):1252-62. doi: 10.1002/jbm.a.32625.
Caetano PL, Bahiaa MS, Silva EDF, Vitrala RWF, da Silva Camposa MJ. Corrosion resistance and surface characterization of miniscrews removed from orthodontic patients. Rev Port Estomatol Med Dent Cir. 2019;60(1):1-7. doi: 10.24873/j.rpemd.2019.05.445.
Truong VM, Kim S, Kim J, Lee JW, Park YS. Revisiting the Complications of Orthodontic Miniscrew. Biomed Res Int. 2022 Aug;2022:8720412. doi: 10.1155/2022/8720412.
Knutson KJ, Berzins DW. Corrosion of orthodontic temporary anchorage devices. Eur J Orthod. 2013 Aug;35(4):500-6. doi: 10.1093/ejo/cjs027. Epub 2012 May 9.
Messer RL, Seta F, Mickalonis J, Brown Y, Lewis JB, Wataha JC. Corrosion of phosphate-enriched titanium oxide surface dental implants (TiUnite) under in vitro inflammatory and hyperglycemic conditions. J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):525-34. doi: 10.1002/jbm.b.31548.
Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res. 2012 Apr;14(2):170-83. doi: 10.1111/j.1708-8208.2009.00244.x. Epub 2009 Oct 16.
Galeotti A, Uomo R, Spagnuolo G, Paduano S, Cimino R, Valletta R, et al. Effect of pH on in vitro biocompatibility of orthodontic miniscrew implants. Prog Orthod. 2013 Jul;14:15. doi: 10.1186/2196-1042-14-15.
Schätzle M, Männchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res. 2009 Dec;20(12):1351-9. doi: 10.1111/j.1600-0501.2009.01754.x.
Smith A, Hosein YK, Dunning CE, Tassi A. Fracture resistance of commonly used self-drilling orthodontic mini-implants. Angle Orthod. 2015 Jan;85(1):26-32. doi: 10.2319/112213-860.1.
Souza JC, Barbosa SL, Ariza EA, Henriques M, Teughels W, Ponthiaux P, et al. How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study. Mater Sci Eng C Mater Biol Appl. 2015 Feb;47:384-93. doi: 10.1016/j.msec.2014.11.055. Epub 2014 Nov 20.
Gal JY, Fovet Y, Adib-Yadzi M. About a synthetic saliva for in vitro studies. Talanta. 2001 Mar 16;53(6):1103-15. doi: 10.1016/s0039-9140(00)00618-4.
Wolynec S. [Electrochemical techniques in corrosion]. São Paulo: Edusp; 2002.
Souza JCM, Barbosa SL, Ariza E, Celis JP, Rocha LA. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292-293(1):82-88. doi: 10.1016/j.wear.2012.05.030.
Könönen MH, Lavonius ET, Kivilahti JK. SEM observations on stress corrosion cracking of commercially pure titanium in a topical fluoride solution. Dent Mater. 1995 Jul;11(4):269-72. doi: 10.1016/0109-5641(95)80061-1.
Alavi S, Ahmadvand A. Ions release evaluation and corrosion of titanium mini-implant surface in response to orthokin, oral B and chlorhexidine mouthwashes. Dent Res J (Isfahan). 2021 May 24;18:32.
Elias CN, Lima JH C, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60:46-9. doi: 10.1007/s11837-008-0031-1.
Gittens RA, Olivares-Navarrete R, Tannenbaum R, Boyan BD, Schwartz Z. Electrical implications of corrosion for osseointegration of titanium implants. J Dent Res. 2011 Dec;90(12):1389-97. doi: 10.1177/0022034511408428.
Assad-Loss TF, Kitahara-Céia FMF, Silveira GS, Elias CN, Mucha JN. Fracture strength of orthodontic mini-implants. Dental Press J Orthod. 2017 May-Jun;22(3):47-54. doi: 10.1590/2177-6709.22.3.047-054.oar.
Huang GY, Jiang HB, Cha JY, Kim KM, Hwang CJ. The effect of fluoride-containing oral rinses on the corrosion resistance of titanium alloy (Ti-6Al-4V). Korean J Orthod. 2017 Sep;47(5):306-312. doi: 10.4041/kjod.2017.47.5.306.
Alves CB, Segurado MN, Dorta MC, Dias FR, Lenza MG, Lenza MA. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants. Dental Press J Orthod. 2016 Sep-Oct;21(5):39-46. doi: 10.1590/2177-6709.21.5.039-046.oar.
Burmann PFP, Tomé SB, Tonetto A, Heizemann G, Meirelles P, Bruggemann R. Characterization of orthodontic mini-implants in scanning electron microscopic. Rev Saude Integral. 2013:83-93.
Pithon MM, Figueiredo DSF, Oliveira DD (2013). Mechanical evaluation of orthodontic mini-implants of different lengths. J Oral Maxillofac Surg, 71(3):479-86. doi: 10.1016/j.joms.2012.10.002.
Burmann PF, Ruschel HC, Vargas IA, de Verney JC, Kramer PF. Titanium alloy orthodontic mini-implants: scanning electron microscopic and metallographic analyses. Acta Odontol Latinoam. 2015 Apr;28(1):42-7. doi: 10.1590/S1852-48342015000100006.
Wilmes B, Panayotidis A, Drescher D. Fracture resistance of orthodontic mini-implants: a biomechanical in vitro study. Eur J Orthod. 2011 Aug;33(4):396-401. doi: 10.1093/ejo/cjq151.
Ranjan A, Shetty P, Despande R, Biradar A, Khan W, Kulshrestha R. A comparative surface evaluation of orthodontic mini-implants before and after en masse retraction-A SEM study. J Orthod Sci. 2023 Mar;12:15. doi: 10.4103/jos.jos_166_21.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Alef da Silva, Felipe Gomes Dallepiane, Letícia Copatti Dogenski, Katia Raquel Weber, Bianca Gonçalves Trindade, Lucas Menezes dos Anjos, Brenda Klein Dias, João Paulo de Carli, William Haupt, Micheline Sandini Trentin