Banner Portal
Bleaching efficacy, decomposition rate and pH of experimental bleaching gels incorporating bioactive materials
PDF

Keywords

Bleaching agents
Hydrogen peroxide
Bioglass

How to Cite

1.
Coelho CSS, Rigo IG, Dascanio R, Souza MT, Zanotto ED, Tabchoury CPM, et al. Bleaching efficacy, decomposition rate and pH of experimental bleaching gels incorporating bioactive materials. Braz. J. Oral Sci. [Internet]. 2024 Oct. 22 [cited 2024 Dec. 2];23(00):e245407. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8675407

Abstract

Aim: To evaluate the bleaching efficacy, decomposition rate, and pH of experimental gels containing 35% hydrogen peroxide (HP) and different concentrations of 45S5-bioglass (BG) or Biosilicate® (BS). Methods: Bovine enamel/dentin blocks (n=10) were allocated into the groups HP_BG or HP_BS (2.5, 5, 7.5 and 10 wt%) and HP (35% HP – positive control). The blocks were submitted to three sessions of 40 min and 7-day intervals. During the interval, the blocks were kept in artificial saliva at 37ºC. Color change (ΔE00) and whiteness index change (ΔWID) were determined after staining with black tea (T1) and 24 h after the 3rd bleaching session (T2). HP decomposition rate (%) and pH were evaluated for 40 min. Two-way ANOVA and Tukey analyzed ΔE00 and ΔWID data, while the Kruskal-Wallis test determined the decomposition rate and pH of the gels. Results: There were no differences in ΔE00 and ΔWID among the experimental bleaching gels containing BG or BS and 35% HP (p > 0.05), but BG and BS gels displayed lower HP concentration than 35% HP, regardless of the bioactive material concentration (p < 0.05). The experimental BG and BS gels exhibited alkaline pH (ranging from 9.28 to 9.82), which was higher than that of 35% HP (p < 0.05). But regardless of the gel, all kept the pH values stable for 40 min. Conclusion: The experimental gels containing BG and BS did not hamper the 35% HP bleaching efficacy. Moreover, BG or BS gels decreased the hydrogen peroxide concentration and exhibited alkaline pH values.

https://doi.org/10.20396/bjos.v23i00.8675407
PDF

References

Al-Angari SS, Lippert F, Platt JA, Eckert GJ, González-Cabezas C, Li Y, et al. Dental bleaching efficacy and impact on demineralization susceptibility of simulated stained-remineralized caries lesions. J Dent. 2019 Feb;81:59-63. doi: 10.1016/j.jdent.2018.12.008. Epub 2018 Dec 20.

Kwon SR, Wertz PW. Review of the mechanism of tooth whitening. J Esthet Restor Dent. 2015 Sep-Oct;27(5):240-57. doi: 10.1111/jerd.12152.

Kury M, Lins RBE, Resende BA, Picolo MZD, André CB, Cavalli V. The influence of the renewal or the single application of the peroxide gel on the efficacy and tooth sensitivity outcomes of in-office bleaching-A systematic review and meta-analysis. J Esthet Restor Dent. 2022 Apr;34(3):490-502. doi: 10.1111/jerd.12827. Epub 2021 Oct 8.

Kury M, Perches C, da Silva DP, André CB, Tabchoury CPM, Giannini M, et al. Color change, diffusion of hydrogen peroxide, and enamel morphology after in-office bleaching with violet light or nonthermal atmospheric plasma: An in vitro study. J Esthet Restor Dent. 2020 Jan;32(1):102-12. doi: 10.1111/jerd.12556. Epub 2019 Dec 16.

Suresh S, Navit S, Khan SA, Sharma A, Jabeen S, Grover N, et al. Effect of diode laser office bleaching on mineral content and surface topography of enamel surface: an SEM study. Int J Clin Pediatr Dent. 2020 Sep-Oct;13(5):481-5. doi: 10.5005/jp-journals-10005-1823.

Torres C, Zanatta RF, Silva TJ, Borges AB. Effect of calcium and fluoride addition to hydrogen peroxide bleaching gel on tooth diffusion, color, and microhardness. Oper Dent. 2019 Jul/Aug;44(4):424432. doi: 10.2341/18-113-L.

Cavalli V, Rosa DAD, Silva DPD, Kury M, Liporoni PCS, Soares LES, et al. Effects of experimental bleaching agents on the mineral content of sound and demineralized enamels. J Appl Oral Sci. 2018 Oct;26:e20170589. doi: 10.1590/1678-7757-2017-0589.

Kury M, Hiers RD, Zhao YD, Picolo MZD, Hsieh J, Khajotia SS, et al. Novel experimental in-office bleaching gels containing co-doped titanium dioxide nanoparticles. Nanomaterials (Basel). 2022 Aug;12(17):2995. doi: 10.3390/nano12172995.

Deng M, Wen HL, Dong XL, Li F, Xu X, Li H, et al. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide. Int J Oral Sci. 2013 Jun;5(2):103-10. doi: 10.1038/ijos.2013.31.

Yang SY, Han AR, Kim KM, Kwon JS. Effects of incorporating 45S5 bioactive glass into 30% hydrogen peroxide solution on whitening efficacy and enamel surface properties. Clin Oral Investig. 2022 Aug;26(8):5301-12. doi: 10.1007/s00784-022-04498-7.

Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006 Nov;17(11):967-78. doi: 10.1007/s10856-006-0432-z.

Curtis AR, West NX, Su B. Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater. 2010 Sep;6(9):3740-6. doi: 10.1016/j.actbio.2010.02.045.

Rizwan M, Hamdi M, Basirun WJ. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res A. 2017 Nov;105(11):3197-223. doi: 10.1002/jbm.a.36156.

Malavasi G, Lusvardi G. Composition and morphology effects on catalase mimetic activity of potential bioactive glasses. Ceramics Int. 2020 Nov;46(16):25854-64. doi: 10.1016/j.ceramint.2020.07.067.

Crovace MC, Souza MT, Chinaglia CR, Peitl O, Zanotto ED. Biosilicate® — A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J. Non-Cryst Solids. 2016;432(part A):90-110. doi: 10.1016/j.jnoncrysol.2015.03.022.

Tirapelli C, Panzeri H, Lara EH, Soares RG, Peitl O, Zanotto ED. The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study. J Oral Rehabil. 2011 Apr;38(4):253-62. doi: 10.1111/j.1365-2842.2010.02157.x. Epub 2010 Sep 26.

Pintado-Palomino K, Tirapelli C. The effect of home-use and in-office bleaching treatments combined with experimental desensitizing agents on enamel and dentin. Eur J Dent. 2015 Jan-Mar;9(1):66-73. doi: 10.4103/1305-7456.149645.

Carminatti M, Benetti F, Siqueira RL, Zanotto ED, Briso ALF, Chaves-Neto AH, et al. Experimental gel containing bioactive glass-ceramic to minimize the pulp damage caused by dental bleaching in rats. J Appl Oral Sci. 2020 Jun;28:e20190384. doi: 10.1590/1678-7757-2019-0384.

Sulieman M, Addy M, Rees JS. Development and evaluation of a method in vitro to study the effectiveness of tooth bleaching. J Dent. 2003 Aug;31(6):415-22. doi: 10.1016/s0300-5712(03)00069-1.

Queiroz CS, Hara AT, Paes Leme AF, Cury JA. pH-cycling models to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Braz Dent J. 2008;19(1):21-7. doi: 10.1590/s0103-64402008000100004.

Dascanio R, Coelho CSS, Souza MT, Zanotto ED, Cavalli V. Influence of bleaching gels containing 45S5 Bioglass on enamel color, surface roughness, and microhardness. Acad Mater Sci. 2024;1(2). doi: 10.20935/AcadMatSci6214.

Dascanio R, de Oliveira Ribeiro RA, Coelho CSS, Souza MT, Kury M, Zanotto ED, et al. Effectiveness and safety of biosilicate-enhanced bleaching gels on enamel with early erosion lesion. J Esthet Rest Dent. 2024 Jun 9. doi: 10.1111/jerd.13271.

Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, et al. Color difference thresholds in dentistry. J Esthet Restor Dent. 2015 Mar-Apr;27 Suppl 1:S1-9. doi: 10.1111/jerd.12149.

Pérez Mdel M, Ghinea R, Rivas MJ, Yebra A, Ionescu AM, Paravina RD, et al. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent Mater. 2016 Mar;32(3):461-7. doi: 10.1016/j.dental.2015.12.008.

Borges AB, de Abreu FS, Mailart MC, Zanatta RF, Torres C. Efficacy and safety of bleaching gels according to application protocol. Oper Dent. 2021 Mar;46(2):E105-E116. doi: 10.2341/19-253-L.

Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013 Jan;9(1):4457-86. doi: 10.1016/j.actbio.2012.08.023. Epub 2012 Aug 21.

De Oliveira Ribeiro RA, Soares IPM, Soares DG, Briso ALF, Hebling J, de Souza Costa CA. Human pulpal responses to peroxides. In: Perdigão J, editor. Tooth whitening: an evidence-based perpective. 2.ed. Cham, Switzerland: Springer; 2023. p.87-109. doi: 10.1007/978-3-031-38244-4_5.

Cavalli V, Silva BGD, Berger SB, Marson FC, Tabchoury CPM, Giannini M. Decomposition rate, pH, and enamel color alteration of at-home and in-office bleaching agents. Braz Dent J. 2019 Jul ;30(4):385-96. doi: 10.1590/0103-6440201902484.

Balladares L, Alegría-Acevedo LF, Montenegro-Arana A, Arana-Gordillo LA, Pulido C, Salazar-Gracez MT, et al. Effects of pH and application technique of in-office bleaching gels on hydrogen peroxide penetration into the pulp chamber. Oper Dent. 2019 Nov/Dec;44(6):659-67. doi: 10.2341/18-148-L.

Loguercio AD, Servat F, Stanislawczuk R, Mena-Serrano A, Rezende M, Prieto MV, et al. Effect of acidity of in-office bleaching gels on tooth sensitivity and whitening: a two-center double-blind randomized clinical trial. Clin Oral Investig. 2017 Dec;21(9):2811-8. doi: 10.1007/s00784-017-2083-5.

Borden M, Westerlund LE, Lovric V, Walsh W. Controlling the bone regeneration properties of bioactive glass: Effect of particle shape and size. J Biomed Mater Res B Appl Biomater. 2022 Apr;110(4):910-22. doi: 10.1002/jbm.b.34971. Epub 2021 Dec 22.

Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials. 2008 Apr;29(12):1750-61. doi: 10.1016/j.biomaterials.2007.12.040.

Mohn D, Misra SK, Brunner TJ, Bocaccini AR, Stark WJ. Nano- versus micron-sized bioactive glass reinforcement of P(3HB) - are nano-fillers the way forward? Eur Cells Mater. 2008;16(suppl 1):8.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Camila Siqueira Silva Coelho, Izabele Gemeli Rigo, Rafael Dascanio, Marina Trevelin Souza, Edgar Dutra Zanotto, Cinthia Pereira Machado Tabchoury, Vanessa Cavalli

Downloads

Download data is not yet available.