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RESUMO Num estudo recente, Barbosa sugere que, para uma síntese de fala com naturalidade, o número 
de sílabas no grupo acentual poderia ser determinado dinamicamente a partir das relações momentâneas dos 
osciladores acentual e silábico. Consideramos aqui as ramificações desta idéia para entender padrões na fala 
natural, utilizando e estendendo um modelo de osciladores acoplados hierarquizados previamente 
desenvolvido. 

 
 
1. INTRODUCTION 
 
Speech exhibits various rhythms manifested by repetitions of many different kinds. 
Many of these form hierarchical cycles—faster, lower level cycles repeating within 
slower, higher level cycles. One example of this, which has received some attention in 
the literature, is the case of syllables within a stress cycle. In previous work (O’Dell & 
Nieminen, 1998; 1999; 2001) we have had some success interpreting empirical data in 
terms of an abstract mathematical model of coupled oscillators. Very typically, for 
instance, average syllable duration diminishes somewhat while the time elapsing 
between consecutive stresses (interstress interval, or ISI) grows when the number of 
syllables per ISI increases, a feature which the model shows is in fact very general for 
systems of hierarchically coupled oscillations (see also Barbosa, 2000 for a thorough 
review and additional data). In the present article, inspired by a suggestion in a recent 
article (Barbosa, 2001), we consider the dynamics of stress group length itself in such a 
model. 
 
1.1. Coupled oscillator model 
 
The basic idea of the coupled oscillator model is to assume the existence of subrhythms 
which would exhibit simple oscillatory behavior if observed in isolation. When 
oscillators are combined into larger systems so that they influence each other, the 
resulting patterns of rhythm may be much more complex than those of the component 
oscillators. In some cases, enough is known about the mechanisms underlying a 
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particular behavior, that detailed models of component oscillators and the ways they 
influence each other (coupling) may be attempted. In many other cases the mechanisms 
leading to rhythmic behavior are not understood in detail, or can only be guessed at. 
Fortunately, however, much of the macroscopic behavior of systems of oscillators is 
relatively insensitive to the exact details of the oscillators or the couplings involved. A 
mathematical technique called APD theory (for averaged phase difference) has been 
developed which is abstract enough to derive qualitative conclusions about collections 
of oscillators in spite of minimal knowledge of the details of the components (cf. Kopell 
1988). The essence of this technique is twofold. First, any descriptions of oscillating 
subsystems are reparameterized in coordinates of phase relative to the system’s own 
limit cycle attractor, or “natural oscillation”, reducing the variables involved to phase. 
If no previous physical description is available we may assume this transformation has 
already been applied and start with a simple phase description. Operating on its own, 
such a subsystem will be characterized by 

ωθ =&  (1) 
that is, the derivative (or rate of change) of the oscillator’s phase (θ) is a constant (ω) 
expressing the oscillator’s “natural” rhythm or eigenfrequency. The next step is to 
consider the interaction of two (or more) such oscillators, each with its own 
eigenfrequency. Even with the above simplification, this interaction could in general be 
a complicated function of the phases of each of the subsystems, but a further simplifi-
cation is utilized in APD theory. For each subsystem the effects at each phase difference 
are averaged over an entire cycle, giving a simple characterization of the total system in 
terms of constant eigenfrequencies (ω) along with couplings dependent only on phase 
differences.  In the case of syllables and stress groups, we need coupling functions that 
depend on n, the number of syllables per stress group. Each oscillator will have its own 
eigenfrequency which we designate θ1 for the stress group oscillator and θ2 for the 
syllable oscillator. We assume the coupling influences may be expressed as a function 
of a quantity 

12 θθφ nn −=  (2) 

with n the number of syllables per stress group. If we further assume that the two 
coupling influences in opposite directions are identical in form (or close enough that 
averaging out the differences does not radically change behavior) but opposite in sign, 
varying only in “relative strength,” we arrive at the following system: 
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where r indicates the relative strength (or dominance) of the stress group over the 
syllable. To find an equilibrium solution, we set the time derivative of φn to zero: 
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for the value of H(φn) at equilibrium. The period of the stress group oscillator (e.g. the 
time from stress to stress, or ISI) at such an equilibrium (if it exists) can then be 
calculated as a function of n: 
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The period is thus a linear function of n of the form I = a + bn used by Eriksson (1991). 
If a and b in Eriksson’s formula are estimated empirically by regression analysis, then 
the relative strength parameter r of equation (3) can be estimated as a/b. 
 
1.2. Barbosa’s synthesis model 
 
In his description of a synthesis model implemented for Brazilian Portuguese (BP) 
Barbosa states 
This phrasal stress is considered to be genuinely periodic but the exact location of its 
pulses is locally modified by higher-level linguistic input constraints (lexical and 
syntactic-semantic information). (Barbosa, 2001: 969) 
and 
Following analyses from BP data, the second [ie. stress group] oscillator starts with a 
fixed period across speech rates (the phrase stress oscillator period). The ratio between 
this value and the period of the first [ie. syllable] oscillator is then computed and 
rounded. This new value represents the number of V-to-V units to the next phrasal 
stress. This number is readjusted in order to coincide with a lexical stressed syllable. 
(op. cit.) 
In terms of our model, we take this to be a suggestion that the parameter n involved in 
the coupling (equations 2, 4, 5 and 6 above) should be considered a dynamic variable 
whose value is influenced by system dynamics as well by outside control. 
Another intriguing feature of Barbosa’s synthesis is the fact “As during speech 
production mechanism, the generation includes the emergence of silent pauses. – – [I]f 
at a particular position in the sentence (normally corresponding with phrasal stress beat) 
the corresponding delivered V-to-V normalized duration is greater than a critical value, 
the insertion of a silent pause is considered.” (op. cit.) In future we hope to investigate 
the applicability of this suggestion to Finnish. However, in the present article we 
concentrate on the dynamics of stress group length in our Finnish language corpus. 
 
1.3. Hypotheses 
 
Considering stress group length n from the point of view of dynamic systems theory, we 
assume that the system comes every now and again (normally once for each stress 
group) to a bifurcation2 point when a choice of n is made. If we want to express this 
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more neutrally we may say that a bifurcation is reached from which many paths lead, 
each path corresponding to or resulting in a different number of syllables being 
executed during the next stress cycle. Using Haken’s terminology (cf. eg. Haken, 1983), 
n functions as an order parameter. After the bifurcation point we assume the path taken 
has a potential well deep enough (compared to diffusion) so that changing n in the 
middle of a stress group is a rare event. We might say that all possible values of n 
compete with each other at this bifurcation point. It is obvious from the start that many 
factors affect the chances for a particular n to be realized. Perhaps the most obvious is 
the lexical and syntactic structure of the language which dictates that some syllables 
(which we shall call lexically stressable syllables, LSS) are much more likely than 
others to receive stress and start a new stress group. The question we are concerned 
with is whether or not the choice of n is affected (also) by the coupling of stress and 
syllable rhythms. 
A priori there is good reason to expect a possible influence of coupling on choice of n 
given the coupled oscillator model, since the coupling “force” needed to synchronize 
stress and syllable oscillators will increase as n deviates from Ω = ω2/ω1, the ratio of 
eigenfrequencies of the two oscillators. For instance, if Ω = 3, then no coupling at all 
will be necessary if there are exactly 3 syllables per stress group, but the more the 
syllable count deviates from this ideal, the more coupling force is needed to maintain 
synchrony. 
 
 
2. METHODS 
 
2.1. Corpus 
 
Stress in Finnish is almost always realized on the first syllable of a word and is 
therefore not lexically distinctive, but rather has a delimitative function. The current 
corpus, originally analyzed by Nieminen in 1996, consists of a 10-minute Finnish 
language radio speech broadcast in Finland on Saturday 24th October 1992. It was 
prepared ahead of time and read aloud, and represents a fairly formal speaking style. 
Stressed syllables were determined in Nieminen’s study auditorily by two trained 
phoneticians working initially independently, and then conferring in cases of 
disagreement. (A more detailed account of stress judgments can be found in Nieminen 
1996.) The duration of the stress groups varies between 183 and 1903 msec, median 
751 msec. The length of stress groups measured in syllables varies from 1 to 12 with a 
median of 4 syllables. At least 75% are six or less syllables long. 

                                                                                                                                             
parameter is varied.” (Prigogine 1997: 201). For more examples of applying dynamic systems theory to 
language cf. eg. Port & van Gelder 1995. 
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Table 1: Description of corpus. 

 freq % 

stressed 317 21.4 

unstressed 1164 78.6 

TOTAL 1481 100.0 

 
2.2. Experiment I 
 
It is possible to estimate the probability of a syllable being stressed, given no other 
information about the syllable. In the present corpus there were 317 stressed syllables 
out of a total 1481 syllables giving a maximum likelihood estimate of 317/1481 = 
0.214045 for the probability in question. However, before we go on to consider the 
possible effect of length of stress group, we should take into consideration the fact that 
some syllables are a priori almost impossible to stress. This is why in Barbosa’s 
synthesis model, “This number is readjusted in order to coincide with a lexical stressed 
syllable” (see above). 
For the purposes of the present analysis, we classified all syllables in the corpus into 
two groups, lexically stressable (LSS) and lexically unstressable (LUS). This 
classification was done independently of the acoustic analysis according to the 
following simple rule (cf. Karlsson, 1983): the first syllable of every word was 
considered stressable including the first syllable of each component of a compound 
word (i.e. words which are written without an intervening space in Finnish orthography, 
mainly a noun modifying a following noun, e.g. kriisipesäke ‘roughly: center of crisis’). 
Naturally we do not claim that all syllables classified “stressable” in this way are 
equally likely to receive stress. A more rigorous analysis of lexical, syntactic, semantic, 
pragmatic and other factors could certainly produce a finer distinction in a priori 
“stressability.” For instance the conjunction ja ‘and’ is not as likely to be stressed 
(though it is stressed occasionally in our corpus) as the first syllable of a noun such as 
sota ‘war’. The relevance of this classification into lexically stressable and unstressable 
can be checked in the light of our corpus by asking how much more likely (given no 
additional information) it is for a lexically stressable syllable to receive stress compared 
to a lexically unstressable syllable. In the present corpus 316 lexically stressable 
syllables received stress out of a total of 559 lexically stressable syllables giving a 
maximum likelihood estimate of 0.565 for the probability that a lexically stressable 
syllable is realized with stress. Compare this to one occurrence of stress on a LUS3 out 
of a total of 922 LUS giving a maximum likelihood estimate of 0.001 for the 
probability that a lexically unstressable syllable is realized with stress. The difference is 
so clear that statistical tests are hardly necessary. In what follows we will restrict 
attention to the behavior of LSS. (Of course in a much larger corpus with enough 
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last word ('virsikirjas'tamme “from our hymn book”), possibly emphasizing the end of the speech. 
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occurrences of stresses on LUS it would be of great interest to examine their 
distribution as well.) 
 

Table 2: Frequency of stress in LSS and LUS. 

 stressed unstressed TOTAL 
 freq % freq % freq 
LSS 316 56.5 243 43.5 559 
LUS 1 0.1 921 99.9 922 
TOTAL 317 21.4 1164 78.6 1481 

 
The next question to ask is whether the size of the stress group n which would result if a 
syllable is stressed has any effect on the probability of that syllable being stressed. n 
will of course be the number of syllables which have occurred since the previous 
realized stress. The natural null hypothesis to test against is that there is a constant 
probability of stress being realized (on a LSS) regardless of how many syllables have 
occurred since the last stressed syllable. To test this hypothesis we divide all LSS in the 
corpus into groups according to n, interpreted now as the number of syllables since the 
previous realized stress occurring in the same breath group, ie. with no intervening 
pauses. Cases which do not have a previous stress in the same breath group are 
ambiguous and are left out of the analysis. 
 

Table 3: Frequency and estimated probability of stress, given n. 

n total stressed p 
1 17 2 0.118 
2 86 24 0.279 
3 77 36 0.468 
4 66 38 0.576 
5 47 34 0.723 
6 26 32 0.889 
7 15 11 0.733 
8 7 4 0.571 
9 2 2 1.000 
10 3 3 1.000 
11 1 1 1.000 

 
This allows us to calculate a separate probability estimate (i.e. the proportion of 
realized stresses) for each n occurring in the corpus. The results of this calculation are 
shown in Table 3 and in Figure 1. Figure 1 also shows a bar indicating the exact 95% 
credibility interval for the proportion at each n (calculated assuming a binomial 
distribution for the number of stressed syllables), as well as a dotted line showing the 
proportion for all cases combined, which is the maximum likelihood estimate for p 
given that p is constant across all n. 
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Figure 1: Estimated probability of stress, given n. 

 
The relevance of n can be tested by considering a Markov chain model with a series of 
states corresponding to the system being confronted with the choice of stressing or not 
stressing, i.e. the occurrence of a LSS. To test the relevance of n, we consider a system 
which has a separate LSS state for each n, thereby allowing for the possibility that the 
transition probability is different for different n. A complete Markov chain model 
would include states describing the probabilities of a LSS occurring at various points in 
the process, but we consider the process only when a LSS has occurred. We utilize a 
Pearson chi-square statistic for the test (cf. Bhat, 1972:99), lumping together classes n = 
8 through n = 11 to ensure the expected number of cases in each cell is greater than 5. 
The resulting value of chi-square with 7 degrees of freedom is 31.4804, with a 
significance of p < 0.0001. It would appear we can reasonably reject the hypothesis that 
choice of stressing a LSS is independent of the number of syllables since the last stress. 
Indeed, looking at Figure 1, it would seem apparent that there is a clear trend, at least 
for n ≤ 6, for stress to be more and more likely the further we get from the last 
occurrence of stress. (For n ≥ 7, the estimated probability is extremely unreliable, being 
based on very few cases, as can be seen by the large credibility intervals in Figure 1.) 
 
2.4 Experiment II 
 
Because the null hypothesis can be rejected, we may try to estimate the form of the 
probability distribution of n, interpreted now as the number of syllables in the upcoming 
stress group. One way to do this would be to look at the raw empirical frequency of 
stress groups of various lengths. The problem with this, however, is that we don’t know 
the effect on stress group length which is merely a result of various patterns of LSS 
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occurring in the data (and presumably in Finnish in general). For instance, it might be 
the case that the most likely stress group length is four syllables simply because every 
fourth syllable is most often “available” for stressing (LSS), which could in turn be the 
result of Finnish lexical structure, in which case the high frequency of four syllables per 
stress group would not be related to coordination of stress and syllable rhythms at all. In 
general we might expect there to be some interaction between “availability for 
stressing” on the one hand and “preference for n syllables to a stress group” on the 
other. 
Here we are interested in estimating the probability distribution for choosing between 
stress group sizes, controlling for the pattern of “available stress positions.” To do this 
we tally the number of cases observed in the corpus for each possible size of stress 
group n for each possible pattern of LSS up to a certain (finite) number of syllables m. 
For definiteness we restrict cases to patterns at the end of their breath group (i.e. ending 
in a break) so that we can be relatively sure that no LSS farther away than m affected 
the choice of stress group size. The total number of such patterns will be 2m–1. For 
instance, let “S” stand for a syllable with realized stress, “U” for a lexically unstressable 
syllable, and “L” stand for a lexically stressable syllable (whether actually stressed or 
not). The pattern “SUULUU#” (which occurred fairly often, 14 times in our data) 
presents a choice between only two stress group lengths: n = 3 if stress is realized on 
the “L”, or n = 6 if not. The fact that in our data 7 of these cases had a stressed “L” and 
7 did not then provides some evidence, ceteris paribus, that choices n = 3 and n = 6 are 
similar in regard to probability. 
To estimate the probabilities for each n and each pattern (a nuisance parameter which 
we are not directly concerned with) we can fit a log-linear model of independence for a 
table with structural zeroes (cf. Agresti, 1990), sometimes called a quasi-independence 
model (a structural zero at some cell in our table corresponds to a lexically unstressable 
syllable). It was convenient to stop the count at m = 9 because thus far there occurred 
examples of every stress group length in the data, but not for m = 10 (that is there were 
no occurrences of a breath group ending with a stress group 10 syllables long). Thus in 
what follows, probability estimates should be interpreted as probability of choosing n, 
given that n ≤ 9. In addition, instead of tabulating a complete 9 × 256 table (m = 9 
syllables by 2m–1 = 256 possible patterns), we leave out all patterns which provide no 
choice (only one stress group length possible), as well as all patterns which never 
occurred in our data. While these cases provide some information on the relative 
popularity of the respective patterns, they provide no information on the probabilities of 
stress group length. This procedure resulted in a total of 52 patterns left for model 
fitting. 
Since the resulting table was sparse with many (empirical) zeroes, we resorted to 
Bayesian estimation of parameters using Markov Chain Monte Carlo methods (cf. e.g. 
Gilks et al. 1996) computed with the WinBUGS 1.3 program (Spiegelhalter et al. 
1996). The specification of the model using BUGS syntax is given in the appendix. For 
the estimation of parameters we used 100000 iterations after a “burn-in” of 10000 
iterations. Convergence was monitored using the Gelman-Rubin statistic (available in 
BUGS) on two parallel simulation chains. 



 

 
101

The resulting estimated distribution is shown in Figure 2. For each n the mean value for 
estimated probability of choosing n syllables to a stress group when possible (and given 
that n ≤ 9) is shown, along with vertical bars indicating 95% credibility intervals around 
the means. We note, for instance, that categories n = 3 and n = 6 are indeed similar in 
probability (see above discussion). In general it would seem that the various n are not 
equally probable and that there is a preference for stress groups in the mid range around 
n = 5.  
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Figure 2: Estimated probability of choosing n. 

 
It can be seen in Figure 2 that the 95% CI are fairly wide. This is due of course to the 
small size of our sample. Because the location of the distributional mode is of 
considerable importance, we use the BUGS run to estimate the posterior probability 
that the mode is actually at n = 5 and to construct credibility intervals. These 
probabilities are shown graphically in Figure 3. 



 
102

1 2 3 4 5 6 7 8 9
n

0.2

0.4

0.6

0.8

1

probability

 
Figure 3: Probability of mode at n. 

 
Based on these probabilities CI can be constructed as shown in Table 4. In other words 
n = 5 is most likely to be the mode (p = 0.666), and we can be quite certain at least that 
the mode falls somewhere between n = 3 and n = 7 (p > 0.95). The fact that one 
category out of nine has such a high posterior probability of being the mode also allows 
us to reject the hypothesis that choice of stress group length is uniformly distributed, i.e. 
that any stress group length is equally likely once the effect of stress availability is 
controlled for. 
 

Table 4: Probability of mode within the credibility interval (CI). 

CI 5 4–5 3–5 3–6 3–7 
probability 0.666 0.884 0.920 0.942 0.976 

 
 
3. DISCUSSION 
 
3.1. Influence of coupling on stress group length 
 
It would appear that even with our meager amount of data there is some support for 
Barbosa’s proposal that the number of syllables in a stress group is influenced by the 
requirements of keeping stress and syllable rhythms synchronized. In Barbosa’s 
synthesis model synchronized stress and syllable oscillators provide a way to choose the 
most natural placement of stresses given a choice between several lexical stresses. We 
have shown that similar forces may well be at work in natural speech production as 
well. 
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3.2 Relevance for the coupled oscillator model 
 
When there is enough data to give a reliable picture of the mode of the probability 
distribution for stress group length, that mode may shed some light on the possible 
values for the eigenfrequencies of the component oscillators. Having “factored out” the 
lexical effects, it should be the case that the most likely n is close to the ratio of 
eigenfrequencies Ω = ω2/ω1. To illustrate this further, we start with the theoretical value 
of coupling force h needed to keep two hierarchically coupled oscillators synchronized. 
From equation (5) above we have 

nr

n
nh

+
−= 12)(

ωω
 (7) 

Instead of using this value to find the periods of the oscillators as in equation (6), we 
use it directly as an indication of effort needed for synchronization, considered as a 
function of n. Allowing n to be dynamically determined instead of fixed we may 
construct a plausible potential well for n by assuming the derivative of the potential 
function dV(n)/dn is proportional to h(n), giving: 

CnrrnAnV +++−= ))log()(()( 211 ωωω  (8) 

with A and C arbitrary scaling constants which can be set to 1 and 0 respectively 
without loss of generality. 
This formulation is equivalent to saying that the system tends towards values of h which 
are small in absolute value. Figure 4 shows two examples of such a plausible potential 
function for two example sets of values for the eigenfrequencies ω1 and ω2 and the 
relative coupling strength parameter r. The first curve (labeled A) has values ω1 = 2.8 
Hz, ω2 = 4.2 Hz, r = 2.0, while the second curve (labeled B) has values ω1 = 1.3 Hz, 
ω2 = 5.8 Hz, r = 0.9. 
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Figure 4: Two examples of potential V(n). 

 
Thus far the model is deterministic. The next step is to derive a probability distribution 
for n based on the potential function. With a few mild assumptions this can be done by 
finding a stationary solution to the so-called Fokker-Planck equation (cf. eg. Haken 
1983, page 167, equation (6.110)). For the potential given above in equation (8) this 
results in the following equation for the probability density function f(n): 








 ++−−=
Q

nrrn
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))log()((2
exp)( 211 ωωω

 (9) 

Where N is a normalizing constant and Q is the so-called diffusion coefficient which 
roughly stated determines how much “noise” the system contains. To finish out our 
example we present in Figure 5 probability density functions for the two examples of 
Figure 4, calculated with an arbitrary value of Q = 1.1. 
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Figure 5: Probability density functions for examples in Figure 4. 

 
Although the right hand curve (curve B) in Figure 5 superficially resembles the 
empirically estimated distribution shown in Figure 2, we wish to emphasize that the 
exact form of the theoretical distribution curve should not be taken too seriously. For 
one thing, it is certainly plausible that effort expended on synchronizing is not exactly 
proportional to h(n) but rather to some transformation thereof which might radically 
change the shape of the potential well and the resulting probability distribution. For 
another thing, we have not taken into account many possibly systematic influences such 
as syllable type or the possibility that more than two rhythms are coupled hierarchically 
(but cf. Nieminen, 1996; O’Dell & Nieminen, 1998; 1999; 2001 for possible extension 
of the basic model to include complexities such as these), lumping all other influences 
into a single diffusion coefficient. Also we have not addressed the discrete nature of n. 
In spite of this, one feature of the distribution is likely to be quite robust, namely the 
location of the mode, corresponding to the n which most closely approaches the ratio of 
eigenfrequencies of the stress and syllable oscillators (Ω) and therefore requires the 
least “synchronizing effort.”  Thus, providing the corpus is large enough, our analysis 
may afford a way to estimate Ω and make our model a bit more definite. For instance, 
in earlier work (O’Dell & Nieminen, 1998; 1999) we obtained an estimate for the 
relative coupling coefficient r based on linear regression of duration of interstress 
interval (ISI). For the same Finnish data considered here the regression equation 
obtained was ISI = a + bn = 132 + 143n msec, and comparing with equation (7) it can 
be seen that a/b = 0.92 provides an estimate of r, but the eigenfrequencies of the model 
are not uniquely determined. However, if Ω is assumed known, then we will be in a 
position to estimate all the parameters of our model (ω1, ω2, r) simultaneously. If we 
assume a value of Ω = 4.5, which is at least consistent with Figures 2 and 3, then given 
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our earlier results of regression on the same data, we obtain approximate parameter 
values ω1 = 1.28 Hz, ω2 = 5.80 Hz, r = 0.92. These are in fact the values used to 
compute the B curves in Figures 4 and 5. The values used for the A curves are 
compatible with the regression equation ISI = 207 + 118n msec presented by Fant & 
Kruckenberg (1989) for Swedish. These values assume a value of Ω = 2.1 for 
eigenfrequency ratio, which is completely arbitrary, since we have no relevant data for 
Swedish. 
 
 
4. CONCLUSION 
 
It appears likely that coordination of stress and syllable rhythms in speech production 
does indeed have an effect on length of stress group. Of course thorough investigation 
of this phenomenon would require that much more data be examined, for more 
languages and dialects as well as more speakers, speaking rates and speaking styles 
within languages. It is, however, encouraging that some suggestive results were possible 
even with the relatively small corpus used here. 
 
___________ 
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APPENDIX: BUGS MODEL DESCRIPTION 
model; 
{ 
# Q is the maximum number of syllables per stress group 
    for(i in 1 : Q) { 
 
# this transforms the log-linear parameters pi[i] into probabilities 
# p[i] for stress group with i syllables 
        log(phi[i]) <- pi[i] 
        p[i] <- phi[i]/sum(phi[]) 
 
# calculate the probability that p[i] is the mode 
        modepi[i] <- step(rank(pi[],i)-Q) 
    } 
 
# R is the total number of patterns 
    for(k in 1 : R) { 
        for(i in 1 : Q) { 
 
# log-linear model of independence 
# n[k,i] holds the empirical counts 
            log(m[k,i]) <- alpha + pi[i] + lambda[k] 
            n[k,i] ~ dpois(m[k,i]) 
        } 
    } 
 
# non-informative prior distributions for 
# log-linear parameters 
    pi[1] <- 0; 
    for(i in 2 : Q) {        
        pi[i] ~ dnorm( 0.0,1.0E-6) 
    } 
    lambda[1] <- 0; 
    for(k in 2 : R) { 
        lambda[k] ~ dnorm( 0.0,1.0E-6) 
    } 
 
    alpha ~ dnorm( 0.0,1.0E-6) 
} 


