Banner Portal
Evaluation of the effect of curing conditions on compressive strength and microstructure of alkali-activated binders
PDF (English)

Palavras-chave

Materiais álcali-ativados
Cinza volante
Escória BOF
Condições de cura

Como Citar

Tavares, M. L., Targino, D. L. L., Cabral, A. E. B., & Costa, H. N. da. (2024). Evaluation of the effect of curing conditions on compressive strength and microstructure of alkali-activated binders. Labor E Engenho, 18(00), e024006. https://doi.org/10.20396/labore.v18i00.8676085

Dados de financiamento

Resumo

Alkali-activated binders (AABs) are increasingly researched as sustainable alternatives to ordinary Portland cement (OPC), providing comparable strength. In recent years there has been a growing interest in studies focusing on the development of suitable composites and their fabrication methods. Composites' properties are significantly affected by temperature, humidity, formulations, and constituent types. Therefore, it is essential to understand these factors comprehensively to obtain the desired adequacy to use. This article aims to assess the impact of (i) temperature through ambient curing (25°C) and thermal curing (50°C for 24 hours), (ii) exposure to air (isolated or exposed to the air atmosphere), and (iii) susceptible to external humidity (air contacted or submerged) as curing conditions. The evaluation encompassed compressive strength tests at 1, 28, 63, and 91 days, along with microstructural evaluation through morphology analysis and incidence of voids. Digital image processing (DIP) through ImageJ software was employed. The AAB proposed consisted of fly ash (FA) and steel slag from the Basic Oxygen Furnace (BOF) process as precursors, with sodium hydroxide (NaOH) and sodium silicate (NaSi2O3) as alkali activators, applied in mortar production. Compressive strength results revealed that mortar subjected to thermal curing, isolated from air contact and external humidity, exhibited the highest strength outcome, with 46.05 MPa. Microstructural analysis indicated the formation of hydrated aluminosilicate gels and the presence of voids, including partially reacted particles and microcracks. The DIP analysis of the sectional area demonstrated that void incidence under 50 µm2 predominantly did not affect compressive strength.

https://doi.org/10.20396/labore.v18i00.8676085
PDF (English)

Referências

American Society for Testing And Materials. ASTM C618 (2019). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete.

Araujo, L. (2022). Caracterização de misturas álcali-ativadas à base de cinza volante e escória de aciaria. Dissertação em desenvolvimento (Mestrado em Engenharia Civil), Programa de Pós-Graduação em Engenharia Civil: Estruturas e Construção Civil, Universidade Federal do Ceará, Fortaleza, CE, Brasil.

Azevedo, G. S., Strecker, K., de Araújo, A. G.; & da Silva, C. A. (2017). Produção de geopolímeros à base de cinza volante usando soluções ativadoras com diferentes composições de Na2O e Na2SiO3. Ceramica, 63(366),143-151. https://doi.org/10.1590/0366-69132017633662078

Bakria, A. M. M. A., Kamarundin, H., Binhussain, M., Nizar, I. K., Zarina, Y., & Rafiza, A. R. (2011). The effect of curing temperature on physical and chemical properties of geopolymers. Physics Procedia, 22, 286-291.

Bernal, S. A., & Provis, J. L. (2014). Durability of alkali‐activated materials: progress and perspectives. Journal of the American Ceramic Society, 97, (4), 997-1008. doi.org/10.1111/jace.12831.

Bing-Hui, M., Zhu, H., Cui., X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 99, 144-148. https://doi.org/10.1016/j.clay.2014.06.024

Brazilian Association of Technical Standards. NBR 16372 (2014). Portland cement and other powdered materials – determination of fineness by the air permeability method (Blaine method), Rio de Janeiro.

Brazilian Association of Technical Standards. NBR 16605 (2017). Portland cement and other powdered material – determination of the specific gravity. Rio de Janeiro.

Brazilian Association of Technical Standards. NBR 13276 (2016). Mortars applied on walls and celling – determinations of the consistence index. Rio de Janeiro.

Brazilian Association of Technical Standards. NBR 13279 (2005). Mortars applied on walls and celling – determination of the flexural and compressive strength in the hardened stage. Rio de Janeiro.

Brazilian Association of Technical Standards. NBR 16372 (2015). Portland Cement and the other powdered materials – determination of fineness by the air permeability method (Blaine Method). Rio de Janeiro.

Brazilian Association of Technical Standards. NBR 16973 (2021). Aggregates – determination of material finer than 75µm sieve by washing. Rio de Janeiro.

Brazilian Association of Technical Standards. NBR 17054 (2022). Aggregates – determination of granulometric composition – test method. Rio de Janeiro.

Caetano, P. H. C. (2021). Análise do comportamento no estado fresco e endurecido de pastas álcali ativadas à base de cinzas de combustão de carvão mineral e de escória de aciaria. Trabalho de conclusão de curso. Universidade Federal do Ceará. Crateús.

Chindaprasirt, P., Chareerat, T., Hatanaka, S., & Cao, T. (2010). High-strength geopolymer using fine high-calcium fly ash. J. Mater. Civ. Eng., 23(3), 264e270.

Chindaprasirt, P., Silva, P., Sagoe-Crentsil, K., & Hanjitsuwan, S. (2010). Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science, 47(12) 4876-4883.

Costa, H.N. (2022). Cimentos álcali-ativados à base de cinzas do carvão mineral e de escórias siderúrgicas. (Tese). Programa de Pós-graduação em Engenharia e Ciência de Materiais, Universidade Federal do Ceará, Fortaleza.

Criado, M., Fernández-Jiménez, A., & Palomo, A. (2010). Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel, 89(11), 3185-3192,

Ding, Y., Shi, C., & Li, N. (2018). Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Construction and Building Materials, v. 190, p. 787-795.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917-2933.

Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: A descriptive model. Cement and Concrete Research, 35(6), 1204-1209.

Galiano, Y., Fernández-Pereira, C., & Izquierdo, M. (2016). Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Materiales de Construccion, 66, 324.

Gebregziabiher, B. S., Thomas, R. J., & Peethamparan, S. (2016). Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Construction and Building Materials, 113, 783–793.

Gómez-Casero, M. A., Pérez-Villarejo, L, Castro, E., & Eliche-Quesada, D. (2021). Effect of steel slag and curing temperature on the improvement in technological properties of biomass bottom ash based alkali-activated materials. Construction and Building Materials, v. 302.

Hu, X., Shi, C., Shi, Z., & Zhang, L. (2019). Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement and Concrete Composites, 104, 103392.

Huseien, G. F., Mirza, J., Ismail, M., & Hussin, M.W. (2016). Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Construction and Building Materials, 125, 1229-1240.

Ismail, I., Bernal, S.A., Provis, J.L., Nicolas, R.S., Hamdan, S., & Van Deventer, J.S.J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125-135.

Izquierdo, M., Querol, X., Phillipart, C., Antenucci, D., & Towler, M. (2010). The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. Journal of Hazardous Materials, 176(1-3), 623-628.

Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, v.41, n. 12, pp. 1232-1243.

Kang, H. J., Ryu, G.S., Koh, G.T., Kang, S.T., & Park, J. J. (2011). Relationship between microscopic structures and compressive strength of alkali-activated fly ash mortar. Key Engineering Materials, 452-453, 737-740.

Komljenović, M., Baščarević, Z., & Bradić, V. (2010). Mechanical and microstructural properties of alkali-activated fly ash geopolymers. Journal of Hazardous Materials, 181(1-3), 35-42.

Langaro, E. A. (2016). Cimento álcali ativado a partir da valorização da escória de alto forno a carvão vegetal. Dissertação (Mestrado em Engenharia Civil), Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná.

Lee, W. H., Wang, J. H., Ding, Y. C., & Cheng, T. W. (2019). A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Constr. Build. Mater., 211, 807-813, doi.org/10.1016/j.conbuildmat.2019.03.291.

Lloyd R.R., Provis J.L., Smeaton K.J., & Van Deventer, J.S.J. (2009). Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Micropor Mesopor Mater, 126(1-2), 32-9.

MA, Y., HU, J., & YE, G. (2013). The pore structure and permeability of alkali activated fly ash. Fuel, 104, 771-780.

Mian, A., Bending, M., Piazzessi, G., Manente, G., Lazzaretto, A., & Maréchal, F. (2013). Energy integration in the cement industry. Computer Aided Chemical Engineering, 32, 349-354.

Monteiro, P. J. M.; Miller, S. A.; Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16(7) 698-699.

National Road Department. DNER ME 194 (1998). Aggregates – Determination of the specific mass of fine aggregates using the Chapman bottle. Rio de Janeiro.

Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758-765.

Provis, J. L (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40-48.

Provis, J. L., Myers, R. J., White, C.E., Rose, V., & Van Deventer, J.S.J. (2012). X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 42(6), 855-864.

Provis, J. L. (2014). Geopolymers and other alkali activated materials: Why, how, and what? Materials and Structures, 47(1-2), 11-25.

Provis, J. L., & Van Daventer, J. S. J. (2014). Alkali-Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. Springer.

Rai, B., Roy, L. B., & Rajjak, M. (2018). A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete. Structural Concrete, 19(5), 1268-1279.

Rodríguez, E. D., Bernal, S.A., Provis, J.L, Paya, J., Monzo, J., & Borrachero, M.V. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 35(1), 1-11.

Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168 (1), 44-50.

Silva, R. V., Brito, J., Lynn, C.J., & Dhir, R.K. (2017). Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Waste Management, 68, 207-220.

Sindicato Nacional das Indústrias de Cimento (2022). Relatório Anual 2022. Disponível em: https://snic.org.br/assets/pdf/relatorio_anual/rel_anual_2022.pdf

Soutsos, M., Boyle, A. P., Vinai, R., Hadjierakleous, A., & Barnett, S. J. (2016). Factors influencing the compressive strength of fly ash based geopolymers. Construction and Building Materials, 110, 355-368.

Sun, Y., Zhang, S., Rahul, A. V., Tao, Y., Van Bockstaele, F., Dewettinck, K., Ye, G., & De Schutter, G. (2022). Rheology of alkali-activated slag pastes: New insight from microstructural investigations by cryo-SEM. Cement and Concrete Research, 157.

Targino. D. L., Araujo, L.B., Paiva, A., Costa, H.N., & Cabral, A.E.B. (2024). Concretos sustentáveis com aglomerantes geopoliméricos e agregados de escória de aciaria BSSF: caracterização mecânica e análise de impacto ambiental. Trabalho em desenvolvimento (Mestrado em Engenharia Civil), Programa de Pós-Graduação em Engenharia Civil: Estruturas e Construção Civil, Universidade Federal do Ceará, Fortaleza.

Thomas, R. J., & Peethamparan, S. (2017). Stepwise regression modeling for compressive strength of alkali-activated concrete. Construction and Building Materials, 141, 315-324.

Wan, H., Yuan, L., & Zhang, Y. (2020). Insight Into the Leaching of Sodium Alumino-Silicate Hydrate (N-A-S-H) Gel: A Molecular Dynamics Study. Frontiers in Materials, 7, 1-11.

Zhang, P., Zheng, Y., Wang, K., & Zhang, J. (2018). A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152, 79-95.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Marília Lima Tavares, Daniel Lira Lopes Targino, Antonio Eduardo Bezerra Cabral, Heloina Nogueira

Downloads

Não há dados estatísticos.