Resumo
Este estudo teve como objetivo investigar a eficiência do ozônio e do peroxônio na desinfecção de águas contendo cistos de Giardia duodenalis. Amostras de água de torneira (TW) e água de nascente (SW) sem cloro foram inoculadas com uma suspensão comercial purificada contendo 105 cistos de Giardia duodenalis. O método de filtração por membrana foi empregado para concentração de cistos, com eficiências médias de recuperação de 43,3% em TW e 73,3% em SW. A visualização dos cistos foi realizada por Ensaio de Imunofluorescência (IFI). O uso do ozônio como desinfetante em RS mostrou um aumento dependente da concentração no dano ao cisto, atingindo 98% de inviabilidade na maior concentração de ozônio (5 mg L-1). A adição de peróxido de hidrogênio (H2O2) melhorou o processo, pois 2,5 mg L-1 de ozônio na relação H2O2/O3 de 0,3 causou danos morfológicos em 99% dos cistos. Os dados indicaram que a menor relação H2O2/O3 resultou em melhor desempenho geral em termos de danos ao cisto. No TW, o comportamento de oxidação diferiu, sem diferença clara observada entre as concentrações mais baixas e mais altas de ozônio causando danos à parede do cisto. A presença de alcalinidade no TW afetou negativamente o processo de desinfecção, provavelmente devido ao efeito eliminador dos compostos de alcalinidade sobre os radicais hidroxila. O uso do processo peroxônio com relação H2O2/O3 de 0,5 proporcionou os maiores danos aos cistos no TW. As descobertas contribuem para a compreensão dos fatores que influenciam a eficácia das técnicas de oxidação e fornecem insights para o desenvolvimento de estratégias eficazes de desinfecção para sistemas de tratamento de água.
Referências
Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53:51–59. https://doi.org/10.1016/S0920-5861(99)00102-9
APHA (2012). APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Washington DC.
Betancourt, W.Q., Rose, J.B. (2004). Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet. Parasitol. 126:219-234. https://doi.org/10.1016/j.vetpar.2004.09.002
Bocci, V. (2002). Oxygen-ozone therapy: a critical evaluation. Kluwer Academic Publishers: Dordrechit,, The Netherlands, ISBN 1-4020- 0588-1
Boczkaj, G., Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 320:608–633. https://doi.org/10.1016/j.cej.2017.03.084
Brasil. Ministério da Saúde. Portaria de Consolidação nº 5 DE 28/09/2017: Anexo XX Do controle e da vigilância da qualidade da água para consumo humano e seu padrão de potabilidade (Origem: PRT MS/GM 2914/2011).
Castro-Hermida, J.A., Gonzalez-Warleta, M., Mezo, M. (2015). Cryptosporidium spp. and Giardia duodenalis as pathogenic contaminants of water in Galicia, Spain: The need for safe drinking water. Int. J. Hyg. Environ. Heal, 218(1):132-138. https://doi.org/10.1016/j.ijheh.2014.09.001
CDC – Center for Global Health (2017). E. coli. https://www.cdc.gov/ecoli/general/index.html (accessed 9.21.17).
Den Blanken, J.G. (1985). Comparative disinfection of treated sewage with chlorine and ozone: effect of nitrification. Water Res, 19(9):1129–1140. https://doi.org/10.1016/0043-1354(85)90349-5
De Witte, B., Dewulf, J., Demeestere, K., Van Langenhove, H. (2009). Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J. Hazard. Mater., 161:701–708. https://doi.org/10.1016/j.jhazmat.2008.04.021
Dow, S.M., Barbeau, B., Von Gunten, U., Chandrakanth, M., Amy, G., Hernandez, M. (2006). The impact of selected water quality parameters on the inactivation of Bacillus subtilis spores by monochloramine and ozone. Water Res, 40:373-382. https://doi:10.1016/j.watres.2005.10.018
Efstratiou, A., Ongerth, J., Karanis, P. (2017). Waterborne transmission of protozoan parasites: Review of worldwide outbreaks – An update 2011-2016. Water Res, 114:14-22. https://doi.org/10.1016/j.watres.2017.01.036
Elovitz, M.S., Von Gunten, U., Kaiser, H.P. (2000) Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties. Ozone Sci. Eng. 22:123–150. https://doi.org/10.1080/01919510008547216
Ferguson, D.W., McGuire, M.J., Koch, B., Wolfe, R.L., Aieta, E.M. (1990). Comparing PEROXONE and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms. J, AWWA, 82(4):181–191. https://awwa.onlinelibrary.wiley.com/doi/abs/10.1002/j.1551-8833.1990.tb06950.x
Franco, R.M.B., Rocha-Eberhardt, R., Cantusio-Neto, R. (2001). Occurrence of Cryptosporidium oocysts and Giardia cysts in raw water from the Atibaia river, Campinas, Brazil. Rev. Inst. Med. Trop, Sao Paulo 43:109–111. https://doi.org/10.1590/S0036-46652001000200011
Gardoni, D., Vailati, A., Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone Science and Engineering, 34:233-242. http://doi.org/ 10.1080/01919512.2012.686354
Glaze, W.H., Kang, J.W. (1989). Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res. 28:1580–1587. https://doi.org/10.1021/ie00095a002
Guimarães, J.R., Santos, L.U., Franco, R.M.B., Guadagnini, R.A. (2015). Inativação de cistos de Giardia duodenalis por peroxidação e peroxidação assistida por radiação ultravioleta. Eng Sanit e Ambient, 20:159–164. https://doi.org/10.1590/S1413-41522015020000098360
Haas ,C., Joffe, J., Anmangandla, U., Heath, M. (1996). Water quality and disinfection kinetics. J. AWWA, 95–103. https://doi.org/10.1002/j.1551-8833.1996.tb06522.x
Haas, C.N., Kaymak, B. (2003). Effect of initial microbial density on inactivation of Giardia muris by ozone. Water Res, 37:2980-2988. https://doi.org/10.1016/S0043-1354(03)00112-X
Hoigné, J., Bader, H. (1976). The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res, 10:377-386. https://doi.org/10.1016/0043-1354(76)90055-5
Huang, Q., Huang, S., Li, B., Xiong, Y., Kuang, W., Xiao, S., Yi, J., Zhao, F., Xiao, G., (2023). Spatially explicit model of the Cryptosporidium and Giardia disease burden from surface and ground waters in urban and rural areas of the Three Gorges Reservoir watershed in Chongqing, China. Environ Sci Pollut Res, 30:37127–37142. https://doi.org/10.1007/s11356-02
Hunt, N.K., Mariñas, B.J. (1999). Inactivation of Escherichia coli with ozone: chemical and inactivation kinetics. Water Res, 33:2633-2641. https://doi.org/10.1016/S0043-1354(99)00115-3.
Ibañez-Cervantes, G., Ramírez-Cortina, C.R., Márquez-Navarro, A., Alonso-Gutiérrez, M.S., León-Ávila, G., León-García, G., Nogueda-Torres, B. (2013). Effect of Ozone and Peroxone on Helminth Hymenolepis nana Eggs. Ozone: science & engineering, 35:201-207. http://dx.doi.org/10.1080/01919512.2013.771762
Karanis, P. (2011) Giardia and Cryptosporidium: Occurrence in Water Supplies. Encycl. Environ. Heal, 946–954. https://doi.org/10.1016/B978-0-444-52272-6.00565-1
Labatiuk CW, Belosevic M, Finch GR (1992) Factors influencing the infectivity of Giardia muris cysts following ozone inactivation in laboratory and natural waters. Water Res, 26(6):733-743. https://doi.org/10.1016/0043-1354(92)90004-N
Lanao, M., Ormad, M.P., Ibarz, C., Miguel, N., Ovelleiro, J.L. (2008). Bactericidal Effectiveness of O3, O3/H2O2 and O3 /TiO2 on Clostridium perfringens. Ozone Sci Eng J Int Ozone Assoc, 306:431–438. https://doi.org/10.1080/01919510802488003
Li, S.F., Ran, Z.L. (2014). Inactivation of Giardia intestinalis by H2O2/O3. Appl Mech Mater, 675-677, 134-139. https://doi.org/10.4028/www.scientific.net/AMM.675-677.134
Li, Y., Smith, D.W., Belosevlc, M. (2004). Morphological changes of Giardia lamblia cysts after treatment with ozone and chlorine. J Environ.Eng.Sci, 3:495-506. https://doi.org/10.1139/S04-011
Maciel, P.M.F., Sabogal-Paz, L.P. (2016). Removal of Giardia spp. and Cryptosporidium spp. From water supply with high turbidity: Analytical challenges and perspectives. J Water Health, 14:369–378. https://doi.org/10.2166/wh.2015.227
Manna, M., Sen, S. (2023). Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ Sci Pollut Res, 30:25477-25505. https://doi.org/10.1007/s11356-02
Mao, Y., Guo, D., Yao, W., Wang, X., Yang, H., Xie, Y.F., Komarneni, S., Yu, G., Wang, Y. (2018). Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. Water Res, 130:322-332. https://doi.org/10.1016/J.WATRES.2017.12.019
Mondardo, R.I., Sens, M.L., Melo-Filho, L.C. (2006). Pré-tratamento com cloro e ozônio para remoção de cianobactérias. Eng Sanit e Ambient, 11: 337–342. https://doi.org/10.1590/S1413-41522006000400006
Nakada, L.Y.K., Bueno-Franco, R.M., Fiuza, V.R.S., Santos, L.U., Branco, N., Guimarães, J.R. (2019). Pre-ozonation of source water: assessment of efficacy against Giardia duodenalis cysts and effects on natural organic matter. Chemosphere, 214:764-770. https://doi.org/10.1016/J.CHEMOSPHERE.2018.09.164
Nakada, L.Y.K., Santos, L.U., Guimarães, J.R. (2020). Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water. Environmental Pollution, 266:115144. https://doi.org/10.1016/j.envpol.2020.115144
Nogueira, R.F.P., Oliveira, M.C., Paterlini, W.C. (2005). Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, 66:86-91. https://doi.org/10.1016/j.talanta.2004.10.001
Ongerth, J.E. (2013). The concentration of Cryptosporidium and Giardia in water - The role and importance of recovery efficiency. Water Res, 47:2479-2488. https://doi.org/10.1016/j.watres.2013.02.015
Peralta, E., Natividad, R., Roa, G., Marin, R., Romero, R., Pavon, T. (2013). A comparative study on the electrochemical production of H2O2 between BDD and graphite cathodes. Sustain Environ Res, 23(4):259-266.
Pisarenko, A.N., Stanford, B.D., Yan, D., Gerrity, D., Snyder, S.A. (2012). Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Res, 46:316–326. https://doi.org/10.1016/J.WATRES.2011.10.021
Ramo, A., Del-Cacho, E., Sánchez-Acedo, C., Quílez, J. (2017). Occurrence and genetic diversity of Cryptosporidium and Giardia in urban wastewater treatment plants in north-eastern Spain. Sci Total Environ, 598: 628–638. https://doi.org/10.1016/j.scitotenv.2017.04.097
Scott, K.N., Wolfe, R.L., Stewart, M.H. (1992). Pilot-Plant-Scale Ozone and Peroxone Disinfection of Giardia muris Seeded into Surface Water Supplies. Ozone Sci Eng, 14:71-90. https://doi.org/10.1080/01919519208552318
Tayyab, M., Haseeb, A., ur-Rehman, H., Saeed, K., Ali, S., Naveed, M., Ullah, I., Javed, A., Khan, S., Kausar-Saeed, C. (2017). Detection of Giardia lamblia by microscopy in different water sources of district D.I Khan, KP, Pakistan. J Entomol Zool Stud JEZS, 5(3):1-5.
USEPA (2012) Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. United States.
Von Sonntag, C., Von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment. IWA Publishing, London.
Wang, F., Ruan, M., Lin, H., Zhang, Y., Hong, H., Zhou, X. (2014). Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water. Sci Total Environ, 475:23–28. https://doi.org/10.1016/j.scitotenv.2013.12.094
Widmer, G., Clancy, T., Ward, H.D., Miller, D., Batzer, G.M., Pearson, C.B., Bukhari, Z (2002). Structural and biochemical alterations in Giardia lamblia cysts exposed to ozone. J Parasitol, 88:1100-1106. https://doi.org/10.1645/0022-3395(2002)088[1100:SABAIG]2.0.CO;2
Wolfe, R.L., Stewart, M.H., Liang, S., Mcguire, M.J. (1989). Disinfection of Model Indicator Organisms in a Drinking Water Pilot Plant by Using PEROXONE. Appl Environ Microbiol, 55:2230–2241. https://doi.org/10.1128/aem.55.9.2230-2241.1989
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Gabriela dos Reis, Liane Yuri Kondo Nakada, Lays Paulino Leonel, José Roberto Guimarães