Banner Portal
Comparing disinfection efficiency of ozone and peroxone in water containing Giardia duodenalis cysts
PDF (English)

Palavras-chave

Processos de oxidação avançados
Cisto de giárdia
Água de Nascente
Água da torneira
H2O2/O3, O3

Como Citar

Reis, G. dos, Nakada, L. Y. K., Leonel, L. P., & Guimarães, J. R. (2024). Comparing disinfection efficiency of ozone and peroxone in water containing Giardia duodenalis cysts. Labor E Engenho, 18(00), e024007. https://doi.org/10.20396/labore.v18i00.8676501

Resumo

This study aimed to investigate the efficiency of ozone and peroxone for the disinfection of water containing Giardia duodenalis cysts. Dechlorinated tap water (TW) and spring water (SW) samples were inoculated with a purified commercial suspension containing 105 cysts of Giardia duodenalis. The membrane filtration method was employed for cyst concentration, with average recovery efficiencies of 43.3% in TW and 73.3% in SW. Visualization of the cysts was carried out by Immunofluorescence Assay (IFA). The use of ozone as a disinfectant in SW showed a concentration-dependent increase in cyst damage, reaching 98% non-viability at the highest ozone concentration (5 mg L-1). The addition of hydrogen peroxide (H2O2) improved the process, as 2.5 mg L-1 of ozone at an H2O2 / O3 ratio of 0.3 caused morphological damage to 99% of the cysts. The data indicated that the lower H2O2 / O3 ratio resulted in better overall performance in terms of cyst damage. In TW, the oxidation behavior differed, with no clear difference observed between the lowest and highest ozone concentrations causing cyst wall damage. The presence of alkalinity in TW negatively affected the disinfection process, likely due to the scavenger effect of alkalinity compounds on hydroxyl radicals. The use of peroxone process with an H2O2 / O3 ratio of 0.5 yielded the highest damage to cysts in TW. The findings contribute to the understanding of factors influencing the efficacy of oxidation techniques and provide insights for developing effective disinfection strategies for water treatment systems.

https://doi.org/10.20396/labore.v18i00.8676501
PDF (English)

Referências

Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53:51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

APHA (2012). APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Washington DC.

Betancourt, W.Q., Rose, J.B. (2004). Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet. Parasitol. 126:219-234. https://doi.org/10.1016/j.vetpar.2004.09.002

Bocci, V. (2002). Oxygen-ozone therapy: a critical evaluation. Kluwer Academic Publishers: Dordrechit,, The Netherlands, ISBN 1-4020- 0588-1

Boczkaj, G., Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 320:608–633. https://doi.org/10.1016/j.cej.2017.03.084

Brasil. Ministério da Saúde. Portaria de Consolidação nº 5 DE 28/09/2017: Anexo XX Do controle e da vigilância da qualidade da água para consumo humano e seu padrão de potabilidade (Origem: PRT MS/GM 2914/2011).

Castro-Hermida, J.A., Gonzalez-Warleta, M., Mezo, M. (2015). Cryptosporidium spp. and Giardia duodenalis as pathogenic contaminants of water in Galicia, Spain: The need for safe drinking water. Int. J. Hyg. Environ. Heal, 218(1):132-138. https://doi.org/10.1016/j.ijheh.2014.09.001

CDC – Center for Global Health (2017). E. coli. https://www.cdc.gov/ecoli/general/index.html (accessed 9.21.17).

Den Blanken, J.G. (1985). Comparative disinfection of treated sewage with chlorine and ozone: effect of nitrification. Water Res, 19(9):1129–1140. https://doi.org/10.1016/0043-1354(85)90349-5

De Witte, B., Dewulf, J., Demeestere, K., Van Langenhove, H. (2009). Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J. Hazard. Mater., 161:701–708. https://doi.org/10.1016/j.jhazmat.2008.04.021

Dow, S.M., Barbeau, B., Von Gunten, U., Chandrakanth, M., Amy, G., Hernandez, M. (2006). The impact of selected water quality parameters on the inactivation of Bacillus subtilis spores by monochloramine and ozone. Water Res, 40:373-382. https://doi:10.1016/j.watres.2005.10.018

Efstratiou, A., Ongerth, J., Karanis, P. (2017). Waterborne transmission of protozoan parasites: Review of worldwide outbreaks – An update 2011-2016. Water Res, 114:14-22. https://doi.org/10.1016/j.watres.2017.01.036

Elovitz, M.S., Von Gunten, U., Kaiser, H.P. (2000) Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties. Ozone Sci. Eng. 22:123–150. https://doi.org/10.1080/01919510008547216

Ferguson, D.W., McGuire, M.J., Koch, B., Wolfe, R.L., Aieta, E.M. (1990). Comparing PEROXONE and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms. J, AWWA, 82(4):181–191. https://awwa.onlinelibrary.wiley.com/doi/abs/10.1002/j.1551-8833.1990.tb06950.x

Franco, R.M.B., Rocha-Eberhardt, R., Cantusio-Neto, R. (2001). Occurrence of Cryptosporidium oocysts and Giardia cysts in raw water from the Atibaia river, Campinas, Brazil. Rev. Inst. Med. Trop, Sao Paulo 43:109–111. https://doi.org/10.1590/S0036-46652001000200011

Gardoni, D., Vailati, A., Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone Science and Engineering, 34:233-242. http://doi.org/ 10.1080/01919512.2012.686354

Glaze, W.H., Kang, J.W. (1989). Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res. 28:1580–1587. https://doi.org/10.1021/ie00095a002

Guimarães, J.R., Santos, L.U., Franco, R.M.B., Guadagnini, R.A. (2015). Inativação de cistos de Giardia duodenalis por peroxidação e peroxidação assistida por radiação ultravioleta. Eng Sanit e Ambient, 20:159–164. https://doi.org/10.1590/S1413-41522015020000098360

Haas ,C., Joffe, J., Anmangandla, U., Heath, M. (1996). Water quality and disinfection kinetics. J. AWWA, 95–103. https://doi.org/10.1002/j.1551-8833.1996.tb06522.x

Haas, C.N., Kaymak, B. (2003). Effect of initial microbial density on inactivation of Giardia muris by ozone. Water Res, 37:2980-2988. https://doi.org/10.1016/S0043-1354(03)00112-X

Hoigné, J., Bader, H. (1976). The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res, 10:377-386. https://doi.org/10.1016/0043-1354(76)90055-5

Huang, Q., Huang, S., Li, B., Xiong, Y., Kuang, W., Xiao, S., Yi, J., Zhao, F., Xiao, G., (2023). Spatially explicit model of the Cryptosporidium and Giardia disease burden from surface and ground waters in urban and rural areas of the Three Gorges Reservoir watershed in Chongqing, China. Environ Sci Pollut Res, 30:37127–37142. https://doi.org/10.1007/s11356-02

Hunt, N.K., Mariñas, B.J. (1999). Inactivation of Escherichia coli with ozone: chemical and inactivation kinetics. Water Res, 33:2633-2641. https://doi.org/10.1016/S0043-1354(99)00115-3.

Ibañez-Cervantes, G., Ramírez-Cortina, C.R., Márquez-Navarro, A., Alonso-Gutiérrez, M.S., León-Ávila, G., León-García, G., Nogueda-Torres, B. (2013). Effect of Ozone and Peroxone on Helminth Hymenolepis nana Eggs. Ozone: science & engineering, 35:201-207. http://dx.doi.org/10.1080/01919512.2013.771762

Karanis, P. (2011) Giardia and Cryptosporidium: Occurrence in Water Supplies. Encycl. Environ. Heal, 946–954. https://doi.org/10.1016/B978-0-444-52272-6.00565-1

Labatiuk CW, Belosevic M, Finch GR (1992) Factors influencing the infectivity of Giardia muris cysts following ozone inactivation in laboratory and natural waters. Water Res, 26(6):733-743. https://doi.org/10.1016/0043-1354(92)90004-N

Lanao, M., Ormad, M.P., Ibarz, C., Miguel, N., Ovelleiro, J.L. (2008). Bactericidal Effectiveness of O3, O3/H2O2 and O3 /TiO2 on Clostridium perfringens. Ozone Sci Eng J Int Ozone Assoc, 306:431–438. https://doi.org/10.1080/01919510802488003

Li, S.F., Ran, Z.L. (2014). Inactivation of Giardia intestinalis by H2O2/O3. Appl Mech Mater, 675-677, 134-139. https://doi.org/10.4028/www.scientific.net/AMM.675-677.134

Li, Y., Smith, D.W., Belosevlc, M. (2004). Morphological changes of Giardia lamblia cysts after treatment with ozone and chlorine. J Environ.Eng.Sci, 3:495-506. https://doi.org/10.1139/S04-011

Maciel, P.M.F., Sabogal-Paz, L.P. (2016). Removal of Giardia spp. and Cryptosporidium spp. From water supply with high turbidity: Analytical challenges and perspectives. J Water Health, 14:369–378. https://doi.org/10.2166/wh.2015.227

Manna, M., Sen, S. (2023). Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ Sci Pollut Res, 30:25477-25505. https://doi.org/10.1007/s11356-02

Mao, Y., Guo, D., Yao, W., Wang, X., Yang, H., Xie, Y.F., Komarneni, S., Yu, G., Wang, Y. (2018). Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. Water Res, 130:322-332. https://doi.org/10.1016/J.WATRES.2017.12.019

Mondardo, R.I., Sens, M.L., Melo-Filho, L.C. (2006). Pré-tratamento com cloro e ozônio para remoção de cianobactérias. Eng Sanit e Ambient, 11: 337–342. https://doi.org/10.1590/S1413-41522006000400006

Nakada, L.Y.K., Bueno-Franco, R.M., Fiuza, V.R.S., Santos, L.U., Branco, N., Guimarães, J.R. (2019). Pre-ozonation of source water: assessment of efficacy against Giardia duodenalis cysts and effects on natural organic matter. Chemosphere, 214:764-770. https://doi.org/10.1016/J.CHEMOSPHERE.2018.09.164

Nakada, L.Y.K., Santos, L.U., Guimarães, J.R. (2020). Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water. Environmental Pollution, 266:115144. https://doi.org/10.1016/j.envpol.2020.115144

Nogueira, R.F.P., Oliveira, M.C., Paterlini, W.C. (2005). Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, 66:86-91. https://doi.org/10.1016/j.talanta.2004.10.001

Ongerth, J.E. (2013). The concentration of Cryptosporidium and Giardia in water - The role and importance of recovery efficiency. Water Res, 47:2479-2488. https://doi.org/10.1016/j.watres.2013.02.015

Peralta, E., Natividad, R., Roa, G., Marin, R., Romero, R., Pavon, T. (2013). A comparative study on the electrochemical production of H2O2 between BDD and graphite cathodes. Sustain Environ Res, 23(4):259-266.

Pisarenko, A.N., Stanford, B.D., Yan, D., Gerrity, D., Snyder, S.A. (2012). Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Res, 46:316–326. https://doi.org/10.1016/J.WATRES.2011.10.021

Ramo, A., Del-Cacho, E., Sánchez-Acedo, C., Quílez, J. (2017). Occurrence and genetic diversity of Cryptosporidium and Giardia in urban wastewater treatment plants in north-eastern Spain. Sci Total Environ, 598: 628–638. https://doi.org/10.1016/j.scitotenv.2017.04.097

Scott, K.N., Wolfe, R.L., Stewart, M.H. (1992). Pilot-Plant-Scale Ozone and Peroxone Disinfection of Giardia muris Seeded into Surface Water Supplies. Ozone Sci Eng, 14:71-90. https://doi.org/10.1080/01919519208552318

Tayyab, M., Haseeb, A., ur-Rehman, H., Saeed, K., Ali, S., Naveed, M., Ullah, I., Javed, A., Khan, S., Kausar-Saeed, C. (2017). Detection of Giardia lamblia by microscopy in different water sources of district D.I Khan, KP, Pakistan. J Entomol Zool Stud JEZS, 5(3):1-5.

USEPA (2012) Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. United States.

Von Sonntag, C., Von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment. IWA Publishing, London.

Wang, F., Ruan, M., Lin, H., Zhang, Y., Hong, H., Zhou, X. (2014). Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water. Sci Total Environ, 475:23–28. https://doi.org/10.1016/j.scitotenv.2013.12.094

Widmer, G., Clancy, T., Ward, H.D., Miller, D., Batzer, G.M., Pearson, C.B., Bukhari, Z (2002). Structural and biochemical alterations in Giardia lamblia cysts exposed to ozone. J Parasitol, 88:1100-1106. https://doi.org/10.1645/0022-3395(2002)088[1100:SABAIG]2.0.CO;2

Wolfe, R.L., Stewart, M.H., Liang, S., Mcguire, M.J. (1989). Disinfection of Model Indicator Organisms in a Drinking Water Pilot Plant by Using PEROXONE. Appl Environ Microbiol, 55:2230–2241. https://doi.org/10.1128/aem.55.9.2230-2241.1989

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Gabriela dos Reis, Liane Yuri Kondo Nakada, Lays Paulino Leonel, José Roberto Guimarães

Downloads

Não há dados estatísticos.