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Abstract: In the paper Busaniche and Cignoli (2009) we presented a quasivariety
of commutative residuated lattices, called NPc-lattices, that serves as an algebraic
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INTRODUCTION

The well known disjunction property of intuitionistic propositional
calculus asserts that a disjunction α ∨ β is provable if and only if α
is provable or β is provable. The constructive character of disjunction

1Dedicated to Newton A. C. Da Costa on his 80th birthday.
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is not shared by negation: ¬(α ∧ β) in general does not imply ¬ α or
¬ β. This motivated D. Nelson (1949) to introduce constructive logic
with strong negation (CLN) as an expansion of intuitionistic logic by
a new negation symbol ∼. The propositional fragment of CLN can be
axiomatized by adding to axioms of propositional positive intuitionistic
logic the axioms:

N1 ∼∼α� α,

N2 ∼(α ∨ β) � (∼α ∧ ∼β),

N3 ∼(α ∧ β) � (∼α ∨ ∼β),

N4 ∼(α→ β) � (α ∧ ∼β),

N5 ∼α→ (α→ β).

The deduction rules are modus ponens and substitution.
In the short paper Almukdad and Nelson (1984) it is observed that

by deleting N5 one obtains “a constructive logic which may be applied
to inconsistent subject matter without necessarily generating a trivial
theory.” The system obtained by deleting N5 is known as paraconsistent
Nelson’s logic.

Both, CLN and paraconsistent Nelson’s logic are algebraizable. The
corresponding algebraic structures are Nelson algebras and N4-lattices,
respectively. Nelson algebras and N4-lattices can be represented as
twist-structures of Heyting algebras and generalized Heyting algebras
(also known as implicative lattices) respectively. This representation,
due to Sendlewski (1990) for Nelson algebras and to Odinstov (2004)
for N4-lattices, has been the main tool to study the algebraic semantics
of CLN and its paraconsistent version. For details see the monograph
Odintsov (2008).

Many important logics are particular cases of substructural logics
(Galatos, Jipsen, Kowalski and Ono (2007)), i.e., logics that lack some
of the three structural rules of contraction, weakening and exchange.
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Due to this fact, in the recent years the study of substructural logics
have been greatly developed to provide a common framework to treat
and compare these different logics. Residuated lattices are the alge-
braic counterpart of substructural logics. With the aim of situating
Nelson’s logic within this framework, M. Spinks and R. Veroff (2008a,
2008b) showed that Nelson algebras are term equivalent to a class of
residuated lattices. This class of residuated lattices is a variety, the
variety of Nelson residuated lattices (see also Busaniche and Cignoli,
2010). Spinks and Veroff’s result allows us to use the well-developed
theory of residuated lattices to investigate the algebraic semantics of
CLN. More important, it shows that CNL can be considered as an ax-
iomatic extension of FLew, the Full Lambek Calculus with Exchange
and Weakening (see Galatos, Jipsen, Kowalski and Ono (2007)).

Following these ideas, in Busaniche and Cignoli (2009) we presented
a quasivariety of commutative residuated lattices that serves as an alge-
braic semantics for paraconsistent Nelson’s logic. The elements of this
quasivariety are called NPc-lattices. As a matter of fact NPc-lattices
form the algebraic semantics of a conservative expansion of paraconsis-
tent Nelson’s logic by a constant e that correspond to the unit of the
underlying monoids of the residuated lattices.

In this note we improve the results of Busaniche and Cignoli (2009)
by showing that NPc-lattices form a subvariety of the variety of com-
mutative residuated lattices. This means that the mentioned expansion
of paraconsistent Nelson’s logic by the constant e is an axiomatic exten-
sion of FLe, the full Lambek calculus with exchange (Galatos, Jipsen,
Kowalski and Ono (2007)). We show that the negative cone of an NPc-
lattice is a generalized Heyting algebra, and that the congruence lattice
of an NPc-lattice is isomorphic to the congruence lattice of its negative
cone. This provides an interesting tool to investigate subvarieties of
NPc-lattices. We prove that semisimple NPc-lattices form a subvariety
of the variety of NPc-lattices, and that the representable NPc-lattices
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form a proper subvariety of the variety of semisimple NPc-lattices.
Therefore semisimple NPc-lattices and representable NPc-lattices form
the algebraic semantics of axiomatic extensions of FLe. It is worth-
while to notice that these algebraic results were obtained for the more
general variety of Pc-lattices (see Definition 2.1), and hence do not de-
pend on the representation as twist-structures of generalized Heyting
algebras, in contrast with the results of Busaniche and Cignoli (2009).

All the notions from universal algebra used in this paper can be
found in the book Burris and Sankappanavar (1981).

1. PREMILINARIES

By a commutative residuated lattice we mean an algebra A =
(A,∨,∧, ∗,⇒, e) of type (2, 2, 2, 2, 0) such that (A,∨,∧) is a lattice,
(A, ∗, e) is a commutative monoid and the following residuation condi-
tion is satisfied:

x ∗ y ≤ z if and only if x ≤ y ⇒ z, (1)

where x, y, z denote arbitrary elements of A and ≤ is the order given
by the lattice structure.

The residuated condition (1) can be replaced by the following set
of equations (see Hart, Rafter and Tsinakis (2002)):

R1 x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z),

R2 x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z),

R3 (x ∗ (x⇒ y)) ∨ y = y,

R4 (x⇒ (x ∗ y)) ∧ y = y.

Therefore commutative residuated lattices form a variety, that we shall
denote by CRL.
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If the underlying lattice of A ∈ CRL is distributive, we say that A
is a commutative distributive residuated lattice.

It follows from R1 that ∗ is monotonic:

x ≤ y implies x ∗ z ≤ y ∗ z. (2)

A residuated lattice A is called integral provided x ≤ e for all
x ∈ A.

The negative cone of A ∈ CRL is the set A− = {x ∈ A : x ≤ e}. It
follows from (2) that A− is closed under the operations ∨,∧, ∗, and if
the binary operation ⇒e is defined as

x⇒e y = (x⇒ y) ∧ e,

then it is easy to check that A− = (A−,∨,∧, ∗,⇒e, e) is an integral
commutative residuated lattice.

A residuated lattice with involution was defined in Busaniche and
Cignoli (2009) as a commutative residuated lattice which satisfies the
equation:

(x⇒ e)⇒ e = x, (3)

and it was shown that if we define on a residuated lattice with involution
A the unary operation ∼ by the prescription ∼x = x⇒ e for all x ∈ A,
then the following properties are satisfied:

M1 ∼∼x = x,

M2 ∼(x ∨ y) = ∼x ∧ ∼ y,

M3 ∼(x ∧ y) = ∼x ∨ ∼ y,

M4 ∼(x ∗ y) = x⇒ ∼ y.
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Moreover, we have that ∼ e = e. Then the system A = (A,∨,∧, ∗,
⇒, e) is an involutive residuated lattice in the sense of Galatos and
Raftery (2004) and Tsinakis and Wille (2006).

2. NPc-LATTICES

Definition 2.1. A Paraconsistent residuated lattice (Pc-lattice for
short), is a commutative distributive residuated lattice with involution
A = (A,∧,∨, ∗,⇒, e) satisfying the following equations, where ∼x =
x⇒ e and x2 = x ∗ x:

(x ∗ y) ∧ e = (x ∧ e) ∗ (y ∧ e), (4)

(x ∧ e)2 = x ∧ e. (5)

A Nelson Pc-lattice (NPc-lattice) is a Pc-lattice that satisfies the equa-
tion:

((x ∧ e)⇒ y) ∧ ((∼ y ∧ e)⇒ ∼x) = x⇒ y. (6)

We denote Pc and NPc the varieties of Pc-lattices and NPc-lattices,
respectively.

In Definition 4.1 of Busaniche and Cignoli (2009) NPc-lattices were
defined as commutative residuted lattices with involution satisfying,
besides equations (4), (5) and (6), the equation

(x ∨ y) ∧ e = (x ∧ e) ∨ (y ∧ e), (7)

and the quasiequation

If x ∧ e = y ∧ e and ∼x ∧ e = ∼ y ∧ e, then x = y. (8)
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Since ∼ e = e, by M1 and M3, (8) is equivalent to:

x ∧ e = y ∧ e and x ∨ e = y ∨ e imply x = y. (9)

It was observed in Remark 4.9 in Busaniche and Cignoli (2009) that
the lattice reduct of each NPc-lattice A is distributive. On the other
hand it is well known, and easy to check, that for elements x, y, z of
a distributive lattice, x ∨ y = x ∨ z and x ∧ y = x ∧ z imply y =
z. Hence the requirement that the lattice be distributive turns the
quasiequation (8) and the equation (7) redundant. Consequently the
characterization of NPc-residuated lattices as a variety given here is
equivalent to the definition of NPc-lattices given in Definition 4.1 in
Busaniche and Cignoli (2009).

Given a Pc-lattice A, its positive cone given by

A+ = {x ∈ A : x ≥ e}

satisfies that A+ = {x ∈ A : ∼x ∈ A−}, because of M2 and M3.

Because of M1, the set A = A− ∪A+ is symmetric with respect to e.
A generalized Heyting algebra (called implicative lattice by Odintsov

(2003, 2004)) is an integral residuated lattice

H = (H,∨,∧, ∗,⇒, e)

that satisfies the equation:

x ∗ y = x ∧ y. (10)

Notice that e is definable by x⇒ x for any x ∈ H. For simplicity, when
we refer to a generalized Heyting algebra we omit the operation ∗ and
we write simply H = (H,∨,∧,⇒, e). Generalized Heyting algebras can
be thought of as bottom-free reducts of Heyting algebras.
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Since (5) implies that (10) holds in the negative cone of each Pc-
lattice, we have:

Theorem 2.2. If A = (A,∨,∧, ∗,⇒, e) ∈ Pc, then A− = (A−,∨,∧,
⇒e, e) is a generalized Heyting algebra. �

The next theorem, whose proof follows from straightforward com-
putations (cf. Corollary 3.4 in Tsinakis and Wille (2006)), besides pro-
viding examples of NPc-lattices shows that every generalized Heyting
algebra is (isomorphic to) the negative cone of a Pc-lattice.

Theorem 2.3. Let H = (H,∨,∧,⇒, e) be a generalized Heyting alge-
bra. Then

I(H) = (H ×H,∨,∧, ∗,⇒, (e, e))

with the operations ∨,∧, ∗,⇒ given by

(a, b) ∨ (c, d) = (a ∨ c, b ∧ d) (11)

(a, b) ∧ (c, d) = (a ∧ c, b ∨ d) (12)

(a, b) ∗ (c, d) = (a ∧ c, (a⇒ d) ∧ (c⇒ b)) (13)

(a, b)⇒ (c, d) = ((a⇒ c) ∧ (d⇒ b), a ∧ d) (14)

is a NPc-lattice. Moreover, the correspondence

a 7→ (a, e)

defines an isomorphism from H onto I(H)−. �

With the notation of the previous theorem, for every element (a, b) ∈
H ×H we have

∼(a, b) = (a, b)⇒ (e, e) = (b, a). (15)
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The reader can verify that the following equation

((x ∧ e)⇒ (y ∧ e)) ∧ e = ((x ∧ e)⇒ y) ∧ e (16)

holds in every A ∈ Pc (a proof is given in Lemma 4.2 of Busaniche and
Cignoli (2009)).

3. CONGRUENCES OF Pc-LATTICES

A convex subalgebra of A ∈ CRL is a subalgebra S of A such that
if x, y ∈ S, then the whole segment [x, y] = {z ∈ A : x ≤ z ≤ y} is in
S. Given a congruence θ of A, Sθ = {x ∈ A : (x, e) ∈ θ} is a convex
subalgebra of A. The following result is proved in §2 of Hart, Rafter
and Tsinakis (2002):

Theorem 3.1. The correspondence θ 7→ Sθ establishes an order iso-
morphism from the set Subc(A) of convex subalgebras of A onto the set
Cong(A) of congruences of A, when both sets are ordered by inclusion.

An implicative filter (i-filter for short) of an integral commutative
residuated lattice A is a subset F ⊆ A such that e ∈ F and it is closed
under modus ponens: x ∈ F and x⇒ y ∈ F imply y ∈ F . Implicative
filters can also be characterized as subsets of A that are nonempty,
upwards closed and closed by ∗. It follows easily that implicative filters
are precisely the convex subalgebras of integral commutative residuated
lattices. Hence by Theorem 3.1, there is an order isomorphism from
Cong(A) onto the set Filt(A) of i-filters of A, ordered by inclusion.

Let A ∈ CRL and let F ∈ Filt(A−). It follows from Lemma 2.7 in
Hart, Rafter and Tsinakis (2002) that

C(F ) = {x ∈ A : z ≤ x ≤ z ⇒ e for some z ∈ F}
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is the universe of a convex subalgebra of A. Moreover, from the re-
sults of Hart, Rafter and Tsinakis (2002) the following theorem can be
deduced.

Theorem 3.2. Let A be a Pc-lattice. The correspondence φ : Filt(A−)
→ Subc(A) given by

F 7→ C(F )

is an order isomorphism.2

Proof. Let F be an i-filter of the integral residuated lattice A−. First
observe that F = C(F ) ∩ A−. Indeed, if z ∈ F , then z ∈ A− and
z ≤ z ≤ z ⇒ e, thus F ⊆ C(F ) ∩ A−. For the opposite inclusion, take
x ∈ C(F ) ∩A−. By definition there is z ∈ F such that z ≤ x ≤ z ⇒ e.

Since F is upwards closed we get x ∈ F. We can conclude that φ is
injective.

To check surjectivity, let S ∈ Subc(A). First we see that F = S∩A−

is an implicative filter of the negative cone of A. Clearly e ∈ S ∩ A−

and if x, y ∈ S∩A−, then x∗y ∈ S∩A−. To see that S∩A− is upwards
closed, let x ∈ S ∩ A− and x ≤ y ≤ e. Then x ∗ y ≤ e ∗ e = e, and
y ≤ x⇒ e. Hence we have x ≤ y ≤ x⇒ e and since S is convex we get
y ∈ S ∩A−.

Now we prove that S = C(F ). The inclusion C(F ) ⊆ S follows
immediately from the convexity of S. For the opposite inclusion, take
s ∈ S. Since S is a subalgebra of A, the element h = s ∧ e ∧ (s ⇒ e)
belongs to S ∩A−. We have

s ∗ h = s ∗ (s ∧ e ∧ (s⇒ e)) ≤ s ∗ (s⇒ e) ≤ e.

Then h ≤ s ≤ h⇒ e and S ⊆ C(F ).
It is left as an easy exercise to corroborate that φ is order preserving.

. . . �

2The result of this Theorem can be generalized to commutative residuated
lattices and their negative cones.
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Notice that the inverse of the isomorphism φ in the above theorem
is the correspondence S 7→ S ∩A−. As an immediate corollary we get:

Corollary 3.3. The lattices Cong(A) and Cong(A−) are isomorphic.

Theorem 3.2 provides a useful tool to analize some classes and
subvarieties of Pc and NPc. Two of its most important consequences
are summarized in the next lemma.
Lemma 3.4. Let A be a Pc-lattice. Then:

1. A is simple if and only if A− is the two-element Boolean algebra.

2. A is subdirectly irreducible if and only if A− has a coatom.

4. SEMISIMPLE AND REPRESENTABLE Pc-LATTICES

We first prove a result that will help us deal with semisimplicity.

Lemma 4.1. Let A ∈ Pc. Then A− is the bottom-free reduct of a
boolean algebra if and only if A satisfies the equation

(((a ∧ e⇒ b) ∧ e)⇒ a) ∧ e = a ∧ e. (17)

Proof. It is well known that the generalized Heyting algebra A− is
the bottom-free reduct of a boolean algebra if and only if it satisfies
the Peirce equation

(a⇒e b)⇒e a = a. (18)

Observe that for every pair of elements a, b ∈ A−, since equation (16)
holds in A we get that

(a⇒e b)⇒e a = ((a ∧ e)⇒e (b ∧ e))⇒e (a ∧ e) =

(((a ∧ e⇒ b ∧ e) ∧ e)⇒ a ∧ e) ∧ e =

(((a ∧ e⇒ b) ∧ e)⇒ a ∧ e) ∧ e =
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(((a ∧ e⇒ b) ∧ e)⇒ a) ∧ e.

With this information, the reader can easily check that equation (17)
holds in A if and only if equation (18) holds in A−. �

Let B be the two-element boolean algebra with universe {0, 1}.
Then I(B) is an NPc-lattice with universe {(0, 1), (1, 1), (1, 0), (0, 0)},
where e = (1, 1). We define P3, as the unique nontrivial proper subalge-
bra of I(B), i.e., the subalgebra with universe P3 = {(0, 1), (1, 1), (1, 0)}.

In Figure 1 one can see the lattice reducts of the algebras I(B) and
P3.

u u
u

u
(0, 1)

(0, 0) (1, 1)

(1, 0)

u
u

u
(1, 1)

(1, 0)

(0, 1)

Fig. 1

The proof of the following lemma is left as an easy exercise.

Lemma 4.2. Each of the lattices of Figure 1 admits a unique (up to
isomorphism) structure of a Pc-lattice (an NPc-lattice), given by I(B)
and P3 respectively.

We will see that these are the only nontrivial simple Pc-lattices.

Lemma 4.3. Let C ∈ Pc be a simple algebra. Then C is a subalgebra
of I(B).
Proof. Assume that C is a nontrivial simple algebra in Pc. From
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Lemma 3.4 we know that C− is the two-element boolean algebra B.
We will prove that C is a subalgebra of I(B). Since e is the greatest
element in C−, without danger of confusion we can denote by ⊥ the
other element in C−, thus C− = {⊥ < e}.

After defining ∼⊥ = >, we have that C− ∪ C+ is the set

{⊥ < e < >}.

Observe that this totally ordered set is order isomorphic to the lattice
reduct of the algebra P3. Let c ∈ C be such that c /∈ C− ∪ C+. Since
c∧ e is an element in C− less than e we must have c∧ e = ⊥. Similarly
c ∨ e = >. If there were c, d /∈ C− ∪ C+, then c ∧ e = d ∧ e and
c ∨ e = d ∨ e. As previously mentioned, the distributivity of C implies
the quasiequation (9), thus c = d. From the result of Lemma 4.2 we
can conclude that either C ∼= P3 or C ∼= I(B). �

Theorem 4.4. The class of semisimple Pc-lattices is the subvariety
V of Pc generated by I(B), and it is characterized by equation (17).
Moreover, the class of semisimple Pc-lattices coincides with the class
of semisimple NPc-lattices.
Proof. As an immediate consequence of Lemma 4.3, any semisimple
algebra in Pc must be in V.

The algebra I(B) satisfies equation (17), because I(B)− is the
reduct of a boolean algebra. Since this algebra generates V, every
algebra in V satisfies equation (17). Due to Lemma 4.1, we can assert
that the negative cone of every algebra in V is a boolean algebra. In
particular, if C is a subdirectly irreducible algebra in V, then C− is
a subdirectly irreducible boolean algebra. This means that C− is the
two element boolean algebra. Thus C is a simple Pc-lattice. We can
conclude that subdirectly irreducible algebras in V are simple. Hence
all the elements of V are semisimple Pc-lattices.
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The last statement of the theorem follows from the fact that I(B)
is an NPc-lattice. �

It is easy to see that P3 generates a proper subvariety of the vari-
ety of semisimple Pc-lattices, characterized by (17) and the following
Kleene equation:

(x ∧ ∼x) ∨ (y ∨ ∼ y) = (y ∨ ∼ y). (19)

We are going to show that this variety coincides with the variety
of representable Pc-lattices.

A residuated lattice is representable if it is a subdirect product
of linearly ordered residuated lattices. Given a subvariety V ⊆ CRL,
it is shown in §3 in Tsinakis and Wille (2006) that the representable
residuated lattices in V form a subvariety of V characterized by equation
(7) and the equation

e ∧ ((x⇒ y) ∨ (y ⇒ x)) = e. (20)

We have already observed that (7) holds in any Pc-lattice. There-
fore we will search for subvarieties of Pc that satisfy (20).

To achieve such an aim, we will investigate the possible structure
of totally ordered Pc-lattices. Obviously the trivial Pc-lattice whose
only element is e is totally ordered.

Theorem 4.5. The Pc-lattice P3 is the only nontrivial totally ordered
Pc-lattice.
Proof. Let L be a nontrivial totally ordered Pc-lattice. Obviously
L = L− ∪ L+, thus the chain L must be symmetric with respect to e.

Then it can not be the case that L has only two elements. If L has
three elements, the result of Lemma 4.2 yields that L ∼= P3.

Assume that L has more than three elements. By symmetry with
respect to e, L has at least five elements b < a < e < ∼ a < ∼ b.
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Observe that ∼ b∗a > e. Indeed, if ∼ b∗a ≤ e then the residuation law
(1) yields

∼ b ≤ a⇒ e = ∼ a

which is a contradiction. Then (∼ b ∗ a) ∧ e = e. On the other hand,
from equation (4) we have

(∼ b ∗ a) ∧ e = (∼ b ∧ e) ∗ (a ∧ e) = e ∗ a = a < e.

The contradiction arises from the hypothesis that L has more than
three elements. �

Corollary 4.6. The subvariety of representable Pc-lattices is generated
by P3 and it is characterized by (20). Moreover, it coincides with the
subvariety of representable NPc-lattices.

Clearly, the variety of representable Pc-lattices is the only nontriv-
ial proper subvariety of the variety of semisimple Pc-lattices.
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