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Abstract: This paper is a historical companion to a previous one, in which it
was studied the so-called abstract Galois theory as formulated by the Portuguese
mathematician José Sebastião e Silva (see da Costa, Rodrigues (2007)). Our pur-
pose is to present some applications of abstract Galois theory to higher-order model
theory, to discuss Silva’s notion of expressibility and to outline a classical Galois
theory that can be obtained inside the two versions of the abstract theory, those of
Mark Krasner and of Silva. Some comments are made on the universal theory of
(set-theoretic) structures.
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INTRODUCTION

In da Costa, Rodrigues (2007) the so-called abstract or generalized
Galois theory, especially according to the views of José Sebastião e
Silva, was presented. It was noted that there is another version of the

1We would like to thank Marcel Guillaume for extremely helpful com-
ments on an earlier version of this paper. Thanks are also due to an anony-
mous referee for detailed suggestions that led to substantial improvements.
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theory—that of Mark Krasner—intrinsically linked to Silva’s. In the
present paper, we continue the study of these theories.

In particular, our main objectives are the following:

1. We consider some applications of generalized Galois theory to
higher-order model theory and to the theory of species of struc-
tures (mathematical or axiomatic systems).

2. We analyze, from a set-theoretic stance, the notion of definability,
in the wide sense of expressibility, a notion that is fundamental
for Silva’s theory.

3. We sketch the inter-connections between Silva’s and Krasner’s
theories, showing in outline how classical Galois theory can be
derived from both formulations of the abstract theory.

This paper is historical in nature, offering an outline of Silva’s and
Krasner’s ideas and their significance. It is worth noting that analogs of
Galois theory have been developed in many areas of mathematics (fur-
ther details can be found, e.g., in: Krasner (1976), Erné et al. (1993),
Mac Lane (1998), Davey, Priestley (2002), Gierz et al. (2002), Deneke
et al. (2004), Picado (2005) and Galatos et al. (2007)). These ap-
proaches mesh with our generalized Galois theory, which is part of a
universal theory of structures. However, this universal theory requires
an extended set theory with universes, such as Zermelo-Fraenkel set
theory with the axiom of choice (ZFC) together with universes plus a
postulate to the effect that every set is contained in a universe. After
all, several issues in a universal theory of structures cannot be accom-
modated in ZFC without universes, such as the Cartesian product of
arbitrary families of structures. Thus, all of our constructions and re-
sults will be established in ZFC with universes (see Zakharov et al.
(2006), Bunina, Zakharov (2006), da Costa (1972) and Brignole, da
Costa (1971)). We shall also make free use of the terminology and the
results of da Costa, Rodrigues (2007), without detailed comments.
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1. HIGHER-ORDER STRUCTURES AND MODELS

We define the set T of types as follows:

1. The symbol i belongs to T .

2. If t0, t1, . . . , tn−1 ∈ T , then 〈t0, t1, . . . , tn−1〉, 1 ≤ n < ω, also
belongs to T .

3. The elements of T are only those given by clauses 1 and 2.

The order of a type t, ord(t), is introduced at follows:

1. ord(i) = 0.

2. ord(〈t0, t1, . . . , tn−1〉) = max{ord(t1), ord(t2), ..., ord(tn−1)}+1.

If D is a set, then it is possible to define a function τD or, to
simplify, τ , whose domain is T , by the following clauses:

1. τ(i) = D.

2. If t0, t1, . . . , tn−1 ∈ T , then τ(〈t0, t1, . . . , tn−1〉) = P(τ(t1) ×
τ(t2) × ... × τ(tn−1)), where P and × are the symbols for the
power-set and the Cartesian product, respectively.

The set ∪range (τ
D

) is denoted by ε(D), and is called the scale
based on D. The objects of τ(i) are called individuals of ε(D), and the
objects of τ(t), ord(t) > 0, are called objects or relations of type t; the
type of individuals is i.

The cardinal k(D), defined by the condition

k(D) = sup{D,P(D),P(P(D)), ...},

is the cardinal associated to ε(D). (Sometimes, instead of k(D), we
write kD.)

A sequence is a function whose domain is an ordinal number, finite
or infinite. b̂λ is the range of the sequence bλ.
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We call structure e with basic set D an ordered pair

e = 〈D, rι〉,

where rι is a sequence of elements of ε(D). We also call D the domain
of e, and it is supposed to be non-empty. D and the terms of rι are
the primitive elements of e; the elements of D are the individuals of e.
Usually we identify such individuals with their unit classes. ε(D) and
k(D) are the scale and the cardinal associated to e, respectively. In all
cases, the ordinal which is the domain of rι is strictly less than k(D).

The order of an object of ε(D) is the order of its type. The order
of e = 〈D, rι〉, denoted by ord(e), is defined as follows: if there is
the greatest order of the objects of the range of rι, then ord(e) is this
greatest order; otherwise, ord(e) = ω.

Lωωκ(R) is the higher-order infinitary language introduced in da
Costa, Rodrigues (2007). Its blocks of quantifiers are finite, and con-
junctions and disjunctions have length strictly less than k, when k > ω;
if k = ω, such conjunctions and disjunctions are always finite. R is the
set of constants of the language, each having a fixed type.

Lωωκ(R) can be interpreted in structures of form

e = 〈D, rι〉

the constants denoting D and the objects rι, each constant possessing
the same type as that of the object it denotes. The sequence rι has as its
domain an ordinal strictly less than kD, usually finite or denumerable.
In what follows we may identify a constant to the object it denotes;
this will be done when there is no danger of confusion. In the structure
e = 〈D, rι〉, D and the rι are called the primitive concepts or terms of
e.
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Sentences of our language are formulas without free variables. If ϕ
is a sentence, then we say that ϕ is true in the structure

e = 〈D, rι〉,

in analogy with the case of first-order (finitary) logic. To express that
ϕ is true in e we write:

e � ϕ.

The notions of model of a set of sentences and model of a sentence
are the usual ones. We write Γ � ϕ to mean that every model of the
set of sentences Γ is also a model of ϕ.

Let a be an object of ε(D), that is, of the scale associated to e. In
da Costa, Rodrigues (2007), using the language Lωωκ(R), it was studied
the concept of definability (in the wide sense) of an element of ε(D) in
the structure e by means of the sequence bλ of elements of ε(D). This
concept is characterized as follows:

a is definable in the wide sense in e with the help of the
sequence bλ if there is a formula ϕ(x; bλ) of Lωωκ(R ∪ b̂λ)
such that

e � ∀x (x = a↔ ϕ(x; bλ)),

where ϕ(x; bλ) contains x as its only free variable.

Evidently, it is supposed that Lωωκ(R) is interpreted in e, and that other
standard conditions are satisfied.

Now we introduce the concept of definability in the wide sense on
the basis of the set Γ of sentences and in terms of a finite sequence of
constants (or a set of constants). For that, let Γ(r, bλ, c0, c1, . . . , cn−1)
be a set of sentences in which the only constants are r, the terms of the
sequence bλ and the terms of the finite sequence c0, c1, . . . , cn−1. (We
will abbreviate that set by Γ.) The constant r is said to be definable
in the wide sense on the basis of the set Γ by means of the constants
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bλ if there is a formula ψ(x; bλ), having x as its sole free variable and
containing as constants only the constants bλ, such that

Γ � ∀x (x = r ↔ ψ(x; bλ)).

Clearly, x and r must have the same type. (From now on, restrictions of
type will not be made explicit whenever there is no danger of confusion.)

When in Lωωκ(R), κ = ω, we say that r is strictly definable on the
basis of Γ by means of the constants bλ—a notion that we essentially
owe to Tarski (see Krasner (1968-69), chapter X). Of course, throughout
our discussion, we suppose that our language is interpreted in suitable
structures. Normally, we take κ = k(D).

Theorem 1.1 Under the above conditions, r is definable in the wide
sense on the basis of Γ by means of the constants bλ if and only if, in
every model of Γ, the object denoted by r is definable in the wide sense
in terms of the sequence bλ of elements of the model.

Proof Implication from left to right: If r is definable in the wide sense
on the basis of Γ by means of bλ, then evidently the object denoted
by r, in any model of Γ, is definable in the wide sense in terms of the
objects bλ in such a model.

Implication from right to left: If r is definable in the wide sense in
every model e of Γ in terms of bλ, then there is in e one and only one
object that is denoted by r. This means that we have

e � ∃!x Γ̃(x; bλ, c0, c1, . . . , cn−1),

where Γ̃ is the conjunction of the formulas of Γ in which r is replaced
by the new variable x. Therefore,

e � ∀x (x = r ↔ Γ̃(x; bλ, c0, c1, . . . , cn−1))
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and, as a result,

e � ∃x0 ∃x1 ... ∃xn−1 ∀x (x = r ↔ Γ̃(x; bλ, x0, x1, . . . , xn−1)).

So,

e � ∀x ∃x0 ∃x1 ... ∃xn−1 (x = r ↔ Γ̃(x; bλ, x0, x1, . . . , xn−1))

and

e � ∀x (x = r ↔ ∃x0 ∃x1 ... ∃xn−1 Γ̃(x; bλ, x0, x1, . . . , xn−1)).

Hence, the formula

∃x0 ∃x1 ... ∃xn−1 Γ̃(x; bλ, x0, x1, . . . , xn−1)

defines r in the wide sense on the basis of Γ by means of the constants
bλ. �

Corollary Under the hypotheses of the theorem, r is definable on the
basis of Γ by means of bλ iff in any model e of Γ the object r is invariant
under the Galois group of the restriction e′ of e to the language without
the constant denoting r.

Proof Consequence of the theorem 6.5 of da Costa, Rodrigues (2007).
. . . �

Theorem 1.2 Under the preceding conditions, let u and v be two new
constants added to our language. Then, in order for r to be definable
in the wide sense on the basis of Γ by means of bλ, it is necessary and
sufficient that

∃x0 ∃x1 ... ∃xn−1 Γ̃(u; bλ, x0, x1, . . . , xn−1)∧
∃x0 ∃x1 ... ∃xn−1 Γ̃(v; bλ, x0, x1, . . . , xn−1) � u = v.
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Proof The condition is sufficient: the expression above implies that
any model e of Γ is such that

e � ∃!x ∃x0 ∃x1 ... ∃xn−1 Γ̃(x; bλ, x0, x1, . . . , xn−1),

which entails that r denotes in e an object that is definable in the wide
sense in this model in terms of bλ. Hence, by Theorem 1, the formula

∃x0 ∃x1 ... ∃xn−1 Γ̃(x; bλ, x0, x1, . . . , xn−1)

clearly defines r in the wide sense on the basis of Γ by means of bλ.
The condition is necessary: the proof is immediate. �

Corollary Under the hypotheses of the theorem, r is definable on the
basis of Γ by means of bλ iff in any model e of Γ, the formula

∃x0 ∃x1 ... ∃xn−1 Γ̃(x; bλ, x0, x1, . . . , xn−1)

defines in the wide sense, in e, in terms of bλ, an element that remains
invariant under the group of automorphisms of e that preserve the bλ.

Proof Similar to the proof of the corollary to the previous theorem.
. . . �

The preceding discussion extends some theorems obtained by Tarski
in Tarski (1983), chapter X; the other theorems of that chapter can also
be extended in the same vein, including Tarski’s higher-order version
of Padoa’s method.

Given structures e1 = 〈D1, rι〉 and e2 = 〈D2, sι〉, we call bijection
between e1 and e2 any bijection of D1 on D2, canonically extended to
a bijection of ε(D1) on ε(D2).

Let ϕ be a bijection between two models e1 and e2 of the set Γ of
sentences. We say that ϕ is a u-isomorphism between e1 and e2 if ϕ is
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an isomorphism between the restrictions of e1 and e2 to the language
having u as its only constant.

We consider now a set of sentences Γ(v, bµ, cν) composed by formu-
las having as their only constants v and the elements of range(bµ) ∪
range(cν), all of them supposed to be distinct and cν finite. The con-
junction of the formulas of Γ(v, bµ, cν) will be designated by Γ̃(v, bµ, cν).
Replacing in Γ̃(v, bµ, cν) the constants cν by distinct new variables
xν , ∃xν Γ̃(v, bµ, xν) will be the existential quantification of Γ̃(v, bµ, xν)
by the block of existential quantifiers ∃xν . Instead of Γ(v, bµ, cν) we
will write simply Γ.

The proposition below is a generalization of Shoenfield’s version of
the theorem of Beth (Shoenfield (1967), p. 81–82).

Theorem 1.3 Let Γ be a set of formulas as described above. We have: v
is definable in the wide sense on the basis of Γ by means of the constants
bµ iff for every pair of models of Γ e1 = 〈D1, rι〉 and e2 = 〈D2, sι〉, and
every bijection ϕ between e1 and e2 which is a u-isomorphism for all u
in range(bµ), ϕ is also a v-isomorphism.

Proof If v is definable in the wide sense on the basis of Γ by means of
bµ, then clearly any two models e1 and e2 of Γ satisfy the condition on
u-isomorphisms and v-isomorphisms of the theorem.

On the other hand, if the condition is verified, then for any model
e of ∃xν Γ̃(v, bµ, xν), the automorphisms of e that preserve u, for any
u in range (bµ), also preserve v. So, v is definable in the wide sense in
e on the basis of ∃xν Γ̃(v, bµ, xν) by means of bµ, taking into account
Theorem 6.5 of da Costa, Rodrigues (2007) and Theorem 1.1 above.
Therefore, v is also definable in the wide sense on the basis of Γ by
means of bµ. �

Let e be a structure, D its domain, and G its Galois group. Two
elements x and y of D are said to be G-equivalent if there is g in G

such that y = gx. This relation determines a partition in D, and its
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equivalence classes are the orbits in e. (Orbits are the irreducible sets
of da Costa, Rodrigues (2007).)

The languages Lnωω(R), Lnωκ(R) and Lnκκ(R), 1 ≤ n < ω, are called
languages of order n; they contain variables and constants of order < n

and constants of order n, and their semantics are easily constructed.
Lωωω(R), Lωωκ(R) and Lωκκ(R) are called languages of order ω. Obvious
logics correspond to all these languages.

If e = 〈D, rι〉, with D infinite, is a structure of order n, 1 ≤ n < ω,
in which Lnωω(R), Lnωκ(R) or Lnκκ(R) is interpreted, then the cardinal
k(e, n), associated to the structure e, is defined as follows:

k(e, n) = card(Pn(D)),

where the power-set operator P is applied n times. When D is finite,
k(e, n) = ℵ0. Usually, we denote k(e, n) by κ.

Examining the proofs of Caulton, Butterfield (2008), one verifies
that most results, with convenient adaptations, remain valid for logics
of order n, 1 ≤ n < ω, and their corresponding structures. For example,
we have:

1. If e = 〈D, rι〉 is a structure of order n, 1 ≤ n < ω, then the
element r of ε(D) whose order ism, 1 ≤ m ≤ n, is invariant under
the Galois group of e iff r is definable in Llωκ(r̂ι), for κ = k(e, n)
and some l such that n ≤ l < ω.

2. Given the n-order structure e = 〈D, rι〉, the element r ∈ ε(D), of
order ≤ n, is definable in the wide sense in Lnκκ(r̂ι), κ = k(e, n),
iff r is invariant under the automorphisms of the Galois group
of e(1 ≤ n < ω). (Generalization of a theorem of Rogers; see
Galatos et al. (2007).)

3. Theorem 1.3 is true for structures of order n in Lnωκ(R), in
Lnωω(R), and, for cν infinite, in Lnκκ(R), 1 ≤ n < ω.
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Two structures e1 and e2 for the same language are called equipo-
lent if every sentence of the language which is true in e1 is also true in
e2 and conversely.

Theorem 1.4 Let e = 〈D, rι〉 and e′ = 〈D′, r′ι〉 be two similar struc-
tures in which Lωωθ(R) is interpreted, where θ is the greatest of the
cardinals associated with e and e′. Then e and e′ are equipolent (in
relation to Lωωθ(R)) iff there exists a bijection between the set of orbits
of e and the set of orbits of e′, such that the corresponding orbits are
determined by the same irreducible formula.

Proof An open formula of the language Lωωθ(R), interpreted in a suit-
able structure, is called irreducible if it defines in the wide sense an
orbit of the structure (see Caulton, Butterfield (2008)).

If e and e′ are structures in the conditions of the theorem, then it is
easy to show that, in e and e′, every open formula is equivalent to the
disjunction of the same family of irreducible formulas. So, reasoning
by induction on the number of logical operators appearing in a given
open formula, it follows that every open formula that is satisfiable in
e is also satisfiable in e′, and conversely. Hence, any sentence that is
true in e (or in e′) is also true in e′ (or in e, respectively). �

Theorem 1.5 Under the conditions of Theorem 1.4, e and e′ are iso-
morphic iff their corresponding orbits have the same cardinal.

Proof It suffices to note that any atomic formula is, in both structures,
the disjunction of the same family of irreducible formulas. Therefore,
if ϕ is the bijection between the domains of e and e′, expanding the
bijections to their orbits, 〈a1, a2, ..., al〉 satisfies a first-order relation of
e of degree l iff 〈ϕ(a1), ϕ(a2), ..., ϕ(al)〉 also satisfies the corresponding
relation of e′. We treat similarly the case of higher-order relations. �
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Theorems 1.4 and 1.5 are true for structures of order n and language
Lnωθ(R), 1 ≤ n ≤ ω.

We also have:

Theorem 1.6 Given the structure e of order n, 1 ≤ n ≤ ω, there exists
a finite number of first-order relations that, added to e, transform e in
a rigid structure.

Part of the previous discussion, such as the results connected with
Theorem 1.1 and its corollary, can be adapted to the case of species
of structures (in Bourbaki’s sense; see Bourbaki (1968)), theories or
axiomatic systems. From this perspective, for example, Theorem 1.1
relates species of structures to their models.

Consider the following two propositions:

(I) If X is irreducible, then X is an orbit.

and

(II) The element r of ε(D) is invariant under the Galois group of
e = 〈D, rι〉 iff r is definable in the wide sense (or expressible).
(Silva’s theorem.)

In da Costa, Rodrigues (2007), proposition (I) was proved with the
help of (II). However, we observe that (I) can be established without
the use of (II), and that Silva’s theorem is a direct consequence of (I).

We also have:

Theorem 1.7 The element r of ε(D) is definable in the wide sense iff
{r} is an orbit.

Proof Immediate. �

Theorem 1.8 Consider the structure e = 〈D, rι〉. Let I be the Galois
group of e, and let ∆α, α ∈ A, be the family of the restrictions of I to
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the orbits of D. It follows that, in e,

I =
∏
α∈A

∆α.

Proof Immediate. �

Note that the previous theorem remains valid for whatever type.
To finish this section, we present an interesting, well-know fact

concerning Galois groups (of structures). Let e = 〈D, rι〉 be a first-
order structure in which L1

ωω(r̃ι) is interpreted. An n-type, according
to usual model theory (see Shoenfield (1967), chapter V), determines
an orbit on Dn, 1 ≤ n < ω. We say that e, in the language L1

ωω(r̃ι),
is countably categorical or ω-categorical, if any first-order structure
with countably infinite domain and which satisfies the same first-order
sentences as e is isomorphic to e. Then the Ryll-Nardzewski theorem
(see Shoenfield (1967, chapter V)) can be reformulated as follows:

Theorem 1.9 The first-order structure e = 〈D, rι〉, with D countably
infinite, is ω-categorical iff its Galois group determines on Dn a finite
number of orbits, 1 ≤ n < ω.

2. AN OUTLINE OF KRASNER’S THEORY

In this section, we outline Krasner’s theory, showing how it can
be subsumed under the framework of Silva’s theory. Further details
on Krasner’s theory can be found in Krasner (1938), Krasner (1950),
Krasner (1968-69), and Krasner (1973). Our summary of the theory is
based, in particular, on Krasner (1968-69), and Krasner (1973).

Krasner summarizes the principal problems of classical Galois the-
ory as follows:

Let k be a field and K an algebraic extension of k. We
shall suppose that K/k is of finite degree, although this
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hypothesis is not completely necessary for all results. We
shall also suppose thatK/k is normal; i.e. every irreducible
polynomial with coefficients in k, which has one root in K,
can be completely decomposed in K in linear factors, so
‘has all its roots in K’ [...]

The automorphisms of K/k form a group with respect to
the usual composition of mappings; this group is called the
Galois group of the extension K/k and is denoted by gK/k.

If A is a subset of K, we consider the part of gK/k which
preserves every element of A (i.e. consists of the σ ∈ gK/k
which satisfy σa = a for all a ∈ A). This part of gK/k is
a subgroup of gK/k, denoted by g

(A)
K/k. Any subgroup of

gK/k, which is g(A)
K/k for some A ⊆ K, is called a Galoisian

subgroup of gK/k.

The main problems of classical Galois theory can be for-
mulated as follows:

1. Given A ⊆ K, what is the set A of all elements b ∈ K
which are preserved by the elements of g(A)

K/k (i.e. are
such that σb = b for all σ ∈ g(A)

K/k)?

2. What subgroups of gK/k are Galoisian?

Classical Galois theory gives the following answers to these
problems:

1. A is the closure of A∪k with respect to the operations
x+ y, xy, x−1 and, if the characteristic of k is p 6= 0,
the operation p

√
x in case p

√
x ∈ K (i.e. if x ∈ A and

p
√
x ∈ K, then p

√
x ∈ A). Note that −1 ∈ k, so x+ y

includes the case of x− y.

2. Every subgroup of gK/k is Galoisian.
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From the answer to the first problem we see that, when A
ranges over all subsets of K, A ranges over the interme-
diate fields between k and K which are perfect in K (i.e.
fields L with k ⊆ L ⊆ K and such that if the p-th root of
an element of L is in K, it is also in L).

The answer (1) is valid in two more general cases: the case
when the extension K/k is algebraic and normal (without
the hypothesis “of finite degree”) and the case when the
extension is algebraically closed without being algebraic.
For the answer (2), the hypothesis “of finite degree” is
needed. (Krasner (1973), p. 15-17.)

Krasner introduces a new kind of first-order infinitary structure
and studies the corresponding two central problems which are gener-
alizations of those of classical Galois theory. His theory is outlined in
what follows, and some of its applications are discussed.

Let us consider two sets E and X, the first is called the support set
and the second is called the auxiliary set of arguments or of variables.
An X-point of E is any mapping P : X → E. An X-relation on E is
any set r ⊂ EX . So, an X-relation on E is a set of X-points of E. We
suppose that X and E are not empty and that X ∩E = ∅; in addition,
the cardinal of X is strictly greater than, or equal to, the cardinal of
E.

Given X ′ such that X ∩X ′ = ∅, we identify the X-relation (on E)
r to the X ∪X ′-relation (on E) r ×EX′ , prolonging the identification
by symmetry and transitivity.

The following operations are central in Krasner’s theory (X-relation
on E will be abbreviated simply as X-relation):

Intersection of any sequence R of X-relations, operation
that generates another X-relation, and is denoted by ∩R.
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The complement of an X-relation r: r̃ = EX − r. r̃ is also
denoted by ∼ r.

(Clearly, the union of a sequence R of X-relations is de-
finable in terms of ∩ and ∼.)

Cylindrification: If X ′ ⊂ X, then a cylindrification as-
sociates to any X-relation r another X-relation rX′ =
(r/X ′)×EX−X′ , where r/X ′ means the restriction of r to
X ′. In other words, an X-point P belongs to rX′ iff there
exists an X-point P ′ in r such that P coincides with P ′

on X ′.

r is said to be identical on X −X ′, or r is said to be not
dependent of X −X ′, iff r = rX′ .

rX′ is also denoted by ∃X ′r.

The fourth fundamental operation is mutation or change
of variables, which is of two kinds:

Simple mutations: Let X ′ and X ′′ be two subsets of X
having the same cardinal, and let f be a bijection of X ′

on X ′′. If r is a relation identical on X − X ′, then the
mutation of r by f is the X-relation r(f) satisfying the
condition that an X-point P belongs to r(f) iff there exists
P ′ in r such that P (f(x)) = P ′(x) for every x in X ′, r(f)

being identical outside of X ′′ (or on X −X ′′).

Generalized mutations: We suppose that X ′ and X ′′ are
two subsets of X and that C ′ and C ′′ are equivalences on
X ′ and X ′′ respectively, and that the classes of equivalence
X ′/C ′ and X ′′/C ′′ possess the same cardinal. We denote
by f a bijection between X ′/C ′ and X ′′/C ′′. On the other
hand, Y being a subset of X and C an equivalence on Y ,
an X-relation s is said to be compatible with C if s is
identical on X − Y and if, for any x ∈ Y and any P ∈ s,
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P(x) only depends of the class of equivalence of Y/C to
which x belongs. Then, returning to the X-relation r, if
r is compatible with C ′ on X ′ and identical out of X ′,
the generalized mutation of r by f , noted r(f), is the X-
relation constituted by the points P such that there exists
P ′ ∈ r verifying the condition that for all M ∈ X ′/C ′,
P[f(M)] = P′[M ], where P[f(M)] is the value assumed by
P in any element of f(M) and P′[M ] is the value that P ′

assumes in any element of M .

Mutations are partial operations, but it is not difficult to transform
them into total operations.

There are infinitely many operations of intersection (and union),
each of them characterized by the ordinal of the family of X-relations
to which they are applied, that is, by its arity. Normally the opera-
tions of intersection (and union) are here disposed in a sequence whose
domains are ordinals strictly less than a fixed cardinal; in the case
of Krasner structures, structures to be introduced below, the cardinal
is the cardinal associated with the structure. The ordinals of the se-
quence are the arities of the operations of intersection (or union). This
sequence of intersections will be denoted by u (and of unions by t),
which is clearly an abuse of language. Given X and E, cylindrifications
and mutations can also be disposed in sequences, sequences which will
be denoted by ∃ and V , respectively. So, the concatenation of the
sequences ∼ (an unary sequence), u, ∃ and V may be written

∼, u, ∃, V

where the comma means concatenation.
Let rλ be a sequence ofX-relations on E, D = X∪E, withXuE = ∅

and card(X) ≥ card(E), xµ a sequence of all elements of X without
repetitions, and
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xµ, rλ, ∼, u, ∃, V

the concatenation of such sequences. We now define a Krasner structure
(or K-structure) as a set-theoretic construct of the following form:

K = 〈D,xµ, rλ,∼,u,∃, V 〉.

Clearly, K is a structure in the sense of section 1 of da Costa,
Rodrigues (2007); hence, the generalized Galois theory of that paper
can be applied to K. In particular, since xµ is a sequence of primitive
relations (0-adic relations) of K, any automorphism of K must leave
invariant the members of X. It is also clear that the automorphisms of

K̃ = 〈D,xµ, rλ〉

are the same as those of K. Moreover, taking into account that the
fundamental operations are invariant under the Galois group ofK, they
are logically definable (see da Costa, Rodrigues (2007)). Therefore, K
and K̃ are equivalent structures.

As in da Costa, Rodrigues (2007), all sequences concerning a fixed
K-structure have domains which are ordinals strictly less than the car-
dinal associated with the structure.

An X-relation r is said to be K-definable in the Krasner structure
K if and only if:

1. r is one of the X-relations rλ; or

2. r can be obtained from a K-definable X-relation by one of the
operations ∼, ∃ or V ; or

3. r is the intersection of a sequence of K-definable X-relations;
and

4. r is K-definable only in the cases 1–3.
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Examples
Any rλ is K-definable in the structure K; ∅ and I = EX are always
K-definable.

A set S of X-relations is called K-closed iff any X-relation K-
definable in a structure like K̃ above, where rλ is a sequence of all
elements of S, belongs to S. The Krasner closure or K-closure of S,
denoted by S(K), is the intersection of all K-closed sets containing S.

Theorem 2.1 Let S ∪ {r} be a set of X-relations. Then r ∈ S(K)

implies that r is definable in the wide sense (or expressible) in the
structure

K ′ = 〈D,xµ, rλ〉,

where rλ is a sequence of all members of S.

Proof The operations ∼, ∃, V and u are invariant under the Galois
group of K ′, as is easy to verify. Therefore, by Theorem 6.5 of da
Costa, Rodrigues (2007), they are definable in the wide sense in K ′.
This fact entails that r is expressible in K ′. �

Two K-structures K1 = 〈E ∪X,xµ, rλ〉 and K2 = 〈E ∪X,xµ, rη〉
are said to be K-equivalent if the K-closures of the X-relations of K1

and of the X-relations of K2 are equal.

Theorem 2.2 [Krasner] Two K-structures are K-equivalent iff they
have the same Galois group.

Proof The result is established by employing the notion of orbit of the
X-points of both structures, as well as the properties of the fundamen-
tal operations (for details, see Krasner (1950) and Krasner (1973)).�

Corollary 1. An X-relation r is K-definable in a K-structure iff r is
invariant under the action of the automorphisms of the Galois group
of the K-structure.
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Corollary 2. The converse of Theorem 2.1 is true.

Theorem 2.3 [Krasner] Given any group of permutations G of set
E, there exists a K-structure with support E and whose Galois group
is G.

Proof See Krasner (1950) and Krasner (1973). �

We introduce as usual the concept of an endomorphism of a K-
structure. The semi-group of the endomorphisms of a K-structure is
called the Galois semi-group of the structure. Krasner elaborated a
theory of the endomorphisms of K-structures similar to his extension
of Galois theory (that concerns automorphisms). Propositions similar
to the theorems of this section can be established (see Krasner (1968-
69) and Krasner (1973)). As noted in da Costa, Rodrigues (2007),
Silva also sketches the development of a theory of endomorphisms, cor-
related with his formulation of the abstract Galois theory. In a wide
sense, the generalized Galois theory includes both automorphisms and
endomorphisms.

Krasner studied some special cases of K-structures, named by him
eliminative structures. By means of theses structures it is possible
to establish the basic theorems of classical Galois theory, as well as
the central theorems of other theories, for instance, Picard’s version of
Galois theory for differential equations.

It should be recalled that one of the main results of classical Galois
theory is the proposition asserting that there are certain connections
between subfields of algebraic extensions of a field and the subgroups of
the associated Galois group. In other words, classical Galois theory is
a theory of the duality between groups of permutations and certain of
their invariants; these invariants are finitary relations defined by means
of the operations of fields. Krasner generalized this situation by con-
sidering infinitary relations and the corresponding abstract structures.
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When the infinitary relations depend only on a finite number of coordi-
nates, we obtain the ordinary case of finitary relations and operations.
Thus, classical Galois theory can be subsumed under the abstract or
generalized Galois theory.

The similarity between abstract Galois theory and the Erlangen
Program is obvious; in fact, the latter can be viewed as a part of the
former. (We will return to this point below.) Moreover, generalized Ga-
lois theory presents strong connections with infinitary languages and
cylindric algebras. (For various applications of Krasner’s theory, see,
for instance, Krasner (1968-69, 1973 and 1976).)

3. SILVA’S OPERATIONAL GALOIS THEORY

Silva showed that his general theory (Sebastião e Silva (1985, 1945
and 1985)) can be adapted to obtain classical Galois theory. Let us see
how this is done.

In this section, we will be concerned with structures of the following
form:

e = 〈D, oι〉,

where oι, ι ∈ λ, are first-order operations (or operators), and λ is a
finite ordinal. The operations oι associate elements of D with n-tuples
of elements of D; n, 0 ≤ n < ω, is the rank of the operator.

L = L(oι) is a first-order language whose only nonlogical primitive
symbols are oι. Terms and formulas are defined as usual, starting with
variables and the operators oι. L is supposed to be interpreted in a
structure of the above form.

If V and U are subsets of D, we say that v ∈ V is operationally
definable in terms of U if v = a is true, where the term a is composed
by the operators oι and elements of U . Similarly, we define the concept
of an operator operationally definable in terms of a set of operators and
a set of elements of D.
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An operational relation is a relation characterized by a formula of
the form

a = b,

where a and b are terms of L. If such a formula has n free variables,
then the relation is of rank or of degree n, 0 ≤ n < ω.

Similarly to da Costa, Rodrigues (2007), we introduce the notions of
operationally closed set and operational base of a set V with reference
to another set W , such that W ⊂ V ⊂ D. We will refer to the base of
V with reference to W by ‘base of V/W ’.

For instance, in e = 〈D, oι〉, D is always operationally closed, and
if all oι have rank > 0, the empty set is also operationally closed.
The operationally closed sets of a group are its subgroups, and the
operationally closed subsets of a field are its subfields.

In the case of fields, it is possible to define, operationally, sum and
product in terms of difference and quotient, but not conversely. A sub-
field of a field may be operationally closed though not algebraically
closed. The operators or functions operationally definable in the ele-
ments of a field K are the rational functions whose coeficients are in K,
and the relations operationally definable in terms of K are the algebraic
equations with coeficients in K.

The definition of irreducible operational relation is formulated as
in da Costa, Rodrigues (2007). However, if ρ is an operational relation
which is satisfied by an n-tuple d, we cannot guarantee that there exists
an irreducible operational relation ρ′ such that d ∈ ρ′ and ρ′ ⊂ ρ.

The concepts of operationally strong and operationally weak iso-
morphisms can be introduced in analogy with da Costa, Rodrigues
(2007). However, these concepts coincide, and we are allowed simply
to talk about isomorphisms.

The following result holds: V is an operationally closed set, with
W ⊂ V , where V is a normal extension of W iff there exists a base of
V/W , aλ, and an irreducible operationally definable relation ρ in terms
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of W such that ρ(aλ), and any solution of ρ is composed by elements
of V .

Various results of abstract Galois theory, as developed in da Costa,
Rodrigues (2007), remain valid in the present situation, with conve-
nient adaptations. This is the case, for instance, of the following three
propositions, whose proofs are similar to the proofs of the analogous
theorems in da Costa, Rodrigues (2007):

Theorem 3.1 Let e = 〈D, oι〉 be the structure considered above; W and
V are two sets such that W ⊂ V ⊂ D, and V is operationally closed;
let aλ be a base of V/W and ρ an operationally irreducible relation
operationally definable in terms of W , verified by aλ. Under these
hypotheses, any isomorphism θ of V on the set V ′ ⊂ D that leaves
the elements of W invariant is a bijection of V on V ′, such that if
v ∈ V and v = φv(aλ), then θv = φv(bλ), where bλ is a solution of ρ,
determined by θ, and conversely.

Theorem 3.2 Under the conditions of the previous theorem, if V is a
normal extension of W and the relation

∃yλ(xλ = xφxλ(x, yλ) ∧ ρ(yλ)) (1)

is operationally definable in terms of W , then the isomorphisms with
domain V , that leave the elements of W invariant, transform V on V
and are automorphisms of V leaving the members of W invariant.

The relation (1) above appears in the proof of Theorem 6.3 of da
Costa, Rodrigues (2007).

Theorem 3.3 In the structure e = 〈D, oι〉, let V and d be, respectively,
an operationally closed subset of D and an element of D that remains
invariant under the group of all automorphisms of e that leave the ele-
ments of V invariant. Under these conditions, if a certain relation of
the same kind as (1) is operationally definable, then d ∈ V .
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When the theory just outlined is restricted to finite separable ex-
tensions of fields, the theorem of the primitive element shows that the
bases can be constituted by one element, and Tschirnhaus transforma-
tions are at our disposal. Relations like (1) are operationally definable,
and we are able to prove propositions such as the theorems 8.4 and 8.6
of da Costa, Rodrigues (2007). In this way, by employing properties
of fields and their separable extensions, we arrive at classical Galois
theory, but in a way very different from that followed by Krasner (out-
lined in the previous section). (For further details on these issues, see
Sebastião e Silva (1985, 1945 and 1985).)

4. UNIVERSAL THEORY OF STRUCTURES

Abstract or generalized Galois theory, which can be viewed as ex-
panding universal algebra, is also part of a universal theory of struc-
tures that extends further universal algebra to the class of all structures.
Bourbaki was the first author to develop, at least syntactically, such a
theory (see Bourbaki (1968), chapter IV). We close this paper by mak-
ing some remarks on the universal theory of structures. To begin with,
we note that the definitions of da Costa, Rodrigues (2007) and of the
present paper can be simplified if the description symbol ι is added to
our languages as a primitive symbol (with appropriate postulates) or as
a defined symbol. For example, it is clear that a relation r is definable
in the wide sense in the structures e, interpreted in the language L, iff
there exists a closed term τ of L such that r is denoted by τ .

The closed term τ of L is intrinsic (in e) iff it is invariant under
the Galois group of e, i.e., its denotation remains the same under the
action of the Galois group. Therefore, a relation r of the scale of e is
definable in the wide sense in e iff there exists an intrinsic closed terms
τ such that τ denotes r.
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The structures of Bourbaki (see Bourbaki (1968)) and those of ex-
tant mathematics have in general various basic sets; for instance, the
field of scalars and the set of vectors in vector spaces. However, it
is always possible to reduce this kind of structures to structures with
only one basic set, provided some extra predicates (unary relations) are
introduced, one for each basic set, with new axioms governing these
predicates. The same device can also be applied to species of struc-
tures, that is, to axiomatic theories or systems.

Usually, there are two sorts of basic sets: the auxiliary and the
principal. When automorphisms of structures are considered, it is sup-
posed that the elements of the auxiliary basic sets remain fixed. This
is the case of vector spaces, in which the scalars are invariant under
the Galois group of these structures, and the case of real Lie groups
whose elements of the Galois group keep the real numbers fixed. In
this situation, the Galois group of the structure is restricted by certain
conditions, but the central results of the theory of structures remain
valid.

The construction of structures and of species of structures employs
several procedures, such as: axiomatization, deduction, combination,
derivation and the use of universal mappings (see Bourbaki (1968),
chapter 4). Axiomatization constitutes the general method to intro-
duce new species of structures. The set-theoretic framework of the
structures included in the new species is formulated, and the specific
axioms are listed. The axioms, expressed in the language of set the-
ory, must be transportable: they have to be invariant by isomorphism.
Sometimes, by extension, there are no specific axioms, and the species
has only a set-theoretic counterpart.

The standard concepts of Bourbaki’s theory of structures (Bourbaki
(1968), chapter 4) are easily treated in our universal theory of struc-
tures. For instance, in a topological group, the group law is deducible
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by means of an intrinsic term, which defines the law. We can also
deduce the underlying topology.

We combine two or more species of structures to obtain new ones,
such as topological groups, differentiable manifolds and fibre bundles.
By means of Cartesian product and passage to the quotient, one obtains
the so-called derived structures, for instance, initial and final structures.
Projective and inductive limits are other means to build structures (see
Bourbaki (1968)). As noted in the introduction above, we use an ex-
tended set theory (ZFC) with universes. Thus, homological-algebraic,
K-theoretic and C*-algebraic constructs can be formulated as well.

Furthermore, the usual model theory is part of the universal theory
of structures. Both from the historical and the technical points of view,
the works of logicians such as Tarski, Robinson, Gödel, Skolem, and
Fräissé, among others, are of fundamental relevance.

All of the developments just described and the literature on Klein’s
Erlangen Program, including its extensions via action of groups and
Cartan’s ideas for the systematization of Riemannian geometry, show
how relevant the universal structure theory is.

In fact, one of the motivations for the development of Klein’s Erlan-
gen Program emerged from the need for systematizing the multiplicity
of geometries that, by the end of the 19th century, had been developed.
Klein realized that the relations examined by distinct geometries were
the invariants of different transformation groups. On his view, there is
a general format for the study of problems in geometry, which is con-
nected with the identification of the properties that remain invariant
under various transformation groups. He notes:

Let there be given a manifold and a group of transfor-
mations in it. [Klein’s goal is] to investigate the config-
urations belonging to the manifold with respect to such
properties as remain invariant under the transformations
of the group. (Klein (1983), p. 67)
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As Torretti (1999, p. 155, footnote 10) points out, by ‘manifold’
Klein probably means something somewhat wider than, but still akin
to, the sense of ‘manifold’ formulated via sets (or n-tuples of sets) of
real, or complex, numbers with the standard topologies inherited from
the real, or complex, number fields. According to Klein, the study of the
properties that remain invariant under various group transformations

is the universal problem which spans not only ordinary ge-
ometry but also, in particular, the new geometric methods
to be mentioned later and the different treatments of man-
ifolds with arbitrarily many dimensions. (Klein (1983), p.
67)

This “universal problem” becomes particularly pressing given the
development of different geometries, such as parabolic, hyperbolic and
elliptic geometries. The plurality of geometrical systems immediately
raises the issue of which of these systems is the “true geometry”. Klein’s
strategy was to develop a mathematical framework in terms of which
this issue could be ultimately dissolved. On his view, each geometry
has equal right or equal justification (Klein (1983), p. 67). After all,
by studying the properties that remain invariant under different group
transformations, it is possible to specify systematically the various ge-
ometries. As a pure system, each geometry is perfectly acceptable. The
issue of its truth does not emerge in this context. (For further discus-
sion of Klein’s Erlangen Program and its philosophical significance, see
Torretti (1984 and 1999).)

We can say that the truth of a geometry only surfaces in the con-
text of the application of that geometry to the physical world (see da
Costa (1997)). In this context, suitable interpretations of the geomet-
rical terms need to be offered so that the geometrical system can be
connected to appropriate aspects of the world. It is only then that the
issue of the (empirical) truth of a geometrical system can be formu-
lated.
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It is worth noting that analogous points can be made about the uni-
versal theory of structures. Similarly to Klein’s program, a universal
theory of structures (of which abstract Galois theory is part) empha-
sizes the significance of identifying invariances of group transformations
in the characterization of various kinds of structures. Just as Klein’s
program, a universal theory of structures also provides an overall frame-
work to study mathematical structures systematically. In a clear sense,
when the structures in question are geometrical in nature, Klein’s pro-
gram becomes a particular case of abstract Galois theory. Interestingly,
abstract Galois theory itself offers a generalization of classical Galois
theory, making room for different formulations of the latter. The move
toward more abstract formulations, whether of geometrical systems or
of mathematical structures, is a significant feature of mathematics from
the late 19th century on. The elegance and insight of the resulting ap-
proaches to structures is quite telling.

Furthermore, similarly to what happens in geometry, we also have
in the case of a universal theory of structures a clear form of pluralism:
a pluralism about mathematical structures. As noted above, there is a
plurality of structures throughout mathematics, and a universal theory
of structure provides a framework to study such structures systemati-
cally. And similarly to what happens with Klein’s program, the issue
of which of these mathematical structures are the “true ones” does not
emerge. From the point of view of pure mathematics, every mathemat-
ical structure is perfectly acceptable. This does not mean, of course,
that each such structure is equally significant or mathematically rele-
vant. Some structures, such as, e.g., group structures, due to their im-
pressive malleability and applicability, have a relevance that transcends
the immediate context in which they were originally formulated. And
a universal theory of structures provides a conceptual setting to study
such structures systematically.
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In our view, all of current classical mathematics can be developed
within a universal theory of structures. This is, of course, an old claim,
according to which all of classical mathematics is reducible to set the-
ory; a claim that was precisely formulated by Bourbaki. This reduction
does not mean that every future result of classical mathematics can be
derived from a set theory such as ZFC, but only that the intuitive
structures that classical mathematicians currently use are reducible
to a universal theory of structures. In other words, current classical
mathematics can be unified and systematized by such a universal the-
ory. Note, however, that this does not mean that we have adopted a
platonist ontology, given that it is possible to interpret ZFC in a purely
symbolic and formal way (see da Costa et al. (2005)). Nor does it mean
that classical mathematics can be entirely derived from ZFC, since this
would violate Gödel’s theorem. We are dealing with a conceptual uni-
fication and systematization here.

Another significant aspect of a universal theory of structures is the
emphasis it gives to the concept of definability as a central component
in the study of mathematical structures. In philosophical discussions
about indiscernibility and individuality of quantum particles, for ex-
ample, in the context of the foundations of physics, it is sometimes
assumed that such concepts stand for metaphysical features of the ob-
jects under consideration. On this metaphysical conception, the indis-
cernibility and individuality of a particle is thought of as an objective,
language-independent property of that object. As a result, whether a
particle is discernible, whether it is an individual or not, does not de-
pend on the language or the logic that is used to describe the particle.

However, it is unclear that the metaphysical conception of indis-
cernibility and individuality is stable. After all, in order to express the
view, in order to formulate it linguistically, we clearly need to use a
language and a logic. And as it becomes clear with a universal theory
of structures (of which, as we noted, abstract Galois theory is part),

Manuscrito — Rev. Int. Fil., Campinas, v. 34, n. 1, p. 151-183, jan.-jun. 2011.



180 NEWTON C.A. DA COSTA AND OTÁVIO BUENO

depending on the resources of the language and the logic we use, the
properties of the concepts that can be defined, including those of in-
discernibility and individuality, will change. It is then unclear whether
it is possible to formulate explicitly the metaphysical conception of an
individual. According to a universal theory of structures, since defin-
ability is a property that depends on the language and the logic we
use, the definability of concepts such as indiscernibility and individu-
ality will also be language- and logic-dependent. Rather than absolute
concepts (as the metaphysical conception would have it), indiscerni-
bility and individuality are then relative to the logic and language in
question. A significant philosophical re-conceptualization of the issues
emerges.

A universal theory of structures thus has applications not only in
physics (and in science, more generally), but in particular in the foun-
dations of quantum mechanics (for a discussion of indiscernibility of
quantum particles, see Caulton, Butterfield (2008)). (In future papers,
we intend to study the concept of structure from the categorial point
of view, to develop the universal theory of structures and to present
some of its applications to physics.)
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