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Abstract: Quantum theory and quantum computation give rise to some
characteristic holistic semantic situations, where the meaning of a whole de-
termines the meanings of its parts (and not the other way around, as happens
in the semantics of most traditional logics). Quantum computational logics
are new forms of quantum logic that have been suggested by the theory of
quantum logical gates in quantum computation. In the standard semantics
of these logics, sentences denote quantum information quantities (systems
of qubits, or, more generally, mixtures of systems of qubits), while logical
connectives are interpreted as special quantum logical gates (which have a
characteristic reversible and dynamic behavior). An abstract version of this
semantics can be naturally used to analyze different kinds of semantic phe-
nomena where holistic, contextual and ambiguous patterns play an essential
role. In this framework we analyze some characteristic features of musical
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languages.

Keywords: Quantum computation. Music.

HOLISMO E CONTEXTUALIDADE: UMA SEMÂNTICA AO
ESTILO QUÂNTICO PARA A MÚSICA

Resumo: A teoria quântica e a computação quântica dão origem a al-
gumas situações semânticas de caracteŕıstica hoĺıstica, onde o significado de
um todo determina o significado de suas partes (e não reciprocamente, como
acontece na semântica da maioria das lógicas tradicionais). Lógicas quânticas
computacionais são novas formas de lógica que têm sido sugeridas pela teoria
das portas lógicas quânticas na computação quântica. Na semântica padrão
dessas lógicas, as sentenças denotam quantidades de informação quântica
(sistemas de qubits ou, mais geralmente, misturas de sistemas de qubits),
onde os conectivos lógicos são interpretados como portas lógicas quânticas
especiais (as quais têm uma caracteŕıstica reverśıvel e um comportamento
dinâmico). Um versão abstrata dessa semântica pode ser usada natural-
mente para analisar diferentes tipos de fenômenos semânticos onde padrões
hoĺıısticos, contextuais e amb́ıguos desempenham papel essencial. Neste es-
copo, analisamos algumas caracteŕısticas das linguagens musicais.

Palavras chave: Computação quântica. Música.

1 Introduction

After Frege’s Sinn und Bedeutung the compositionality-principle has been of-
ten considered one of the basic assumptions of logical semantics: the meaning
of any compound expression should be described as determined by the mean-
ings of its parts. In fact, a compositional (analytical) behavior represents a
characteristic feature of classical logic and of a number of non-classical logics
as well. At first sight, Kripke-semantics seems to provide some counterex-
amples to compositionality. We need only think of the truth-conditions for
negated sentences in many weak logics: generally, the truth-value of a nega-
tion ¬α with respect to a possible world w cannot be described as a function
of the truth-value of the positive sentence α with respect to w. However, in
such cases, compositionality can be recovered at a deeper level, be referring
to all the worlds that are accessible to w. A strong compositionality-principle
seems to be hardly compatible with the semantics of natural and of artistic
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languages, where holistic and contextual features often play a relevant role:
generally, the meaning of a compound expression determines the meanings
of its parts, that are strongly context-dependent. Furthermore, meanings
are, to a certain extent, always ambiguous.

Is it possible to investigate holistic, contextual and ambiguous semantic
phenomena in the framework of a scientific theory? Strangely enough the
mathematical formalism of quantum theory (QT) and of quantum computa-
tion provides some abstract structures that can be successfully used to this
aim. We will try and apply this approach to a formal analysis of musical
compositions.

2 A holistic semantics for quantum computa-
tional logics

As is well known, the basic concept of quantum computation is the notion of
qubit , which can be regarded as the quantum variant of the classical notion
of bit . In classical information theory, one bit measures the information
that is transmitted (or received), whenever one chooses one element from a
set consisting of two elements (for instance, from the set consisting of the
answer YES and of the answer NO, or from the set consisting of the number
1 and of the number 0). In quantum information, one cannot generally
refer to precise answers (like YES or NO). The typical ambiguous answer
is represented by a quantum perhaps, that can be described as a quantum
superposition of the answer YES and of the answer NO .

From the physical point of view, a qubit can be regarded as the pure
state of a single particle, while a system of n qubits (also called quregister)
corresponds to the state of a compound system consisting of n particles.
The idea is that a single particle (like an electron) can physically carry the
information-quantity represented by one qubit. In order to carry the infor-
mation stored by n qubits we need, of course, a compound system consisting
of n particles.

From the mathematical point of view, qubits are particular vectors,
whose length is 1, that “live” in the two-dimensional Hilbert spaceH(1) = C2

(based on the set of all ordered pairs of complex numbers). Hence, the math-
ematical form of a qubit is usually written as follows:

|ψ〉 = a|0〉+ b|1〉,

where |0〉 = (1, 0) and |1〉 = (0, 1) are the two elements of the canonical
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orthonormal basis of the space. From an intuitive point of view, the vector
|0〉 represents the classical bit 0 (the answer NO or the truth-value Fal-
sity), while the vector |1〉 represents the classical bit 1 (the answer YES or
the truth-value Truth). According to the standard interpretation of quan-
tum superpositions, the quantum perhaps |ψ〉 represents an information that
might give rise to the answer NO (corresponding to the state |0〉) with prob-
ability |a|2 and might give rise to the answer YES (corresponding to the
state |1〉) with probability |b|2.

What about systems of n qubits (n-quregisters)? As we have seen, an n-
quregister is a possible state of a compound system, consisting of n particles.
The mathematical environment for such a system can be represented as a
special product (called tensor product) of n two-dimensional Hilbert spaces.
On this basis, the mathematical representative of an n-quregister is identified
with a unit-vector of the product space

H(n) = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n−times

.

Hence, the general form of an n-quregister is usually written as follows:

|ψ〉 =
∑
i

ci|xi1 , . . . xin〉,

where xij is a classical bit, while |xi1 , . . . xin〉 is an element of the canonical
basis of the space H(n), representing in this framework a classical register (a
sequence of n bits).

Quregisters are pure states, hence maximal pieces of information, that
cannot be consistently extended to a richer knowledge: even a hypothetical
omniscient mind could not know more. In quantum computation, one cannot
help referring also to non-maximal pieces of information that correspond to
mixtures of quregisters (also called qumixes). These are mathematically
represented by density operators ρ of a space H(n). Of course, quregisters
can be described as special cases of qumixes.

Quantum computation has recently suggested some new forms of quan-
tum logic that have been called quantum computational logics (QCL′s). The
basic semantic idea of can be sketched as follows1:

• the sentences of QCL′s are supposed to represent quantum informa-
tion quantities (qumixes).

1Technical details can be found in [1], [2].
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• The logical connectives are interpreted as quantum logical gates (briefly,
gates).

What is exactly a gate? As is well known, in QT the dynamic evolution
of quantum objects is governed by Schrödinger-equation. Accordingly, for
any times t0 and t1, a pure state |ψ(t0)〉 of an object at time t0 is transformed
into another pure state of the same object at time t1 by means of a unitary
operator U (which represents a reversible transformation):

|ψ(t1)〉 = U(|ψ(t0)〉.

Gates are special examples of unitary operators that transform quregisters
into quregisters in a reversible way. Hence, from an intuitive point of view
the application of a sequence of gates to an input-quregister can be regarded
as the dynamic evolution of a quantum object that is processing a given
amount of quantum information. By definition gates are unitary operators
whose domains consist of vectors of convenient Hilbert spaces. However they
can be naturally generalized also to qumixes.

The classical logical operations (not, and, or, ...), which are normally
described as irreversible, can be easily transformed into reversible gates. At
the same time, we will have uncountably many new logical operations that
cannot have any counterpart in classical logic. Just these strongly non-
classical logical operations are responsible for the deep parallel structures
that represent the main cause of the efficiency and of the speed of quantum
computers. Of course, any particular example of quantum computational
logic will select a system of gates that are considered significant from a
logical point of view.

In the holistic semantics of QCL′s (see [4]) a model (or interpretation)
of the language is a map Hol that assigns to any sentence α a qumix that
represents the informational meaning of α:

α 7→ Hol(α).

As expected, any model Hol shall preserve the logical form of the sen-
tences, by interpreting any connective ◦ of the language as a corresponding
gate G◦. Furthermore, the qumix Hol(α) should live in a Hilbert space
whose dimension depends on the logical form of α. The simplest examples
of sentences are atomic sentences (which cannot be decomposed into more
elementary sentences). Accordingly, the meaning of such sentences shall live
in the simplest Hilbert space: the two-dimensional space H(1) = C2 (where
all qubits are located). A molecular sentence with n occurrences of atomic
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sentences can be regarded as a linguistic description of a compound physical
system consisting of n particles. In fact, we need n particles in order to
carry the information that is expressed by our molecular sentence. On this
basis, it is natural to assume that the meaning of such a sentence lives in the
product-space H(n). Let us call atomic complexity of a sentence α (abbre-
viated as At(α)) the number of occurrences of atomic sentences in α. The
space Hα = H(At(α)), where all possible meanings of α shall live, represents
the semantic space of α.

The holistic features of our semantics depend on the fact that any model
Hol assigns to any sentence α a global meaning, that cannot be generally
inferred from the meanings assigned by Hol to the atomic parts of α. What
happens here is just the opposite with respect to the standard behavior of
compositional semantics: Hol(α) determines the meanings of all its parts,
which turn out to be essentially context-dependent . As a consequence, any
sentence may receive different meanings in different contexts. Going from
the whole to the parts is here possible because all logical operations are
reversible: one can go back and forth without any dissipation of information!

A fundamental role in this semantic game is played by the notion of
entanglement , one of the most mysterious aspects of QT, which is mathe-
matically based on the characteristic properties of tensor products. What is
exactly entanglement? From an intuitive point of view the basic features of
an entangled state |ψ〉 can be sketched as follows:

• |ψ〉 is a maximal information (a pure state) that describes a compound
physical system S (say, a two-electron system);

• the information determined by |ψ〉 about the parts of S is non-maximal.
Hence, the states of the whole system is a pure state, while the states
of the parts (which are determined by the state of the whole and are
usually called reduced states) are proper mixtures. Once broken into its
parts, the puzzle cannot be composed again! It may also happen that
the state of the compound system (although representing a maximum
of information) describes the parts as essentially indiscernible objects,
that cannot satisfy any characteristic individual property. One obtains,
in this way, an apparent violation of Leibniz’ indiscernibility principle.

A typically entangled state is, for instance, the following quregister (which
lives in the space C2 ⊗ C2):

|ψ〉 =
1√
2

(|0〉 ⊗ |1〉) +
1√
2

(|1〉 ⊗ |0〉).
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Here |ψ〉 describes a two particle-system, where both parts might be
either |0〉 or |1〉 with probability 1

2 .
Entanglement-phenomena can be naturally used to model some typi-

cal holistic semantic situations in the framework of our quantum computa-
tional semantics. We can consider entangled quregisters that are meanings of
molecular sentences. As an example, consider a conjunctive sentence having
the form

γ = α ∧ β.2

The following situation is possible:

• the meaning Hol(γ) of the conjunction γ is a quregister, which repre-
sents a maximal information (a pure state);

• the meanings of the parts (α,β) are quantum-entangled and cannot be
represented by two pure states (two quregisters).

We can say that the sharp meaning of the conjunction determines two
ambiguous meanings for the parts (α, β), which are represented by two mixed
states. In other words, the meaning of the whole determines the meanings
of the parts, but not the other way around . In fact, one cannot go back
from the two ambiguous meanings of the parts to the quregister representing
the meaning of the whole. The mixed state representing the ambiguous
meaning of α (of β) can be regarded as a kind of contextual meaning of α
(of β), determined by the global context , which corresponds to the quregister
Hol(α ∧ β) (the meaning of the conjunction α ∧ β).

In spite of its appealing properties, the standard version of the quantum
computational semantics is strongly “Hilbert-space dependent”. This cer-
tainly represents a shortcoming for all applications, where real and complex
numbers do not generally play any significant role (as happens, for instance,
in the case of natural and of artistic languages).

Is it sensible to look for an abstract quantum computational semantics?
This question admits a positive answer (see [8]). One can define a notion
of abstract qumix structure, where abstract qumixes, quregisters and reg-
isters are identified with some special objects (not necessarily living in a
Hilbert space), while gates are reversible functions that transform qumixes
into qumixes. From an intuitive point of view, abstract qumixes and qureg-
isters represent pieces of information that are generally uncertain, while

2In the framework of QCL′s a conjunction α ∧ β is dealt with as a metalinguistic
abbreviation for a more complex ternary conjunction that represents a reversible logical
operation (see [1]).
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(abstract) registers are special examples of quregisters that store a certain
information. Any (abstract) qumix is associated to a given length n, and
lives in a subdomain D(n) of the domain D of all possible qumixes.

As expected, one can show that the concrete (Hilbert-space) qumix-
structures are special examples of abstract qumix structures.

3 The language of scores: a bidimensional syn-
tax

To what extent can some basic ideas of the quantum holistic semantics be
successfully applied to a formal analysis of music? Let us first discuss some
characteristic syntactical features of musical languages. As is well known,
musical scores are very complicated examples of symbolic languages. It is
interesting to analyze how information is coded by musical scores in compar-
ison with the standard formal languages that are used for scientific theories.
The most important differences seem to be the following:

• Formal scientific languages are basically linear : words and well-formed
expressions are represented as strings consisting of symbols that belong
to a well determined alphabet. The relevant syntactical relations can
be adequately represented by a Turing Machine, which refers to a one-
dimensional tape.

• Scores, instead, are two-dimensional syntactical objects, which have at
the same time a horizontal and a vertical component. Any attempt to
linearize a score would lead to totally counter-intuitive results. From a
semantic point of view, the characteristic two-dimensionality of musical
notation seems to be significantly connected with the deep parallel
structures that have an essential role in our perception and intellectual
elaboration of musical experiences.

Is it possible (and interesting) to represent a musical score as a peculiar
example of a formal language? In a sense, are scores formalizable? One
can positively answer to this question, by introducing the notion of formal
representation of a musical score. From an intuitive point of view, we can
imagine the formal structure of a score as a configuration of symbols that are
written on a piece of graph-paper: each row of the paper corresponds to what
shall be performed by a particular instrument (say, the first violin); while
columns correspond to what shall be played at the same time. Each cell of
our paper can be regarded as a container for an atomic information. From the
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mathematical point of view, such two-dimensional syntactical configurations
can be naturally represented by means of some special matrix-like structures.
Accordingly, any score-measure can be represented as follows:

Ins1 : A[r]
11 . . . A

[r]
1n

Ins2 : A[r]
21 . . . A

[r]
2n

. . .

Insm : A[r]
m1 . . . A

[r]
mn


where each row corresponds to a particular instrument (or voice), while
columns correspond to what shall be played simultaneously. Any A[r]

ij repre-
sents a score-atom: a piece of information for the i-th instrument at the j-th
position of the measure in question. For the sake of simplicity, one can as-
sume that the number of rows remains constant through the score. Whenever
a given instrument tacet , we suppose that some appropriate pause-symbols
are written for the instrument in question.

The traditional musical notation is highly complicated: in fact, reading
a score turns out to be quite difficult for non-professional musicians. The
language of music is, without any doubt, much more complex and rich than
the standard formal languages used by scientific theories. Roughly, we can
identify at least the following classes of symbolic expressions that play a
fundamental role:

a) names for the different notes that represent different sound-pitches, (for
instance, the diapason-a, corresponding to the approximate frequency
of 440 Hertz);

b) names for the different pauses;

c) meter-indications (like 4
4 , 6

8 , and so on);

d) metronomic indications;

e) tempo-indications (like Allegro, Adagio, Vivace, and so on);

f) dynamic-indications (like piano, forte, crescendo, diminuendo, and so
on);

g) prescriptions about the sound-emission (for instance, legato, staccato,
pizzicato, and so on);

h) names for the different instruments and for the different kinds of voice
(violin, viola, soprano and so on).
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Traditionally, note-names are indicated by referring to the staff-notation
and to some conventions that make essential use of the clefs, the accidentals
and so on. In this framework, each occurrence of a note-name is associ-
ated with a certain rhythmical value (say, 1

4 ). A number of indications are
given either at the beginning of a movement (for instance, Allegro) or at
the beginning of a measure or at the beginning of a line (which consists of
a sequence of measures). Of course, all initial indications are supposed to
be distributed over what is following, if they are not changed in the course
of the score. Any formal version of a score shall reflect all these pieces of
information, possibly adopting some different conventions. For instance, one
could use some arithmetization-techniques, by assuming that note-names are
conventionally represented by particular natural numbers.

An important role is played by musical phrases, which seem to behave
like well-formed expressions of a formal language. From a syntactical point
of view, musical phrases can be described as special linguistic objects that
represent fragments of a formal score. Any formal definition shall take into
account the following characteristic properties of concrete musical phrases
(briefly phrases):

• A phrase generally consists of a (small) number of measures.

• A phrase does not necessarily begin at the beginning of a measure and
does not necessarily end at the end of a measure.

• Phrases are generally transversal with respect to the instruments of the
score: an instrument may begin a given phrase, while other instruments
will continue it.

• A phrase does not generally concern all the score-atoms contained in
the measures where parts of the phrase in question appear. Hence,
phrases can be formally represented as pieces of score with “holes”,
which will be also called empty score-atoms (and indicated by the sym-
bol ♣). Of course, empty score-atoms (which represent “holes”) should
not be confused with pause-symbols.

Accordingly, a phrase can be identified with a special sequence of score-
columns, that may contain empty score-atoms. We will require the following
natural condition: all the columns that constitute a phrase shall contain at
least one non-empty score atom.

As an example, we might refer to the celebrated incipit of Beethoven’s
Ninth Symphony, where the measures 2-5 played by the first violins, the
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violas and the contrabasses give rise to a phrase in this sense. Here, we
suppose that the corresponding measures of all other instruments consist of
score-holes ♣.

But what might be the interest of formalizing musical languages? As is
well known, in the case of scientific theories, formalization is not aimed
at providing some perfect languages that should substitute the “old rough”
languages used by the scientific community. Formal languages are heavy and
unreadable (if not accompanied by some translation-rules into the natural
language). In a similar way, any attempt to substitute a traditional score
with its formal version would be absolutely unreasonable! In both cases
(science and music), the basic aim of formalizing languages is bringing into
light some deep linguistic structures that represent significant invariants in a
variety of different kinds of expressions and notation-systems. Identifying the
elements that have a fundamental role in our information encoding process
represents the first step for any successful theoretic analysis.

4 Musical interpretations in an abstract holis-
tic semantics

Let us now turn to semantic problems. How can we describe the relationship
between a score and the class of all its (possible or real) interpretations?
What do we exactly mean by interpretation of a musical score? We are
now dealing with a quite critical concept, often discussed by musicians and
musicologists, who have proposed different perspectives and solutions.

As is well known, the sound-world is a typically relational world: the
meaning of a single note, of a chord, of a musical phrase is always context-
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determined. There is no doubt that music requires a holistic and contextual
semantics. Is it possible (and interesting) to look for a formal characteriza-
tion of the intuitive concept of musical interpretation by using some abstract
tools suggested by our quantum holistic semantics?

Consider a score S (say, the score of Beethoven’s Ninth Symphony), and
let FS be a formal version of S. By abstracting from what happens in
the concrete cases, let us first try and identify the elements that play a
fundamental role in any possible interpretation of our score.

a) The choice of the musical phrases
Formal scores (as well as real scores) do not contain any explicit division into
phrases. All the signs written in a score correspond to atoms that can be
combined giving rise to phrases according to a number of different modalities.
The choice of the significant phrases is not determined at the syntactical level
but rather at the semantic one. For any relevant score-fragment, any inter-
pretation generally collects the signs occurring in that fragment by forming
a few phrases that create a kind of dialogue in the framework of a character-
istic “musical design”. Consider a complex instrumental composition (say,
a symphony by Brahms or by Mahler): the conductor (and the listener, as
well) does not generally perceive distinct sounds that correspond to the dif-
ferent rows in the score. On the contrary, he (she) seems to “collect” them
into some holistic patterns that behave like “individual voices”. Of course,
this does not forbid the (good) conductor to recognize possible mistakes of
single performers in an analytical way.

Accordingly, from a formal point of view, the following assumption seems
to be sensible: the first element of a given interpretation is a partition of
the score into a number of musical phrases. We will call score-covering any
set Phr of phrases that satisfies the following condition: each score-atom
occurs exactly in one element of Phr (hence, Phr turns out to cover the
whole score).3 Needless to say, any score admits, in principle, a number of
different coverings. As a consequence, one can reasonably assume that the
choice of a covering Phr represents the first characteristic element of a given
interpretation, giving rise to a significant bridge between musical syntax and
semantics. Just in this sense the common musical jargon uses to refer to the
phrasing of a particular interpreter.

b) The tempo-choice
Another element that represents a characteristic feature of any particular
interpretation is the tempo-choice. As is well known, different performances

3Notice that each score-atom is labelled by an index. Hence, different occurrences of
one and the same note-name give rise to different atoms.
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of one and the same score may have quite different durations. All metronomic
indications (contained in the score) generally represent only approximate
prescriptions: should they be faithfully respected, the result would be a
quite boring interpretation!

How can we describe, from an abstract point of view, the tempo-choice
in the framework of a particular interpretation? We can assume that the
second characteristic element of a given interpretation is a temporal function
Temp that assigns a time interval to each column occurring in the score. Let

cjr =


A

[r]
1j

A
[r]
2j

. . .

A
[r]
mj


be the j-th column of the r-th score-measure. We will write:

Temp : cjr 7→ ∆t.

Of course, as happens in all experimental sciences, the lengths of such time-
intervals are always determined up to a certain error : as a consequence,
any Temp(cjr) is, in fact, a fuzzy interval. On this basis, the function Temp
automatically determines the duration of the performance of the whole score.
From the musical point of view, Temp realizes all the dynamic choices of the
performers: any accelerando, ritardando, rubato, which often do not have
any clear syntactical counterpart in the written score.
c) The choice of the musical meanings
The choice of the musical meanings certainly represents the most critical
element for an abstract concept of musical interpretation. What do musical
compositions mean? Does music have any content? As is well known, this
question has been deeply discussed by musicians, musicologists and philoso-
phers, who have proposed different answers. A basic problem seems to be
the following: suppose we accept that music is associated to some meanings.
Are these meanings always internal to music, or do they rather essentially
refer to some external worlds? Whatever is our answer to this preliminary
question, we are faced with the following problem: is it possible to define
those particular objects that we call the meanings of a musical composition?

In fact, looking for simple definitions seems to be a somewhat naive at-
titude both in the case of music and of scientific theories. A more fruitful
position, that has represented a winning trend for a number of contempo-
rary semantic theories, refuses any research for general explicit definitions.
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Instead of trying to define the entities we are talking about, one attempts to
describe their behavior by creating some convenient structures, where our
entities are supposed to live. On this basis meanings are identified with
some abstract objects that belong to special worlds, often called models of
the theories under investigation. Following this perspective, we will not try
to answer the question “what are musical meanings?”. We will only attempt
to formally describe some characteristic properties thereof.

Our starting point is the following hypothesis: we assume the existence
of a universe (indicated by M) of ideal objects called musical meanings.
The elements of M may possibly refer to some extra-musical worlds that are
supposed to be distinguished from them. From an intuitive point of view,
musical meanings can be thought of as a kind of intensional objects, that
are quite similar to the intensional meanings associated to the expressions
of our natural languages. Generally, a musical meaning cannot be directly
identified with a physical sound-event. One is rather dealing with an idea
that permits us to create a particular sound-event. Just these ideas represent
an important link between the score (which is a syntactical object) and a
performance (which corresponds to a physical event). In a sense, they play
the role of a kind of invariants (or quasi-invariants) with respect to the
concrete performances that are realized in different times. It is not a chance
that we use to speak, for instance, of “Herbert von Karajan’s interpretation”
of Beethoven’s Ninth Symphony, without necessarily referring to a particular
historical performance.

How is the universe of all musical meanings structured? It is natural to
assume the following hypothesis: M includes a subuniverse MAt consisting
of all atomic meanings that may represent the intension of a single note.
As an example, in the case of a string quartet, the atomic meanings will be
represented by all possible ideas of a single sound that can be performed by
a violin or by a viola or by a cello. Apparently, when a quartet-performer
plays a single note, he (she) selects a sound-idea from this atomic universe.
We will suppose that the set MAt contains tho privileged elements: the
silence-meaning , which corresponds to a pause-symbol, and an empty mean-
ing, which represents the meaning of a score-hole ♣.

As we know, single notes are combined giving rise to score-columns and to
phrases (which are column-sequences possibly containing score-holes ♣). In
order to associate meanings to all molecular syntactical objects, we shall refer
both to vertical and to horizontal combinations of atomic meanings. Let v be
the vertical complexity (i.e. the number of rows) of our score: any sequence
(m1, . . . ,mv) of v atomic meanings will represent a possible meaning of
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a score column. Such molecular meanings (expressing ideal chords) will
be called vertical meanings. We will assume that M contains all possible
sequences (m1, . . . ,mv); in other words, M is supposed to be closed under
the v-th cartesian power of MAt.

Any analytical semantic description would stop here, identifying the set
of all vertical meanings (of complexity v) with (MAt)v (the v-th cartesian
power of MAt)). In this sense, molecular meanings are represented as de-
termined by their parts. As we have seen, quantum holistic semantics gives
rise to a different situation: generally, the meaning of a global expression
determines the meanings of its parts, and not the other way around! Fur-
thermore, meanings may be entangled: hence our global understanding of a
given expression might be more precise and sharp than the contextual pieces
of information we have about its parts.

Let us try and apply these ideas to the semantics of music. Our basic
hypothesis is the following: the universe of all vertical meanings (the ideal
chords) is not realized by the v-th cartesian power of MAt. Besides the an-
alytical meanings (represented by all sequences (m1, . . . ,mv)), we assume
the existence of holistic meanings, which are not determined by the combi-
nation of their parts. Following the example of quantum semantics, holistic
meanings can be thought of as superpositions of analytical meanings, that
ambiguously describe a variety of coexistent semantic situations. We will in-
dicate by M↓ the set of all possible vertical meanings, which may be either
analytical or holistic; and we will use the symbol m↓ for a generic element
of M↓.

As happens to compound quantum systems, any global vertical meaning
m↓ determines its parts, but generally not the other way around. We have
seen that, in the case of quantum objects, one can define the reduced state
function red: if ρ is the state of a system consisting of n parts, then redi(ρ)
represents the state of the i-th component of our system (for any i s.t.
1 ≤ i ≤ n). It is reasonable to assume that a similar function also exists
for musical meanings. Accordingly, we will call vertical contextualization
function the following map:

conti : m↓ 7→m ∈MAt (for any 1 ≤ i ≤ v).

Hence, conti(m↓) is the atomic meaning that represents the contextual
meaning of the i-th part of m↓. In the particular case where m↓ is an ana-
lytical meaning having the form (m1, . . . ,mv), we shall require the following
natural condition:

conti(m↓) = mi.

Manuscrito — Rev. Int. Fil., Campinas, v. 33, n. 1, pp. 143-163, jan.-jun. 2010.



DALLA CHIARA, GIUNTINI, NEGRI 158

In other words, the contextual meaning of the i-th part of m↓ is just its
i-th element. In fact, analytical meanings turn out to behave like factorized
states in QT (states that can be represented as tensor products ρ1⊗ . . .⊗ρn
of the states ρi associated to their parts).

As an example, let m↓ be a vertical meaning corresponding to a c-major
chord (which consists of the three notes c, e, g):

Suppose we are reasoning in the framework of a harmony-treatise, where
we are not concerned with any interpretation-problem. In such a case we will
naturally represent m↓ as an analytical meaning identified by the sequence
of three atomic meanings. Hence will have three vertical contextualization-
functions such that:

cont1(m↓) 7→ m1; cont2(m↓) 7→ m2; cont3(m↓) 7→ m3,

where m1, m2, m3 represent three atomic meanings corresponding to the
three notes c, e, g, respectively.

A similar procedure can be also applied to horizontal combinations. In
this way we obtain some abstract configurations that represent harmonic
and melodic structures at the same time. Let o be the horizontal complexity
of our score (which is determined by the number of the score-columns). Any
sequence

(m↓1, . . . ,m
↓
r) (where 1 ≤ r ≤ o),

represents a possible horizontal meaning, that may be the interpretation of
a phrase whose (horizontal) complexity is r. Sequences of this kind will be
called horizontal analytical meanings (of complexity r).

Of course, analytical meanings will not exhaust the universe of all possible
horizontal meanings. As happens in the case of vertical meanings, we will
have horizontal meanings that cannot be identified with sequences of vertical
meanings. Such meanings, that are not elements of the r-th cartesian power
of (MAt)v, will be called horizontal holistic meanings. We will indicate by
M→[r] the subset of M that consists of all (analytical and holistic) meanings
of complexity r. The symbol m→[r] will represent a generic element of
M→[r], while m will denote any musical meaning living in the universe
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M. Apparently, all vertical meanings (which consist of a single column) are
special examples of horizontal meanings whose complexity is 1.

As we have done in the vertical case, we will also assume horizontal
contextualization functions that permit us “to go from the whole to the
parts”. Let m→[r] be a horizontal meaning: for any i (s.t. 1 ≤ i ≤ r),
conti(m→[r]) will represent the i-th contextual meaning of m→[r]. As ex-
pected, the contextualization-functions can be naturally generalized to all
molecular parts (consisting of sequences of columns) of a given meaning m.

As an example, we might refer again to the incipit of Beethoven’s Ninth
Symphony (Fig.1). Now we will consider the first five measures of the whole
score.

Here the dominating phrase (e-a, a-e, e-a) is performed by the first vi-
olins, the violas and the contrabasses. One is dealing with a musical idea
that has been compared with a sudden, striking event. In this connection,
one has sometimes evoked the image of a meteorite-fall, but we could also
think of the origin of the Universe. This dominating phrase emerges from a
kind of indistinct background: the empty fifth chords realized by the horns
and by the tremoli of the second violins and of the cellos. Needless to ob-
serve, any analytical analysis would be fully inadequate to describe such a
semantic situation. One cannot avoid referring to a global musical meaning,
while the different contextualization-functions permit us to obtain different
partial meanings for the component parts.

b) The relationship phrases-meanings
The set M of all musical meanings represents a kind of virtual universe:
the score-interpretation shall select from this universe a particular meaning
for each phrase that belongs to the score-covering Phr. Accordingly, any
syntactical phrase α will be associated to a semantic phrase represented by
a meaning m (∈M) that shall respect the linguistic form of α.

We know that in the semantics of scientific theories, any model of a
theory T associates to any expression of the language of T a meaning that
lives in the system of objects created by the model in question. In a similar
way, in our musical semantics it is natural to require the existence of a map
Real that assigns to any phrase α of the score-covering Phr a convenient
meaning:

Real : α 7→ m ∈M,

where the phrase α and Real(α) are supposed to have the same horizontal
complexity r.

On this basis, the contextualization-functions, applied to Real(α), will
determine a contextual meaning for all subphrases of α. We require that
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Figure 1: The incipit of Beethoven’s Ninth Symphony
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the realization-function Real satisfies the following (natural) condition: the
contextual meaning of any occurrence in α of the score-hole ♣ is always the
empty meaning.

To what extent shall the map Real preserve all pieces of information that
are written in the score? In principle, any “faithful interpretation” should re-
spect all score-prescriptions. We know however that this is not generally the
case in real performances, both for technical mistakes and for interpretation-
choices of the performers. How to describe formally the “faithfulness-degree”
of a given interpretation? As happens in the case of experimental sciences,
we can require that Real preserves the score-prescriptions up to a certain
accuracy , that can be conventionally represented by a numerical parameter
εReal (which can be easily defined). Of course, εReal will represent one of
the characteristic features of the interpretation in question.

The conditions we have required guarantee the contextual behavior of
Real: phrases that occur in different parts of the score generally receive
different contextual meanings. This reflects what happens in the case of
real performances, where repeated musical phrases are generally interpreted
according to different modalities.

e) The choice of extra-musical meanings
So far we have considered musical meanings as a kind of autonomous ideal
objects that may possibly refer to some extra-musical worlds (which are
sharply distinguished from them). We know however that evoking some
extra-musical events (like emotions, feelings, descriptions, ....) represents, in
many cases, an important characteristic property of a given interpretation.
And referring to extra-musical situations turns out to be an essential com-
ponent of interpretations, whenever the score includes a text (as happens in
the case of lyric operas, Lieder and symphonic poems).

How can we find a formal counterpart for such correlations between mu-
sical and non-musical events? We can assume that the last characteristic
element of a given interpretation is represented by a map Wor that assigns
to any phrase α of the score-covering Phr a world w consisting of non-musical
meanings:

Wor : α 7→ w.

It seems reasonable to admit that Wor(α) may be the empty set. In fact,
there are musical compositions (or parts thereof) whose meanings are com-
pletely internal to music. As an example, we might think of many Bach’s
compositions (like the Goldberg Variations).

How to describe the values of the map Wor? We should try and repre-
sent the vague, ambiguous and subjective features that seem to characterize
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all feelings and all concrete situations that are evoked by music. Classical
semantics could not certainly be used to this aim. However, we can have
recourse to a special kind of fuzzy possible world semantics, where generally
all objects and all relations are supposed to have an ambiguous behavior.
In this framework, Wor(α) can be identified with a particular fuzzy possible
world . Needless to say, the creation of the fuzzy worlds to be associated to
the different score-phrases, represents a characteristic choice of any inter-
preter.

Summing up, any interpretation I of a formal score FS can be now
represented as an abstract structure whose form is the following:

I = (Phr, Temp, M, Real, Wor),

where:

• Phr is a score-covering of FS;

• Temp is the function that assigns to any score-column of FS a time-
interval;

• M represents the universe of all musical meanings, which includes the
sets of all atomic, of all vertical and of all horizontal meanings. For
any meaning m (of M), the (vertical and horizontal) contextualization-
functions assign contextual meanings to all parts of m.

• Real is the realization map that assigns a semantic phrase (an element
of M) to any syntactical phrase α of Phr, by preserving the score-
prescriptions (contained in α) up to a certain accuracy εReal.

• Wor is the map that assigns to any phrase α of Phr a (possibly empty)
fuzzy world w, which represents the extra-musical meaning of α.

We require that I satisfies all the conditions we have illustrated above.
Following the example of (formalized) scientific theories, we can now

identify any musical composition with a pair (FS,K) consisting of a formal
score FS and of the class K of all possible interpretations I of FS. On this
basis, the history of a given musical composition can be reconstructed as a
kind of “journey” through the class K. Since the set of all historical journeys
is de facto finite, while K is in principle infinite, one can easily understand
the abstract reason why musical compositions are essentially unfinished and
open works.
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