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Abstract: In his book Chateaubriand points out some differences between the 
mathematical and the formal notions of proof. I argue here that the contrast 
between both cannot be exaggerated, and that the latter fails to represent essential 
aspects of the former. I also sketch a view of the nature of mathematics that can 
accommodate one particular feature of mathematical proofs the formal notion, by 
its very nature, cannot: their freedom. 
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SOBRE DEMONSTRAÇÕES EM MATEMÁTICA 
 
Resumo: Em seu livro, Chateaubriand aponta algumas diferenças entre a noção 
formal e a noção matemática de demonstração. Eu argumento que o contraste 
entre ambas não pode ser maior, e que aquela é incapaz de capturar alguns 
aspectos essenciais desta. Eu apresento também um esboço de uma teoria sobre a 
natureza da matemática capaz de acomodar um aspecto particular das 
demonstrações matemáticas que a noção formal, pela sua própria natureza, não 
pode: a liberdade que por direto cabe àquelas. 
 
Palavras chave: Chateaubriand. Demonstrações formais. Demonstrações matemáticas. 
Estruturalismo matemático. 
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Three chapters of Chateaubriand’s book are dedicated to 
proofs and proving; understandably, in a book so intimately 
concerned with logical matters. But the importance of the concept 
of proof in logic only reflects its relevance in mathematics. So, it is 
natural to ask whether the logical conception of proof corresponds 
faithfully to its mathematical counterpart (after all, the formalization 
of mathematics has always been one of the major raisons d’être of 
formal logic). Has logic had with respect to the mathematical notion 
of proof, the same success it had with respect to that of algorithm, 
which it managed to define in precise terms? 

Chateaubriand seems not so sure. He thinks that two defining 
features of formal proofs – that they are finite objects that must be 
algorithmically checkable – do not and need not in general belong to 
proofs as they occur in “real life”; I agree with him, but I want to 
radicalize his criticism. I claim that formal proofs, which as a rule 
must be confined to well-determined formal systems, cannot capture 
the “exploratory” character of mathematical proofs, which are often 
not circumscribed to (linguistic, conceptual) contexts determined a 
priori. I will try here to substantiate this claim – and also sketch a 
view of the nature of mathematics that conforms better to what I 
think is the true nature of mathematical proofs. 

The question I want to ask is this: are proofs understood as 
syntactic manipulations of symbols according to prescribed rules in 
the context of formal-logical systems in any way a reasonable model, 
idealization or desideratum for proofs actually written by 
mathematicians? Philosophical analyses of the notion of proof are 
scarce, as Chateaubriand correctly notices, but analyses of the 
mathematical conception of proof are even more so; I take this 
chance to offer my views on the subject. 

 
I claim that between mathematical and formal proofs there are 

more, and more important differences than a few determinate 
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features such as finiteness and algorithmic checkability, differences 
dramatic enough so as to not only disqualify the latter as passable 
idealizations of the former but make the formal notion of proof a 
distortion of what goes on in mathematics under the same name. 

Possibly the major difference is this: whereas formal proofs 
presuppose a formal context, a formal system – language, rules, and 
axioms – that must already be in place before proofs within the 
system are devised (for the context frames and imposes constraints 
on proofs) mathematical proofs often create their own context and 
are not a priori constrained either by a language or by a previously 
designed proof apparatus. We cannot begin to write a formal proof 
without having already at hand a completely determined formal 
system, whereas mathematical proofs often go hand in hand with 
the constitution of mathematical theories and concepts. 

In mathematics, proving is a free enterprise that often 
accomplishes more than guaranteeing truth and producing 
knowledge (the logical and epistemological roles of proofs). It can 
also clarify concepts (often creating new ones), build connections 
between different branches of mathematics, change the meaning of 
mathematical statements and induce new discoveries, among many 
others a careful analysis of this practice would reveal. But in order to 
do these things mathematical proofs cannot be confined to a proof 
apparatus fixed beforehand. 

Brouwer was right in believing that formalization plays no 
role in mathematical practice and that we cannot predetermine 
mathematical proof techniques. In fact, Brouwer’s views on proofs 
are the most faithful account of the true character of mathematical 
proofs we can find in the traditional philosophical literature. His 
foundational goals (not mentioning mystical prejudices), however, 
impose unreasonable restrictions on some well-established 
mathematical methods. I think that Brouwer’s major mistake was to 
conjoin a peculiar interpretation of mathematical existence – or a 
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theory of meaning, if you like – with the belief that mathematical 
theories are contentual – that is, theories of determinate mathematical 
domains of objects. I claim, against him and most philosophies of 
mathematics, that mathematics does not care about objects at all and 
that structures, that is, “empty” forms that do not exist 
independently “in themselves” – and often do not exist at all – are 
what mathematics is really about1. I will say more about this soon.   

Formal proofs require formalization, and here is an example 
of how it works. Suppose we want to formalize arithmetic so as to 
have a context in which to carry formal proofs. The first thing we 
do is to set a group of axioms (we try to make them as complete as 
possible) which “capture” our “intuitive” grasp of the domain of 
numbers (or the concept that governs this domain). No other extra-
logical truth can play any role in formal proofs in this system. 
Nothing is further removed from what actually happens in the 
business of proving arithmetical truths. In real life there is no a priori 
restriction on where to look for help: the arithmetic of complex 
numbers or complex analysis – as is often the case – algebra, 

 
1 We could, following Chihara, say that mathematical theories are 

structural descriptions of existing or possibly existing domains of real objects, 
but this approach gets artificially entangled with modal notions that are 
perfectly avoidable – provided one is willing to give up certain empiricist 
prejudices. Mathematical theories can of course, in some cases, describe 
structural properties of actually existing domains, but not always (in 
particular not when the domain of the theory is infinite). In general 
mathematical domains (objectual domains described by mathematical 
theories) are purely formal (or structural) – i.e. determined exclusively as to 
form or structure, not content (what explains why mathematical truths are 
invariably invariant under isomorphisms, that is, structure preserving 
transformations) – existing only as correlates of their theories (i.e. 
mathematical domains have only the properties their theories attribute to 
them). The objective existence of mathematical domains is parasitic on the 
objectivity of their theories, a feature even purely logical fictions can have.  
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algebraic geometry, or even hitherto uncreated theories2. One of the 
standard mathematical techniques of proof in number theory is to 
search for structures where to immerse the domain of numbers (or a 
re-conceptualized version of it) in such a way that arithmetical 
operations and relations appear as restrictions to the numerical 
domain of (all or some of) the structuring operations and relations of 
the domain in which the original number system is immersed; by so 
doing we may be able to prove truths in this larger domain whose 
reducts to the original arithmetical domain are the arithmetical facts 
we wanted to prove3. Nothing of this sort is possible once we 
immobilized a theory in the straightjacket of a formal system. 

                                                 
2 For example, the fundamental theorem of algebra has many different 

proofs (Gauss, the first to prove it, gave five of them in his doctoral 
dissertation). Albeit being a theorem of the algebra of complex numbers, 
and having a few algebraic proofs, most of its proofs are analytic (for 
instance, as a direct consequence of Liouville’s theorem in complex 
analysis) or involve topological notions (like continuity, for example). This 
phenomenon is too common in mathematics, but it can raise some 
uncomfortable questions, for instance: how can analytic and topological 
notions have any relevance for the arithmetic of complex numbers, the 
concept of which makes no appeal to them? If we formalized complex 
arithmetic in order to carry out formal proofs, we would not be able to use 
extra-arithmetical notions to prove the fundamental theorem of algebra, a 
very un-mathematical restriction.        

3 For instance, we can easily prove infinitely many non-evident 
trigonometric identities among real numbers by means of De Moivre’s 
formula for complex number exponentiation.  It is not difficult to 
understand how this is possible. Since mathematical truths are structural 
(see below) there may be structural relations among mathematical entities 
of some sort whose “natural” place is a different, more complex structural 
context, which we usually associate with mathematical entities of a 
different sort. This helps to explain why reinterpreting mathematical 
entities of some type as entities of another type (for instance, real numbers 
as particular complex numbers) is so often enlightening in mathematics.  
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As a rule, mathematicians do not work within the limits of 
pre-designed systems, domains or structures. So, the logical notion 
of proof cannot be a regulative ideal for mathematical proofs; not 
only because it imposes some unrealistic requirements on proofs 
(such as finiteness and mechanical checkability), but because it fails 
to capture the essence of what mathematical proving is all about. 

Besides showing that something is true, a proof in 
mathematics must ideally show why it is true. Aristotle had already, 
long ago, called our attention to the fact that proofs must be 
explicative (whenever possible). I think that a way, maybe the only 
way of fulfilling this requirement is to find the context where the 
proved statement follows “naturally” from its premises, a “natural” 
proof, as we may call it. A clear sign that establishing truth is not the 
only role of mathematical proofs is the fact that mathematicians are 
always interested in new proofs of already well established theorems. 
The reason may be that they are never sure that they found the 
“best”, i.e. the “really” explicative, simplest, most natural proof; in 
short, the context where the particular truth under consideration 
“naturally” belongs. (The ideal context, of course, is that where the 
statement to be proved needs no proof and is “intuitively” clear. 
Mathematics is always striving for obviousness.)4 This important 
aspect of the mathematical proving activity is dramatically 
minimized, if not altogether eliminated, when proving is confined to 
predetermined formal systems (where the interest seems to lie 
mainly in canonical proofs). 

But there is more. Once a formal system is fixed any 
statement in the system has its meaning determined by it (Hilbert 
says something of this sort, I think, when he says that the axioms of 
a formal system are implicit definitions). In interpreted axiomatic 

 
4 The proofs of, say, Fermat’s last theorem or the four-color theorem 

were not the final words on them, but the beginning of a renewed effort to 
find new, simpler, more intuitive, more enlightening  proofs.   
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systems the axioms are explanations or clarifications of meaning; 
proofs in the system add nothing. In mathematical practice the 
opposite happens; with each new proof, differently contextualized, 
the statement being proved acquires a new meaning. A classical 
example of this is given by Lakatos analysis of Fermat’s (or Fermat-
Descartes’) theorem on simple polyhedra. Its proof shows that what 
the theorem really states is a topological, not metrical property of 
space. 

It cannot in general be a priori eliminated the possibility of 
finding new proofs of well-established theorems in completely 
different contexts, giving them new shades of meaning. One can go 
as far as to say that the meaning of a mathematical statement is not 
determined once and for all, but is open to new readings as new 
proofs of the statement are found (Wittgenstein may have said 
something analogous – we are never sure of what he really said). 
This also explains why mathematicians always welcome new proofs 
of already well-known results. New proofs enrich the theorem and 
are certainly not only curious, but superfluous exercises.   

Of course, no one has ever said (that I know) that 
mathematical proofs, as far as mathematical interests are concerned, 
are somehow deficient and must be substituted by formal proofs 
whenever possible. But formal proofs are often considered what 
mathematical proofs should look like if mathematicians were 
uncharacteristically careful and meticulous. However, the design of 
formal systems – which in general strives for categoricity (the 
characterization of a single formal structure, that is, a single class of 
structurally identical, isomorphic domains) or completeness with 
respect to intended models – goes in the opposite direction of the 
interests of mathematics, which as a rule lie in the interplay of 
structures, systems and languages. 

Summarizing, I think formal proofs are far from being 
reasonable models or ideals for real mathematical proofs, not only 
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because some of their defining features do not correspond to features 
of mathematical proofs, but because the design of formal systems 
and formal proofs do not capture the essential aspects of the 
structural analysis of mathematical domains that characterizes 
mathematical proofs. Real mathematical proofs open up roads to the 
future, whereas formal versions of them, for the most part, are only 
ruminations over the past. Trying to understand the mathematical 
role of proofs by studying formal proofs is like trying to do 
ornithology by studying stuffed birds. 

Now that we are no longer interested in foundational studies 
(for we no longer think that mathematics needs a foundation), I do 
not see much significance in the formal analysis of mathematical 
proofs, at least as far as the philosophy of mathematics is concerned. 
I believe that we can learn more about the nature of mathematics by 
studying mathematical proofs as they actually happen than by 
dissecting them within the artificial boundaries of formal systems. 

 
A moment of reflection on the aspects of mathematical proofs 

I have brought up is enough to suggest a view on the nature of 
mathematics that, surprisingly, is not as well established as it should. 
If mathematics were, as some people insist, a science of particular 
abstract objects (like numbers or sets, for example) either 
independently existing, as Platonists believe, or created in the 
mathematical activity itself, as some mathematical idealists claim, 
then it is really surprising that the theory of objects of a sort (e.g. 
complex numbers and functions of complex variables) has anything 
to say about objects of a different sort (e.g. positive integers). In 
ontological sciences, like zoology or astrophysics, which are 
concerned with objects of determinate types, animals or heavenly 
bodies in our examples, nothing of the sort happens (provided, of 
course, there are no relevant connections among objects of different 
domains); we do not expect the theory of star evolution to say 
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anything about felines (if we are not astrologists, of course). But, as 
already observed, this phenomenon is overwhelmingly common in 
mathematics. 

Since complex numbers are not an answer to the question 
“how many?”, how can they be relevant for the theory of the 
positive integers, which are nothing but an answer to this question? 
The solution to the puzzle that offers itself naturally is the 
following: no matter the concept that is at the basis of a 
mathematical theory (and on whose meaning the truth of the 
axioms of the theory is grounded), all mathematics cares about are 
structural relations among the objects that fall under it. There is a 
simple proof of this claim: no mathematical theory can singularize a 
unique model; it can, at best, single out only a class of isomorphic 
models, i.e. structurally identical objectual domains. In other words, 
mathematical theories can at best singularize structures (or, if we 
wanted to emphasize their linguistic nature, theories – if consistent – 
can only provide logically articulated systems of structural 
descriptions of structurally identical domains), never well-determined 
singular objectual domains. Therefore, objects are not what 
mathematical theories are really about. 

Now, from this perspective it is not difficult to understand 
why mathematical theories can so easily communicate with each 
other. Unlike objectual domains, which can be immersed one in the 
other only by means of re-conceptualization (objects of one type 
“seen” as objects of a different type), structures can naturally be 
extended or immersed in more complex structures, and some 
structural relations, which can easily be stated in the language of one 
structure (which I call the context of enunciation), may require a 
more complex structural milieu (the context of proof) in order to be 
adequately treated and eventually established as a fact (of the larger 
structure, but also of the narrower, to the extent that structural 
properties can reflect down on substructures and partial structures). 
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This makes it clear why proving in mathematics requires the 
search for the convenient context of proof, which so often does not 
coincide with the context of enunciation; and why the formal model 
of proof is so inadequate, confining as it does the search for a proof 
invariably to the context of enunciation. Of course, to look for 
proofs within the same structural context in which the theorems are 
enunciated is also desirable, for it is, among other things, if we 
succeed, a sign of strength of the context in question. But to find 
many, and as many as possible, different proofs, in as far apart as 
possible contexts is even better, for this is essentially what 
mathematics is all about, a second level study of structures and their 
mutual relations (Bourbaki says something more or less to the same 
effect, but Husserl said it first, at least with respect to what he 
considered purely formal theories). How far from canonical formal 
proofs we are! 

The fact enunciated in a theorem is indifferent to the 
particular nature of the objects involved, even when the enunciation 
is apparently referring to them (for the nominal, relational and 
conceptual terms of the assertion, after all, denote objects, relations 
and concepts of one particular domain); mathematical theorems 
express structural properties only. This is all we have to see in order 
to understand how proving in mathematics works and why the 
formal model of proof is inadequate vis-à-vis the real life of 
mathematics. 

It is, as always, a matter of dispute among metaphysicians the 
ontological character of structures. Are they Platonic entities (ante 
rem realism) or simply Aristotelian ones (in re realism)? I.e., do they 
exist independently of the domains they in-form, or are they only 
aspects of them? Maybe the best approach is to consider the term 
“structure” only as a way of speaking and give reality only to 
structural descriptions, which are nothing but assertions of a 
language. But, of course, since we assume that different descriptions 
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can describe the same thing, there is something they describe. There 
are, however, ways of giving this entity a sort of existence, like that 
of cultural artifacts (Mahler’s eighth symphony, for instance), that 
escapes both Plato’s and Aristotle’s models. But it is wise not to 
enter into this here. 

One of the most interesting things about the structural 
approach to mathematics that I have been sketching here is that it 
can offer a uniform treatment to the problem of the application of 
mathematics in the empirical sciences and mathematics itself. (We 
often hear philosophers referring to the former, but almost never to 
the latter.) The more familiar brand of structuralism in the 
philosophy of mathematics (Shapiro’s, Resnik’s) tends to explain the 
applicability of mathematics to natural sciences in terms of the idea 
of filling of an empty structure (as if Nature offered a domain 
already in-formed by a given structure). The problem is that never or 
almost never Nature is so generous. What happens is that Nature (or 
our sensibility or understanding) in general offers very poor structures 
we chose to imbed in richer mathematical structures (all italicized 
words are important). That is, applying mathematics to Nature is 
just like applying it to itself, everything boils down to finding 
adequate structures of immersion. Physicists in general are 
sympathetic to this idea that we can choose the mathematical theory 
(or, equivalently, structure) that is adequate to deal with particular 
physical phenomena. Famous examples are Poincaré, Weyl, 
Heisenberg and Bridgman. A particular mathematical theory is not 
in general inevitable, in mathematics or in science. 

This is a good point to stop; I believe I made my view clear 
that the formal notion of proof, more than inadequate for imposing 
unnecessary restrictions on proofs, is a distortion of the true 
character and goals of proofs as they occur in mathematics. Formal 
proofs result in general from formal-logical analyses of pre-existing 
proofs carried out in fixed formal systems (as a rule proofs are 
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already available and formal systems are chosen so as to permit their 
logical analysis). Chateaubriand thinks (and I agree with him) that 
some of the effectiveness conditions imposed on formal systems 
(algorithmic checkability, and more strongly, finiteness) distorts the 
correct logical analysis of proofs (they, for instance, misrepresent the 
ways in which proofs can secure truth). 

I argued here that the formal analysis of proofs (and the 
formal model of proof) more than offering a distorted picture of the 
logic of proofs, fails to capture the dynamics involved in the 
structural analysis of mathematical domains that constitutes the 
characteristic feature of mathematical proofs. The picture of 
mathematics I also sketched here goes naturally, I think, with the 
account of mathematical proof I offered. 

 

REFERENCES 

CHATEAUBRIAND, O. Logical Forms. Part II: Logic, Language, 
and Knowledge. Campinas: Unicamp, Centro de Lógica, 
Epistemologia e História da Ciência, 2005. (Coleção CLE, v. 
42) 

CHIHARA, C. S. A Structural Account of Mathematics. New York: 
Oxford University Press, 2004. (Clarendon Press, 2007). 

LAKATOS, I. Proofs and Refutations. Cambridge: Cambridge 
University Press, 1976. 


