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Abstract: Many authors, including Oswaldo Chateaubriand, maintain that 
“properties” should be structured in logical grades, where the least abstract quantities 
comprise the lowest ranks of a hierarchy that embraces more abstract and  
mathematized qualities only at higher levels.  But applied mathematicians warns that 
no quantities can be expected to possess crisp, real world extensions unless they have 
already been processed with a fair amount of set theoretic machinery beforehand. 
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QUEM VEIO PRIMEIRO: A LÓGICA OU A MATEMÁTICA? 
 
Resumo: Muitos autores, incluindo Oswaldo Chateaubriand, sustentam que 
"propriedades" deveriam ser estruturadas em uma gradação lógica, onde as 
quantidades menos abstratas ficariam num nível mais baixo de uma hierarquia que 
abarca qualidades mais matematizadas e abstratas somente em níveis mais 
elevados. Mas matemáticos aplicados advertem que não se pode esperar de 
nenhuma quantidade que elas possuam extensões precisas, como do mundo real, a 
menos que já tenham sido tratados de antemão com uma boa dose de maquinaria 
conjuntista. 
 
Palavras chave: Propriedades. Conjuntos. Hierarquia. Matemática aplicada. 

 
* I am grateful for conversations with Pen Maddy and Bob Batterman on 

the considerations canvassed in this essay. 
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(i) 

Oswaldo Chateaubriand was one of my first philosophy 
teachers and I learned as much from his kindly guidance as from 
anyone else that I have subsequently encountered in--well, more 
years than either of us would care to recount.  So it is a great honor 
to be invited to contribute to this celebration of his exquisite Logical 
Forms.   Back in those early days, a basic methodological dilemma 
presented itself (Oswaldo was then working on the problem of 
counterfactual conditionals): to what degree should philosophical 
problems about sound reasoning be addressed largely within the 
orbit of logical notions bequeathed to us by Frege and Russell?  As 
Logical Forms beautifully demonstrates, Oswaldo has chosen to 
develop the logic-focused tradition in a sophisticated modern 
manner.  I followed the other fork in the road: I have spent much of 
my career investigating the semantic contribution of non-logical 
forms of reasoning to our thinking (as provided in physics’ differential 
equations or the “first this happens, then that” thought patterns of 
ordinary life).  When I sat down to read Logical Forms, this 
orientation caused me some confusion, for I found myself 
confronted with two hierarchies of properties, rather as the British 
astrophysicist Arthur Eddington once sat down to multiple tables: 

 
I have settled down to the task of writing these lectures and drawn up my 
chairs to two tables. Two tables! Yes; there are duplicates of every object 
about me--two tables, two chairs, two pens... One of the [se tables] has 
familiar to me from earliest years.  It is a commonplace object in the 
environment I call the world... Table No. 2 is my scientific table. It is a 
more recent acquaintance and I do not feel so familiar with it.... 
(Eddington 1935, p. xi) 

 
In fact, my puzzlement is intimately related to Eddington’s. 

 Chateaubriand describes a tower of metaphysical entities 
constructed in familiar logicist-style fashion: non-abstract physical 
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objects at the bottom; their first-order properties immediately above 
them; the latter’s second-order traits above these, and so on.  I have 
no trouble with any of this; I am simply wondering which properties 
actually inhabit those lowest floor flats.  Following Frege and 
Russell, Oswaldo presumes that the “non-temporal abstract 
constructions” of mathematics only appear in levels higher than this.  
But this assertion makes me uneasy: “Gee, aren’t the ministrations of 
mathematics required before any putative trait can be permitted first 
floor occupancy within logic’s great skyscraper?  And this point of 
view gives rise, à la Eddington, to divergent conceptions of the “first-
order properties” wanted in the logical hierarchy, as follows:  

The logicist picture: From daily experience, we gain a basic 
knowledge of physical objects and their everyday traits.  Upon this 
foundational basis, we build (or “posit) a richly extended hierarchy 
of further sets and/or higher order properties.  The typical assertions 
of working mathematicians are to be treated as disguised claims 
about the behavior of the denizens of these upper layers of 
architecture.  This portrayal is allied to Eddington’s “familiar 
world.” 

The applied mathematician’s picture: From daily experience, we 
obtain only a rough and partial knowledge of ill-defined “physical 
objects” and an unsatisfactory range of under-specified “traits.”  To 
improve upon this situation, we must call upon the clarifying virtues 
of basic mathematical constructions.  Amongst these “mildly 
transcendental” concoctions, the ability to appeal freely to large 
collections of conditions in the manner of the iterative conception of 
set has emerged as crucial to our descriptive prospects.  This picture 
represents the property analog of Eddington’s “scientific world.” 

According to this second point of view (which I embrace), the 
logicist presumption that “the typical assertions of working mathe-
maticians can be treated as disguised claims about the behavior of the 
upper layers of hierarchy” casts the true epistemological situation in 
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a misleading light, for “the typical assertions of working 
mathematicians” are needed simply to arrange the lowest floors of our 
contemplated logical hierarchy in adequate order, in advance of any 
attempt to erect further superstructure on top of those founding 
layers.  And the tensions between our two “pictures” become evident 
when we read Chateaubriand’s description of how we come to grips 
with “first-order properties” in ordinary life.  He provides a 
charming narrative of how his young son Victor gradually manages 
to obtain an improving conceptual grip upon predicative specimens 
such as “being a tiger” or “weighing five pounds.”1  However, an 
“applied mathematics” critic will complain that Oswaldo has 
terminated his story prematurely, for the mild improvement 
processes he discusses cannot possibly bring Victor’s loosely specified 
traits to the acme of perfection required in the bottom floor of an 
acceptable logical hierarchy.  Orthodox classical logic demands first-
order traits with crisp and well-defined extensions and such exactness 
cannot be reached simply through the humble improving processes 
that Oswaldo catalogues.  To properly satisfy logic’s demands, 
Victor probably needs to go to the university, where he can acquire 
the requisite improvement tools, including a good deal of 
contemporary set theory.  And so we critics complain to 
Chateaubriand: “You’ve stopped detailing the story of 
epistemological improvement with respect to physical concepts at 
exactly the point when important mathematical issues become 
philosophically salient.” 

Virtually nothing to be questioned in this paper hinges upon 
any opinion eccentric to Oswaldo; allied assumptions concerning 

 
1 LF, Vol. 2, Chapter 13.  Here I presume that Victor has benefitted 

from all of the additional assistance that immersion in society can provide, 
whether of a Kripkean or Wittgensteinian cast.  In the book, Victor is only 
two years old! 
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mathematics’ placement with respect to logic’s hierarchy of 
increasingly higher-order traits are widely shared across analytic 
philosophy.   However, apprehensions of an “applied mathematics” 
stripe have enjoyed a long philosophical heritage of their own, 
although doubts in this vein seem rarely acknowledged within 
mainstream analytic thinking.  It would be nice to see these tensions 
more clearly resolved.   Insofar as I can determine, the author of 
Logical Forms might cheerfully acquiesce in our alternative picture of 
what proper “first-order properties” must be like, although the 
concession should force a retraction of stray assertions here and there 
(e.g., the remarks about upper floor “non-temporal abstract 
constructions”).  But a fair number of philosophical projects afloat 
within our profession cannot be so easily sustained, I think, once the 
applied mathematician’s objections are acknowledged.  In particular, 
I have in mind ambitions that seek to eliminate or curtail substantial 
stretches of set theoretic architecture as physically unnecessary or 
extravagant.2  I believe that such undertakings are predicated upon a 
fundamental misunderstanding of the role that sets play within 
modern physical thinking.  Unfortunately, we won’t be able to 
canvass any of these further methodological ramifications within the 
present essay. 

  
(ii) 

The easiest route to appreciating the applied mathematician’s 
worries begins within some basic methodological considerations that 
appeared robustly within Descartes’ reflections upon the potential 
scope of applied mathematics.  Learning how later mathematicians 

                                           
2 I have in mind the many frigates that have set sail under the colors of 

“Quine’s indispensability argument” or “Benaceraff’s problem of 
mathematical knowledge.” 
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have addressed these concerns will help us appreciate set theory’s 
special contributions to the logical clarity of first-order properties.  
Let us first observe that poor Descartes has become a popular 
whipping boy amongst contemporary epistemologists, scorned as the 
careless Pandora who unleashed a plague of skeptical worries upon 
us all.  It is not adequately acknowledged that intimately entangled 
within those familiar Cartesian musings are a rich set of legitimate 
considerations with significant bearing upon applied mathematics’ 
descriptive prospects.   In true applied mathematician spirit, 
Descartes claimed that unreflective reliance upon our everyday 
arsenal of “familiar world” predicates would pose great difficulties 
with respect to sound reasoning about the physical world.   He held 
that any data couched in everyday conceptual terms needed to be 
run through a rigorous filter of mathematical correction before such 
information could be accepted as descriptively reliable.  As is well 
known, he distinguished “clear and distinct ideas” such as exact 
equilateral triangle from the “confused” notions of common sense 
like red or a child’s looks roughly triangular.  Descartes observed 
that the latter notions are not, in their own right, very productive 
deductively.  Suppose that we have a pile of cuckoo clock parts 
before us.  If we are merely told how all of its parts are colored, we 
will know very little about how our assembly of pieces might 
behave: the colored conglomeration indicated might do almost 
anything.  But once we know the exact geometrical shape of each 
piece and how they interlace, we can calculate exactly how the 
assembly will behave over time: that the unwinding of the 
mainspring will cause lever A to pivot 300 and so on.  As a 
philosophical rationalist, Descartes happened to believe that we can 
know all (or, as we shall see, almost all) of the reasoning principles 
relevant to the “clear and distinct” notions on an a priori basis, for he 
believed that the full mechanics pertinent to interlaced rigid bodies 
was largely a matter of Euclidean geometry and conservation 
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assumptions tied to the capacity to perform work.  But we are 
interesting in the bearing of “clear and distinct ideas” upon 
inferential productivity, not their apparent aprioricity.   

Why then, Descartes asked, should a benevolent God have 
equipped us with sensory systems that feed us information primarily 
encoded within “confused idea” formats?  His reply hinges upon our 
stupidity: God isn’t a deceiver but He also didn’t make us capable of 
solving hard geometrical problems within a short period of time.  
Suppose we take a peach in hand and ask, “Do I dare to eat this?”  If 
we were truly smart like God, we could swiftly map out blueprints 
for the fruit’s internal geometry and our own digestive system and 
compute how the two systems will mechanically interact (food 
poisoning constituting an undesirable matching). But we dull-witted 
humans will clearly starve before we complete the required 
inferential assay.  Accordingly, our nervous systems supply us with 
crudely averaged estimates of the fruit’s surface condition that allow 
us to make rude, but practicable, decisions about its gustatory merits 
(pinkness signaling “acceptable”; brownness, unacceptable).  To be 
sure, genuine information about the fruit’s microscopic physical 
condition is supplied within our visual “looks brown” reports, but 
that data has become complexly encoded (= “confused” in Cartesian 
lexicon) in a manner that optimizes swift decision over accurate 
representation. As any system designer immediately recognizes, 
effective “quick decision” schemes usually work ably over a 
circumscribed range of circumstances and behave quite erratically 
beyond those bounds.   We should therefore expect that a concept 
such as brownness is informationally adjusted only to the mild 
terrestrial environments in which we normally find ourselves.  It 
may become quite unclear what the predicate “brown” should 
properly signify if considered as a classifier of material objects 
located across a range of more unusual conditions. 
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Observe that these Cartesian concerns are fully analogous to 
our applied mathematician’s worries about the “concepts” native to a 
“familiar world” logical hierarchy: insufficient evidence has been 
offered that such traits are properly well-defined everywhere (i.e., 
possess the clear, universe-wide extensions needed in classical logic).   
Modern scientific study of the informational encoding embodied in 
our everyday judgments of color suggest that these Cartesian worries 
are well founded.  Typically, our nervous systems blend together an 
assessment of a patch’s own reflectance characteristics with an allied 
evaluation of how its immediate surroundings are illuminated.  In 
the special case of brownness, the brain categorizes a patch as 
“brown” only if the prevailing illumination is assessed as generally 
brighter; otherwise, the brain issues a verdict of “orangish” 
(evaluations of blueness, in contrast, are less surround-sensitive).  
Consider those self-illuminated angler fish that appear brightly 
orange within their deep sea environments, yet appear dull brown 
when hauled to the deck of a fishing trawler.  Are they “really 
brown” within their natural habitat (that response seems wrong) or 
do they instead “turn brown” when brought to the surface (that 
seems incorrect as well).  In fact, some measure of descriptive fiat 
seems plainly obligatory in such cases (and one can easily concoct 
allied scenarios of the same ilk).  If so, we can hardly pretend that 
familiar brownness can meet the demands of sharpness that standard 
logic places upon its “properties.”  The core problem does not stem 
from “brown”‘s borderline vagueness as normally understood, but 
from the fact that brownness doesn’t seem to be clearly defined over 
large stretches of our universe.  And the problem traces exactly to 
the considerations that Descartes diagnoses: our nervous systems 
have chosen to blend together physical information in a manner 
suited only to the parochial needs of quick decision within our 
narrow niche of earthly crust.  
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 In contrast, if a sound physics can inductively assure us that 
its “unconfused” traits make sense everywhere, then we needn’t 
entertain allied reservations with respect to their suitability for 
sound reasoning.  A trait like being perfectly circular may be rarely 
instantiated within irregular Nature, but we can reason about the 
trait with no logical qualms whatsoever.  

 Although such Cartesian considerations suggest that we 
must scrutinize the ground level properties we allow into our logical 
hierarchy with scientific care, no need for set theoretic thinking is 
evident within these concerns.  However, we can discover such 
reasons if we turn to another aspect of Descartes’ remarkable 
thinking upon these issues.   The thesis that the Book of Nature is 
covertly written in a mathematical pen was shared by many of his 
contemporaries, but Descartes noticed a  deeper problem affecting 
this claim which his compatriots usually ignored or minimized.  
Descartes’ worries trace to the observation that many common 
physical processes cannot be plausibly described as the evolution of 
any group of objects displaying a finite geometry.  Consider a fluid 
moving along a tube with a constriction in the middle.  Plainly the 
fluid must adjust its configuration to accommodate the altered pipe 
geometry.  However, Descartes tolerated no spaces between his 
finite-sized fluid particles.  If so, how could the flowing matter fit 
into the narrowed aperture without first fracturing into some kind 
of infinitesimal dust and then reassembling?  
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Descartes claimed that adjustments requiring this level of 
complexity simply lie beyond our comprehension.  True, such 
infinitely detailed processes occur rather commonly in nature and 
God Himself can foresee how they will turn out, but we humans, 
comprising Creatures of a Very Small Brain, must perforce lose their 
details in a computational fog that we can never adequately 
penetrate. In Descartes’ own terminology, the unfolding physical 
processes become “indefinite” during such infinitesimally 
complicated moments. As his disciple Rohault explained:  

 
[Aristotle’s followers] did not consider that equality and inequality are 
properties of finite things, which can be comprehended and compared by 
human understanding, but they cannot be applied to indefinite quantities 
which human understanding cannot comprehend or compare together, 
anymore than it can a body with a superflies, or a superflies with a line. 
(Rohault 1988, p. 33)  

 
We can remain assured that, whatever transpires during these 
“indefinite” intervals, the whole operation will still unfold according 
to the same geometrical principles that God permits us to understand 
in finite circumstances (otherwise He would prove a deceiver), but 
we should not expect to inferentially track those same complex steps 
ourselves.  This viewpoint leads Descartes to a position that I have 
elsewhere dubbed mathematical opportunism: Nature offers only 
restricted occasions under which we can inferentially track her 
unfolding processes with mathematical tools. (Wilson 2000) 

 

(iii) 

As intimated, appeals to set theoretic constructions play a vital 
role in dispelling these Cartesian limitations upon our descriptive 
capacities.  Historically, this alternative view is intimately entangled 
with the rise of a form of contra-Cartesian mathematical optimism 
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that becomes viable once evolutionary partial differential equations 
(p.d.e.s) and their kin get developed after 1750.  With these new 
mathematical tools, unknown to Descartes, mathematicians began to 
anticipate that every real life physical process might be 
isomorphically copied (at least in theory) by a mathematical 
trajectory solving a suitable set of governing equations.  The rise of 
this p.d.e.-based “optimism” is commonly regarded as a critical shift 
in mathematicians’ expectations with respect to the capacities of 
their subject matter. As such, the change in attitude is generally 
attributed to Euler and his contemporaries, although it actually takes 
a much longer time before other ingredients essential to an adequate 
optimism fall in place.3  These further adjustments in our mathe-
matical artillery enforce further degrees of “mild transcendentalism” 
with respect to our human descriptive capacities.  The main burden 
of this essay is explain what this “mild transcendentalism” entails.  

For our purposes, we needn’t understand how evolutionary 
p.d.e.’s operate in any detail, except to observe that they characterize 
how a system behaves on an infinitesimal level with respect to a given 
moment in time and along all three spatial dimensions.4  It is 
precisely the infinitesimally focused features of such equations that 

                                           
3 Here I have in mind the fancier constructions that I later describe in 

connection with “generalized p.d.e.s” and “the factoring of satellite systems” 
(Kant’s problems with physical infinitesimals fall into this category as well).  
Unfortunately, I cannot develop this side of the story adequately in this 
essay. 

4 Ordinary differential equations, on the other hand, work with only 
one independent variable, rather than four.  As we’ll see, even these simpler 
equations stand to us in a “mildly transcendental” remove (indeed, the same 
can be argued even for various aspects pertaining to algebraic equations).  I 
stress the p.d.e.s because they display the modeling flexibility required in 
Eulerian optimism. 
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permit an escape from Descartes’ dilemma about fluid flow, because 
p.d.e.s can move the fluid forward at a level that Descartes would 
have viewed as describing an “indefinite” and infinitely divided 
“dust.”  Indeed, there is a well-known set of simple p.d.e.s-- the 
Navier-Stokes equations--that, with suitable initial and boundary 
conditions, capably capture (to the best of our current knowledge) 
every flow pattern that macroscopic water is likely to manifest 
(which is quite an accomplishment, given that such behaviors range 
from slow, organized creeping to complete chaotic turbulence).  
These formulas can perform these remarkable descriptive feats 
precisely because, in fealty to the old maxim that “physics is simpler 
in the small,” they only attempt to delineate the causal factors 
presently impinging upon each infinitesimal region of fluid.  They 
do not attempt to describe directly how these localized conditions 
assemble into larger, macroscopic patterns.  

More generally, the Navier-Stokes equations are simply one 
member of a large family of evolutionary equations capable of 
capturing the local influences acting upon virtually any form of 
macroscopic material that one is likely to encounter in everyday life.  
Do you want your fluid to act springy like a polymer?  Or to flow 
easily when brushed, yet not drip under gravity, like a good paint?  
Or, to recover slowly from a pipe constriction like a toothpaste?  
Any and all of these desiderata can be easily accommodated by 
suitable choices of p.d.e.s akin to the Navier-Stokes equations.  Such 
realistically detailed p.d.e. modelings are actively studied by applied 
mathematicians within industry today.   

It is the broadened capacities for physical coverage offered by 
p.d.e.s that inspires Eulerian optimism with respect to mathematics’ 
descriptive capacities: we can now hope that there is a mathematical 
modeling isomorphically adequate to every physical process, no 
matter how complex or recondite. However, it must be 
remembered--and this observation is critical to what follows--that 
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extracting useful physical information from such equations by 
humanly tractable procedures represents another matter entirely.  
From a generic point of view, p.d.e.s are absolutely hell to solve or 
to otherwise utilize as reliable founts of information.  In practice, 
quite idiosyncratic techniques must usually be developed before an 
array of simple p.d.e.s will disgorge even the smallest nuggets of 
useful information.  Quite commonly, we must first project our core 
governing equations into various simpler sets of formulas, by 
dropping “insignificant terms,” linearizing, averaging, appealing to 
symmetries and so forth.  Even within these simpler, reduced 
variable satellite modelings, we must often manufacture new 
mathematical gizmos so that their solutions sets can be factored into 
manageable components.  And it is only at these reduced modeling 
stages that many vital physical properties emerge clearly and in full 
definitional force.5  Consider a violin, for example, which represents 
a very complex vibrational system.  Theoretically, one can write 
down a set of continuum physics p.d.e.s with complexly varying 
coefficients that will mock the violin’s real life behaviors with great 
similitude.  However, such equations are completely intractable as 
they stand. It is only after considerable reductive processes have been 
applied to these starting formulas that we reach a mathematical level 
where we can capably extract concrete facts about the instrument.   
For example, it is only at this reduced stage of analysis that our 
violin’s vital qualities traits will emerge clearly from the woodwork 
through Fourier analysis: the hidden traits that supply a nicely 
bowed note with its characteristic musical “color.” However, we 
must carefully scrutinize (when we can!) how these computationally 
compliant satellite modelings relate back to the fuller but intractable 

                                           
5 Batterman (2001), stresses allied observations in a very persuasive 

manner.  
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models from which they spring, for we sometimes need to know 
when the properties featured in our reduced structures lose their 
physical salience, as occurs whenever Junior bows his fiddle in that 
awful manner that sets our teeth on edge.  In other words, the 
entanglements between an original but directly intractable p.d.e. 
modeling and its reduced modeling satellites must be set in place if 
the boundaries of the “physical quantities” we discuss in our physical 
investigations are to maintain firmly marked boundaries (even if we 
humans have trouble computing precisely where they lie). 

 
 
Let us now see why the invocation of p.d.e.s arranges 

mathematical claims upon a different descriptive plane than 
Descartes had assumed.  The key lies in the fact that such equations 
directly describe what occurs within its target systems upon an 
infinitesimal level alone, rather than in a format directly verifiable by 
ordinary computational means.  In fact, the early practitioners of the 
calculus were troubled by the infinitesimal focus of differential 
equations so much that they often presumed that such relationships 
could be meaningful only if they represented limiting formulas 
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extractable from preexistent relationships manifested in otherwise 
familiar, finite mathematical figures (in other words, they saw the 
infinitesimal relationships as simply a convenient shorthand for 
registering a host of finitary facts about figures such as circles or 
ellipses).  But Euler and his followers began to approach these issues 
in an opposed manner: p.d.e.s became regarded as autonomous sorts 
of mathematical critter that can grow their solution sets on their 
own recognizance, regardless of whether mathematicians have been 
previously familiar with the resulting curves and surfaces.  According 
to this new point of view, p.d.e.s. simply march ahead through 
mathematical time and space and carve up the landscape as they see 
fit, quite independently of our feeble capacities to anticipate what 
patterns they will mark out. Indeed, based upon his substantive 
experience with such formulas, Euler suspicioned that differential 
equations rarely carve out solution sets that coincide with familiar 
curves or surfaces and, in the 1840’s , Liouville was able to rigorously 
establish a number of theorems to this general effect, using “rate of 
growth” techniques familiar to logicians within recursion theory.  

Granting the p.d.e.s this descriptive autonomy subtly shifts 
our conception of “mathematics” away from concrete human 
inferential capacities. For Descartes, the term “mathematics” 
approximately meant “physical situation amendable to the rigorous 
tools of precise human reasoning.”  And this point of view forced 
him into his mathematical opportunism: applied mathematicians 
must search for the rare arrangements when Nature accidently 
allows her activities to be adequately mirrored within our paltry 
toolkit of precise descriptive predicates. By allowing the 
infinitesimally focused p.d.e.s “to do their own thing,” Eulerian 
mathematicians erect what is, in effect, an intermediate kingdom of 
potential behavior (call it “Pure Mathematicsland”) interposed neatly 
betwixt our limited human reasoning capacities and Nature’s actual 
range of behaviors.  That is, we humans can easily grasp the p.d.e. 
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formulas themselves, but we must then allow them to grow their 
solutions “under their own recognizance” out in Pure 
Mathematicsland, the results of which can potentially mirror all of 
Nature’s varied behaviors with perfect isomorphism.  Sitting back in 
Human Computationland, however, we must struggle to figure out 
what our p.d.e.s have been up to in their autonomous wanderings. 

As such, this “trust in p.d.e.s” picture considerably tempers 
Descartes’ gloomy assessment of our descriptive prospects.  But this 
widened descriptive scope comes at a price, for p.d.e.s achieve their 
match-ups with Nature in a mildly transcendental way.  To appreciate 
what I have in mind here, consider a simple ordinary differential 
equation such as dx/dt = f(x), as applicable to a bead sliding along a 
wire.  Our formula states that the velocity of the bead is linked at 
every temporal moment to its current position by an f-rule, stating 
that when the bead is located at point p, its current velocity must be 
f(p).  Observe that this formula fixes how the bead behaves at each 
infinitesimal moment in space and time and tells us nothing directly 
about any longer interval.  However, what we generally want to 
know precisely how these localized constraints fit together into finite 
patterns that we can actually observe.  If the f in “dx/dt = f(x)” is 
readily computable, we might attempt to deduce our bead’s 
movements along the wire over a short span of time  t by starting at 
time t0 and utilizing f(p) as a plausible estimate for the system’s 
velocity over the entire  t interval.  That is, we draw a graph where 
the bead shifts by the distance it would have traveled over the t time 
period if it had maintained a constant f(p) feet/sec velocity the entire 
time.  Suppose that this calculation predicts that the bead will shift to 
point q.  Starting over again, we now graph where the bead will 
relocate if it now maintains a constant f(q) velocity, leading it to 
position r. And so on (this graphing technique is called a finite 
difference approximation to the differential equation; real life 
computer routines commonly utilize more sophisticated variants 
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upon this basic strategy).  By these inferential methods, we can hope 
to extract useful information about our bead’s observable, finite 
movements from our infinitesimally focused differential equation.  
And allied finite difference techniques can be applied to true p.d.e.s 
as well. 

 

 
 
But observe that this manner of reasoning is quite fallible, for 

suppose that our equation’s f-rule alters the bead’s velocity  
considerably by supplying it with some sharp kick inside the  t 
interval.  Rather than landing at q, the bead will actually travel to 
some completely different location q*. Indeed, if one is not careful in 
real life computing, the blind application of even the best finite 
difference routines will cheerfully plot supposed “solutions” that 
bear absolutely no resemblance to the true curves carved out by the 
target differential equations themselves.  These difficulties trace to 
the fact that we finite humans can only inspect how our curve 
behaves at staggered  t intervals, allowing sufficient wiggle room for 
our infinitesimal differential equation to decide to do something 
utterly different to our bead in the moments when we’re not 
“looking” at it (i.e., calculating).  
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However, we can still plausibly presume that, if we could only 
draw our little straight lines estimates over increasingly shorter time 
steps t, the complete collection of broken line estimates we would 
frame will eventually close in on the particle’s true trajectory as a 
cocooning envelope.  But plainly only a god could actually draw the 
complete infinite mesh of estimates required, forcing us, as mere 
mortal geometers, to terminate our labors at some finite step size t.  
And that work stoppage allows our bead ample opportunity to 
receive an unexpected kick that we haven’t yet investigated.  In fact, 
we can (and must6) appeal to the complete collection of broken line 
estimates as a means of defining what the mathematical claim “curve 
C solves the equation dx/dt = f(x, t)” actually means (that is, a 
suitably regular curve C solves the equation if the full collection of 
telescoping estimates eventually converges to C under some suitable 
standard of “convergence”).  That is, rather than accepting the 
differential equation itself as the core autonomous Eulerian agency, 
we directly cite the good behavior of an infinite set of finite 
difference approximations as the labors that must occur out in Pure 
Mathematicsland if a finite curve is properly traced by a differential 
equation.  Indeed, this account is essentially what the standard 
Cauchy-Weierstrass δ/ε treatment of “dx/dt” demands.  Due to its 
infinitary character, our big jumble of improving broken line 
estimates stands in a transcendental relationship to us, because we 
can’t directly deal with so many conditions ourselves. 

However, the relationship is only “mildly transcendental” 
because, if we’re lucky, with sufficient cleverness we might find 
adequate control over an otherwise unmanageable collection.  For 

 
6 P.d.e.s cannot be trusted unto themselves to always draw curves 

reliably as some of them admit no solutions whatsoever and even the tamest 
sorts frequently stop converging after a finite time.  Our sets of broken line 
estimates allow us to resolve these “existence” worries on a firm basis. 
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example, close inspection of the “f(x)” clause often reveals a limited 
capacity for growth over the  t interval, indicating that our broken 
line estimate can never lie too far from the correct curve carved out 
by our equation (such bounding estimates on error are called “a 
priori inequalities”). If we can cite such mitigating factors, we can 
often establish that our finite difference estimates provide a very 
reliable picture of the equation’s true solutions. Unfortunately, the 
greater complexity of p.d.e.s often renders obtainable reassurances of 
this “a priori” type rather vapid (the known bounds on reliable 
numerical estimates for a generic Navier-Stokes situation are 
extremely short) and we must then look for other methods to extract 
trustworthy information from our p.d.e.s. Indeed, we are often 
interested in long-term “trend” questions that numerical 
approximation schemes cannot answer, no matter how well behaved 
they prove in the short run.  Such requirements usually force us to 
attack our p.d.e.s with the “reduce to simpler systems” techniques 
described earlier.  Applied mathematicians have displayed amazing 
suppleness in devising these roundabout tricks. 

But note the big improvement in our descriptive prospects 
over that offered within gloomy Cartesian opportunism: no longer 
must we presume that fluids in pipes pass through misty “indefinite” 
states that we can never penetrate by any descriptive means 
whatever.   Instead, we now allow our p.d.e.s to capture the fluid’s 
behaviors directly within its “mildly transcendental” meshes of 
approximating conditions, while we struggle to catch up inferentially 
with what our p.d.e.s hath wrought (which is not entirely 
impossible, for the reasons we have sketched).  Trusting to our p.d.e. 
meshes, we can insure that the physical quantities associated with 
such modelings will possess the crisp and fully defined character 
required in the traits we treat in standard classical logic.  Unlike 
Descartes, we no longer have to rely solely upon familiar geometrical 
thinking as the only provider of “clear and distinct” ideas; we can 
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extend our “well-defined” confidence to the much richer set of 
quantities carved out by p.d.e. systems during their mathematical 
meanderings.   

Although I don’t have the space to go into such matters in 
detail, further appeals to large sets of conditions become required 
within many other parts of applied mathematics.  Indeed, simple 
p.d.e.s cannot always serve the modeling needs we have outlined 
without further supplementation.  Place a fluid that resists flexing 
(such as a molten polymer) inside Descartes’ constricting pipe.  
Sometimes such liquids cannot flow around the sharp corner in the 
tube without developing a kink in the affected region.  Inspecting 
how our finite difference estimates behave in this locale, we discover 
that they do not converge to well-defined velocities along the kink--
our polymer melt acquires a finite shift in direction as it passes 
through the crimped region.  This loss of a well-defined velocity 
indicates that our allegedly “governing p.d.e.s” cannot properly 
govern what physically occurs in this region. To handle such 
problems (and they arise fairly commonly in practice), modern 
approaches often repair such lapses by complicated functional cons-
tructions that sit on top of the usual p.d.e. conditions (giving rise to 
what are often called “generalized p.d.e.s”).  In fact, the properties 
required in these gizmos are commonly specified by appeal to a new 
infinite set of conditions that relate the true polymer flow to a large 
collection of hypothetically smoother flows; the result is, essentially, 
one calculus-type construction piled upon another in a rather 
elaborate pattern.  

 The necessity of considering further layers of infinitary 
construction becomes greatly magnified when we consider the 
satellite modelings that arise as intractable original modelings 
become mapped into simpler structures.  As we observed in the 
violin case above, vital qualities such as the instrument’s overtone 
characteristics commonly emerge only after those simplified models 
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have been factored into a range of “basic behaviors.”  But these “basic 
behaviors” often need to constructed (to avoid the risk of trafficking 
in undefined quantities) by further layers of equivalence class 
construction allied to those required for our polymer flow (modern 
harmonic analysis is full of this).  In pursuing these satellite 
constructions, we can be potentially wafted to virtually any region 
within wider Pure Mathematicsland (the key to unlocking some of 
our violin’s essential secrets, for example, emerge only after its 
regular functional traits have been extended over the complex 
numbers).  I stress this fact because one commonly encounters 
misleading claims in the philosophical literature to the effect that the 
only sets “physics needs” lie at some comparatively low level within 
logic’s analytical hierarchy.  Such contentions usually trace to some 
observation to the effect that the basic physical laws of, e.g., classical 
electrodynamics can be formulated employing quantifiers that fall 
within the indicated bounds.  Yes, but we’ve noted that articulating a 
collection of p.d.e.s and extracting salient information from them 
represent projects of divergent degrees of difficulty.  In dealing with 
p.d.e.s, physics needs all the help it can get and that help might 
potentially stem from any arcane corner of mathematics that might 
offer assistance in “factoring” and allied chores.  In that sense, physics 
“needs” all of classical mathematics.  

 

(iv)  

Summing up, our current faith that the attributes discussed in 
science possess the “clear and distinct” qualities required in physical 
traits obedient to classical logic tacitly relies upon a confidence that 
p.d.e.s and their accompanying set theoretic underpinnings correctly 
allocate the needed “crispness” to all of the quantities that fall within 
their dominions.  Just as Descartes opined, we must strain the loose 
“traits” of everyday thinking through mathematical filters before 
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they can be considered suited to classical logic’s strong demands.   
Kant, of course, framed allied conclusions long ago after meditating 
upon related physical considerations.7  In particular, he believed that 
the only way we can understand the notion of (scientific) “object” is 
to view the notion as the hypothetical end-product of an ever-
improving set of regulative conditions founded upon Newtonian 
physics.   In Kant’s hands, these observations became an “idealism” 
because he presumed that the only source of these rectifying rules 
could be the human mind.  But Eulerian optimists view these same 
concerns in a different way: it strikes us as a brute empirical fact that 
Nature’s behaviors generally run somewhat obliquely to our 
computational capacities.  The “mildly transcendental” story we 
have told of how p.d.e.s manage to mirror physical behaviors 
captures the precise degree of our descriptive estrangement nicely.  
Such observations do not force us into idealist despair, for our 
predicament remains rather mild.  After all, we know that there are 
lots of sets of natural numbers that we cannot effectively enumerate 
even though simple fluid flows governed by p.d.e.s can readily pick 
out those same classes in an analog fashion. Doesn’t Eulerian 
optimism simply qualify as an empirical observation of this same 
basic character, albeit sketched at a different scale? Our 
computational position within Nature may not be everything we 
might wish for, but it ain’t that bad either.  Indeed, we should thank 
our lucky stars that our degree of direct descriptive disengagement 
stops at the mildly transcendental, in contrast to Descartes’ totally 
unbridgeable “indefiniteness.”   

 
7 Kant wasn’t troubled by p.d.e.s per se, but the peculiar sorts of physical 

infinitesimal required in continuum mechanics.  See my “Back to ‘Back to 
Kant’” (forthcoming).  
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Of course, we possess no guarantee that applied mathe-
maticians will continue to be successful in their endeavors, for at 
some point we may simply hit a Cartesian brick wall in our 
descriptive ministrations (it is rather amazing that by simply 
allowing Nature a somewhat looser mathematical leash, we seem 
able to capture her unruly behaviors using largely p.d.e.s and their 
modern generalizations).   And we might also suspect that set theory 
per se is not quite the right glue to hold the entire edifice together 
(the grounds for this speculation are currently stronger).  However, 
at present, such uneasy doubts should be simply regarded as the 
Night Thoughts of an Eulerian optimist.   For the time being, we 
should presume that it is within the skein of set theoretic articulation 
that the “clear and distinct” properties of modern physics will find 
their proper articulation and delineation. 

It is this portrait of our current scientific proceedings that 
engenders the “two hierarchies of quantities” dilemma with which 
we began--it supplies a firm sense in which the “math” must come 
before the “logic.” As indicated at the outset, our alternative portrait 
of the first-floor inhabitants within Oswaldo’s hierarchy does not 
cast doubt upon the soundness of the architecture itself, although 
our considerations may diminish the lust of those philosophical 
reformers eager to lop off its higher extremities. 
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