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Abstract: The concept of translation between logics was originally
introduced in order to prove the consistency of a logic system in terms
of the consistency of another logic system. The idea behind this is
to interpret (or to encode) a logic into another one. In this survey
we address the following question: Which logical properties a (strong)
logic translation should preserve? Several approaches to the concept

of translation between logics are discussed and analyzed.
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1. INTRODUCTION

The original notion of translations between logic systems can be
traced back to the pioneering works from Kolmogorov (1925), Glivenko
(1929), Lewis & Langford (1932), Godel (1933) and Gentzen (1933).
As it is well-known, translations between logics were introduced as a
tool for proving the consistency of a logic system relative to the con-
sistency of another system. In particular, Kolmogorov (1925) showed
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232 MARCELO E. CONIGLIO

that the use of the Law of the Excluded Middle, criticized by Brouwer,
does not led to contradictions: the trick is to translate any subformula
of a given formula by its double negation. This is the first example
in the literature of a translation between logic systems (in this case,
classical logic was translated into intuitionistic logic).

The first translations which appear in the literature, most of them
being from classical logic into intuitionistic logic, were defined as be-
ing mappings f : £1— Ly from (the set of formulas of) logic £; into
(the set of formulas of) Lo just satisfying the following property: If the
formula ¢ is a theorem of logic £; then the formula f(¢) must be a
theorem of logic L. Using this property, plus other specific character-
istics of the translation mappings and the logics, it can be proved that
if the logic £; is inconsistent, so is Ls.

Later on, the concept of translation between logics was improved by
requiring the following stronger condition: ¢ is a theorem of logic £; if
and only if the formula f(¢) is a theorem of logic L£2. Afterwards, other
authors required another condition (which is the usual one accepted
today), stating the following: if I' b, ¢ (that is, if ¢ is derivable
from the set of hypothesis I' in logic £1) then f[I'] Fz, f(¢) (that is,
f(y) is derivable from the set of hypothesis f[I'] in logic £2).? When
“then” is replaced by “if and only if” in the last condition, we have
a strong or comservative translation. The expression “conservative”
to refer to a mapping between logics with such characteristics is part
of the folklore, and it was used for instance in Meseguer (1989), Bell
(1988) and several publications of the Campinas group, GTAL (see,
for instance, da Silva, D’Ottaviano & Sette (1999) and D’Ottaviano
& Feitosa (2001)). Consult also Carnielli & D’Ottaviano (1997) for
historical remarks on translations between logics.

Of course a general notion of translation between logics presupposes
a general definition of what a logic system is. There are different ap-
proaches to general logic systems in the literature, some of which will
be briefly reviewed in sections 2 and 3.

2As usual, iff : A—B is a function and X C A then f[X] stands for the set
{f(x) : x € X}.
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NOTION OF TRANSLATIONS LOGICS 233

Once we are positioned in the realm of logics defined in a wide sense
(and not restricted to specific logic systems), it is natural to think about
a translation f : £1—— Lo as being a morphism between logics (seen as
formal structures) which relates £; with Lo, preserving or transferring
(some of) the features of the logic £ into the logic L2. And of course,
if f is a conservative translation, we are tempted to infer that £; is
“encoded” into logic Ls: after all, if we assume (and, in fact, we will do
that) a Tarskian perspective, then a logic system is nothing more than
a set of formulas together with a relation (the consequence relation)
between sets of formulas and formulas. Thus, the preservation of that
relation by a conservative translation would reveal that, as structures,
Ly “contains” Ly. (Probably we should add the requirement that f
is an injective or even a bijective mapping.) As we shall see in the
following sections, the question is not so simple.

The problems we address in this survey are the following: what
is in fact preserved by a translation between logics, and what should
be preserved? What are the properties that a mapping between logics
should have in order to faithfully translate a logic into another? In this
article we defend the thesis that the analysis of these questions only is
possible at the meta-level, that is, by means of a formal study of the
meta-properties of the logics.

This article is organized as follows: in Section 2 and 3 we briefly
review some of the approaches to a general theory of logic systems
appearing in the literature. In Section 4 we address the problem of the
preservation of certain kind of meta-properties of logics by translations,
in the context of combinations of logic. Finally, in Section 5 we will
give the final reflections on the question of translating faithfully a logic
system into another.

2. LOGICS IN A GENERAL SETTING

As we mentioned in the Introduction, a general theory of transla-
tions between logics should rely on a theory of general logic systems.
This section is devoted to survey some of the proposals of a general
definition of logic system which appeared in the literature. By no
ways this brief review is complete, but we consider that it is enough
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for our purposes: to discuss in a broad perspective the problem of
stating a general definition of translation between logics.

The first general definition of logic system is due to Tarski, in his
famous article On Some Fundamental Concepts of Metamathematics,
published in 1930, based on a lecture of him from 1928 (see Tarski
(1956)). However, it should be stressed that Paul Hertz, in 1929, al-
ready introduced an abstract logic system satisfying analogous proper-
ties, but in terms of a consequence relation (cf. Hertz (1929)). Hertz’s
system inspired Gentzen to introduce his celebrated sequent calculi.
See Béziau (forthcoming) for a survey on the historical development of
Tarski’s notion of logical consequence.

According to Tarski, a logic in a broader sense can be characterized
by a set S of entities, called sentences (or formulas), together with a
consequence operator Cn satisfying certain reasonable conditions. In
formal terms:

Definition 2.1 (Tarski, 1930) Let S be a non-empty set of entities
called sentences. A logic system is an ordered pair (S, Cn) such that
Cn is a mapping from p(5) to p(5) (called a consequence operator), in
symbols Cn : p(S)—p(9), satisfying the following properties:3

Axiom 0 g < Ng.
Axiom 1 If X C S then X C Cn(X).
Axiom 2 If X C S then Cn(Cn(X)) = Cn(X).
Axiom 3 If X C S then
Cn(X) = U{Cn(Y) :Y C X and Y is finite}.

Axiom 4 There exists a sentence z € S such that

Cn({z}) = S.

3 As usual, the expression p(S) will stand for the power set of S, that is, the set
of all the subsets of S.
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NOTION OF TRANSLATIONS LOGICS 235

Axiom 0 states that the set of sentences (or formulas) must be denu-
merable, that is, with cardinal not greater than aleph zero. Axiom 1
states that from a given set of premises we can be derive any premise
of that set. Axiom 2 states that from the set of consequences of a given
set X we derive nothing more than the formulas already derived from
the set X. Axiom 3 states that the logic must be compact, that is, if
a formula is derivable from a set of premises then it must be derivable
from a finite subset of it. Finally, Axiom 4 states that it must exist a
bottom particle, that is, a trivializing sentence.

This ample definition of logic system encompasses a good part of the
usual logic systems. It is worth noting that the following monotonicity
property is derived from the axioms above:

Axiom 3’ If X CY C S then Cn(X) C Cn(Y).

However, several non-classical logics do not satisfy some of the axioms
above. In particular, Axioms 0, 3 and 4 seems to be a bit strong, and
today most authors introduce a general Tarskian logic system as being
a pair (S, Cn) just satisfying Axioms 1, 2 and 3.

Sometimes it is more convenient to introduce a logic system through
a consequence relation instead of by means of a consequence operator.
Thus, given a consequence operator Cn satisfying Axioms 1, 2 and
3’, consider the relation - contained in p(S) x S such that, for every
X C S and every x € 5,

(1) XFz iff zeCn(X).
It is easy to see that I satisfies the following properties:
(r1) If x € X then X I z.

(r2) f XFzxand X CY then Y I z.

(r3) f XFxzand Y F X then Y a4
On the other hand, any relation = C p(S) x S originates, by means of

the definition (I), a mapping Cn : p(S)—p(S) satisfying Axioms 1,
2 and 3, provided that - enjoys properties (rl), (r2) and (r3). It fol-
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lows immediately that there exist a bijective correspondence between
consequence operators satisfying Axioms 1, 2 and 3’ and consequence
relations satisfying properties (rl), (r2) and (r3). As a matter of fact,
it is easy to prove that any relation b satisfying (rl) and (r3) must
satisfy (r2). Thus, a Tarskian logic system can be presented through a
consequence operator satisfying Axioms 1, 2 and 3’ or by a consequence
relation satisfying properties (rl) and (r3).

Later on, it was incorporated another important ingredient to the
definition of a logic system: the concept of abstract logical connective.
Thus, the set S of sentences is considered to be generated by a set of
operators (called connectives). In other words, the set S is an abstract
algebra, as it was observed for the first time by A. Lindenbaum. Using
this notion, J. Lo$§ and R. Suszko introduced in 1958 an additional
axiom for a consequence operator (cf. Lo§ & Suszko (1958)):

(R) If X C S and e:S—S is a substitution® then

e[Cn(X)] C Cn(e[X]).

In terms of consequence relations, axiom (R) is equivalent to the fol-
lowing:

(R)’ If X C S and €: S—S is a substitution then

X F x implies that e[X]F e(z).

This means that the logical inferences are stable by substitutions. Just
for exemplifying, if {p1, (p1=p2)} F p2 is valid in a given logic (where =
denotes an implication) then we should expect that {¢, (p=¢)} F ¥ is
still valid, for every formula ¢ and . A logic system enjoying property
(R) (or, equivalently, (R)’) is called structural.

In the seminal article Abstract Logics (cf. Brown & Suszko (1973)),
it was initiated an extensive study of general logics, using an interest-

4The expression Y F X is an abbreviation for “Y I y for every y € X”.
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ing analogy between logic and topology. In this article they intro-
duce general logic systems called closure spaces, in analogy with Ku-
ratowski’s closure operator defined to characterize topological spaces.
Formally:

Definition 2.2 (Brown & Suszko, 1973) Let S be a non-empty set
of entities called sentences. A closure space is an ordered pair (S,Cn)

such that Cn : p(S)—p(S) is consequence operator satisfying Axioms
1, 2 and 3’ defined above. O

Continuing with the analogy between abstract logic and general topol-
ogy, the morphisms between closure spaces are defined as being closure-
preserving mappings.

Definition 2.3 (Brown & Suszko, 1973) Consider two closure spaces
(S1,Cnq) and (S2,Cn2). A continuous mapping f from (Si,Cny)
to (Sa2,Cng), denoted f : (S1,Cni)—(S2,Cn2), is a mapping [ :
S1— S5 such that f[Cni(X)] C Cna(f[X]) for every X C 5. O

Note that this is exactly the definition of a continuous mapping between
topological spaces given in general topology. In terms of consequence
relations, this is equivalent to the following: if 1 and Fo denote the
consequence relations corresponding to the given closure spaces, then,
for every set X U {z} C Si:

X k1 x implies that f[X]Fa f(x).

We can say that this definition of translation inaugurated the mod-
ern era of translations between logic systems.

In the same article, the authors consider more sophisticated closure
spaces in which the set S of sentences is an abstract algebra generated
by a set of connectives. Consequently, it is introduced the following
definition:

SA substitution is an endomorphism, that is, a mapping € : S—S such that
ele(z,...,zn)) = c(e(z1),...,e(xn)) for every n-ary connective c¢ and every
T1,...,Ln €S.
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Definition 2.4 (Brown and Suszko, 1973) A pair (A, Cn) such that A
is an abstract algebra with domain |.A| and (|.A|, Cn) is a closure space
is called an abstract logic. An abstract logic is said to be structural if
it satisfies property (R) above. |

The definition of translation between abstract logics is obtained by gen-
eralizing in a natural way the concept of continuous mappings between
closure spaces.

Definition 2.5 (Brown and Suszko, 1973) A logical morphism
f: (A1,Cny1)—(A2,Cng) from an abstract logic (A;,Cnp) to an
abstract logic (Ag, Cng) of the same type is a continuous mapping
f {JAi1],Cn1)—(]Az|,Cny) which is also an homomorphism
f: Aj— Ay of algebras.® O

Brown and Suszko’s definition of logic morphism is what today is nor-
mally used as the definition of translation between logic systems (even
in the context of combinations of logics). This definition of morphism
between logics, whereas is well-behaved in the sense of Category The-
ory and it is easy to manipulate, it is however a bit tight for some “real”
applications: most of the usual mappings between concrete logics are
not logic morphisms.

A new concept of translation between abstract logics, more flexi-
ble than the notion of logical morphism, was introduced in Wéjcicki
(1988): a logic system is, again, a pair (X, Cn) such that ¥ = (X, )nen
is a propositional signature, that is, a family of sets such that X, is
the set of connectives of arity n.” The algebra of formulas is then

5An homomorphism f : Ai— Ay of algebras of the same type T is a mapping
f : |Ai|—|Az| such that, for every n-ary connective ¢ of 7, f(c*(z1,...,2,)) =
cA2(f(x1),..., f(x,)) for every x1,...,%, € |Ai|. Here, as usual, ¢* denotes the
interpretation in the algebra A of the n-ary connective ¢ of 7.

TOf course, from the point of view of Universal Algebra, to give a signature ¥ is
equivalent to give a type 7; we prefer to slightly modify the original presentation of
Wjcicki (1988) and introduce the concept of propositional signature, that will be

used in the rest of this paper.
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freely generated by > from a fixed denumerable set V of propositional
variables (the atomic formulas). The set of formulas generated by X is
denoted by L(X). The consequence operator Cn is defined as in Brown
& Suszko (1973), that is, satisfying Axioms 1, 2 and 3’. On the other
hand, the translations are a bit more elastic:

Definition 2.6 (W¢jcicki, 1988) Given two logics (X,Cn) and
(X', Cn'), a translation f : (X,Cn)— (X', Cn’) is a continuous map-
ping between the underlying closure spaces such that:

e There exists a formula vy(p1) € L(X’) depending just on proposi-
tional variable p; such that f(p) = vo(p) for every variable p € V.

e For every n-ary connective ¢ € ¥, there exists a formula

@c(p1s---,pn) € LX)

depending on the variables p1, ..., p, such that, for every formu-
las ¢, ..., 9, € L(X) it holds:

f(c(wla s a¢n)) = @C(f(u}l)v .- ,f(?/)n))

|

It is worth noting that all the “classical” translations between concrete
logics which appeared in the literature (such as the translations of
Glivenko, Godel and Gentzen) are, from the linguistic point of view,
translations in this sense. This approach is more convenient because
is more elastic, however it is more difficult to work with, and some
categorial properties are lost.

The ideas of Brown and Suszko were generalized, in a certain sense,
by J.-Y. Béziau in his research program on Universal Logic. Under
his perspective, a logic system is just a pair (S,F) such that S is a
set of entities (sentences), not necessarily being a free algebra (that
is, not necessarily generated by connectives), and F is a consequence
relation without any required property. The concept of translation
between such structures coincides with that of Brown and Suszko.
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Thus, a translation f : (S1,F1)—(S2,F2) between logics is a mapping
f : S1—S such that, for every set X U {x} C Si:

X b1« implies that f[X] 2 f(x).

The main goal of universal logic is to determine the domain of validity
of certain metatheorems (for instance, the completeness theorem), as
well as to obtain general formulations of such metatheorems. See, for
instance, Béziau (1994).

On the other hand, Campinas group on logic (GTAL) developed,
during the second half of the 90’s, a research program on transla-
tions between logics, with emphasis on conservative translations, in
the same line as Brown and Suszko’s closure spaces and their continu-
ous maps. Despite some of the results and definitions obtained in this
research were already presented in Brown & Suszko (1973), several
interesting examples of conservative translations between “concrete”
logics were given. See, for instance, da Silva, D’Ottaviano & Sette
(1999), Feitosa (1997), D’Ottaviano & Feitosa (1999) and D’Ottaviano
& Feitosa (2001).

Another important mark in the development of general logic sys-
tems was the introduction, in the article Goguen & Burstall (1984),
of the concept of institutions (the interested reader would consult in-
stead the paper Goguen & Burstall (1992), considered the basic paper
on the subject). Inspired by institutions, the article Meseguer (1989)
introduced the notion of general logics (see also Cerioli & Meseguer
(1993)). Both concepts (institutions and general logics) heavily rely on
Category Theory, so the reader not acquainted with the basic notions
of Category Theory can skip the rest of this section.

Institutions generalize Tarski’s notion of truth, by substituting “vo-
cabularies” by (abstract) signatures, and “translations among vocabu-
laries” by abstract (categorial) morphisms between objects, called sig-
nature morphisms. The set of sentences are then parameterized by
abstract signatures (as it was done above, when the sets L(X) of sen-
tences were parameterized by “concrete” signatures ). In the general
case, we substitute the constructor L by a functor Sen : Sign—Set.
Since Sen is a functor then, for every signature morphism f : X—Y/,
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there is a mapping Sen(f) : Sen(X)—Sen(¥’). On the other hand,
a contravariant functor Mod assigns to every signature Y its class of
models, in such a way that, if f : ¥—Y' is a signature morphism
then Mod(f) : Mod(X)—Mod(X) is a mapping between the respective
classes of models (note that Mod is contravariant). This approach can
be generalized a bit, by considering categories of models (instead of
classes of models). In formal terms:

Definition 2.7 (Goguen and Burstall, 1984) An institution is a tuple
7 = (Sign, Sen, Mod, =) such that

e Sign is a category (of (abstract) signatures);

e Sen : Sign—Set is a functor, assigning to every signature X a
set Sen(X) of sentences;

e Mod : Sign—Cat is a contravariant functor, assigning to every
signature ¥ a category Mod(X) of models;

e | is a family indexed by the class |Sign| of signatures such that,
for every signature X, =y C [Mod(X)| x Sen(X) is a relation such
that, for every signature morphism f : ¥——3 the following sat-
isfaction condition holds:

M’ s Sen(f)(0) f Mod(f)(M') Ex ¢

for every model M’ € [Mod(X')| and every sentence ¢ € Sen(X).
O

In the definition above, Set and Cat stand for the usual category of
sets and the usual category of (small) categories, respectively. Also,
|C| denotes, as usual, the class of objects of a category C. The sat-
isfaction condition expresses the invariance of truth under “change of
notation”. The theory of institutions also generalize the duality be-
tween theories and model classes occurring in (first-order) Model The-
ory. Institutions were introduced as an abstract model theory applied
to Computer Science, appropriate for developing concepts of specifica-
tion languages such as structuring of specifications, parameterization,
implementation, refinement etc.
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It is important to notice that a given institution characterizes a
single logic system (presented “semantically”). This means that the
multiplicity of “semantical consequence relations” contained in an insti-
tution constitute, in fact, just a unique consequence relation, expressed
in different “vocabularies” or “notations”. So, given an institution, a
translation (a morphism in Sign) f : ¥—X' is not anymore a basis
for a logic translation, as in the case of Brown and Suszko’s abstract
logics, but represents just a “change of notation” for the unique logic
system underlying the institution. In other words, the translations are
not logic translations, but vocabulary translations. The correspondent
notion of logic translation between institutions is given through the
concept of morphisms of institutions.

Whereas institutions are very abstract logics presented “semanti-
cally”, the entailment systems (cf. Meseguer (1989)) are a kind of (ab-
stract) syntactical counterpart (consult also Cerioli & Meseguer (1993)
for more details on general logics). Formally:

Definition 2.8 (Meseguer, 1989) An entailment system is a triple £ =
(Sign, Sen, =) such that

e Sign is a category (of (abstract) signatures);

e Sen : Sign—Set is a functor, assigning to every signature X a
set Sen(X) of sentences;

e I is a family indexed by the class |Sign| of signatures such
that, for every signature X, Fy C p(Sen(X)) x Sen(X) is a con-
sequence relation satisfying (rl) and (r3) such that, for every
signature morphism f : ¥—X' and every set of sentences I" U
{¢} C Sen(X), the following holds:

I'Fy ¢ implies Sen(f)[I'] Fxr Sen(f)(¢p).

|

The same remark about the unicity of the consequence of a given in-
stitution applies to entailment systems: there is just one (“syntacti-
cal”) consequence relation represented by a given entailment system.
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On the other hand, each “notation system” (signature) determines an
specific representation of the consequence relation on that signature.

As mentioned above, a logic translation between institutions can
be obtained through the concept of morphisms of institutions. The
definition of morphisms between institutions (as well as between en-
tailment systems) is a bit complicated and goes out of the scope of
this paper, therefore we will not give the details here. The basic idea
is that they are truth-preserving translations from one logical system
into another. This means that they generalize the notion of translation
between abstract logics of Brown and Suszko. Moreover, it is also con-
sidered the concept of conservative morphisms, which generalize the
idea of conservative translations.

This section was devoted to briefly review relevant points in the
development of a theory of general logic systems. In the next section
we will discuss a different approach to logic systems, based on Model
Theory.

3. FORMAL METALANGUAGES FOR ABSTRACT LOGICS

When used in particular cases with limited scope, the meaning of
a translation between logics is clear, as the historical examples in the
literature show. However, when considered in the broader perspective
of abstract logics, the question “What does a translation really pre-
serve?” is in fact intriguing. If a logic £; is translated “in the best
possible way” into a logic £o, are there any distinctions between them?

The fundamental point here is the following: in order to give a sat-
isfactory answer to these questions, it is necessary to develop a theory
capable of expressing the general meta-properties of abstract logics, as
well as explaining the full meaning of translations between them.

In the paper Coniglio & Carnielli (2002) it was introduced a formal
framework based on Model Theory for representing, at the meta-level,
abstract logics and their translations. All the definitions, results and
examples contained in this section are taken from the above mentioned
paper. This section presupposes some basic knowledge of Model The-
ory.
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We could be tempted to claim that, if f is a conservative translation
between logics £1 and £, then the meaning of £1 is preserved within
£9. Two simple examples contradict this claim:

(1) It is easy to see that a non-injective conservative translation is
not enough to preserve intrinsic properties of logics. In fact, any trivial
logic® £ can be conservatively translated into any other logic £5 which
merely satisfies {b} Fg¢, b for some formula b. The translation mapping
f: £1—L9 given by f(a) = b for every formula a of £ is a conser-
vative translation, as it can be easily checked. This means that the
triviality of £1 is “conservatively” codified in £o by the single inference
{b} kg, b. Additionally, this example shows that trivial theories are
not preserved by conservative translations: it suffices to assume in the
example above that {b} t/g, b’ for some formula b’ of £5. In this case,
the trivial logic £ is conservatively translated into the nontrivial the-
ory generated by {b}. (2) On the other hand, conservative translations
do not work well outside the realm of Tarskian logics: if f : £1— %9
is a non-surjective conservative translation such that £ does not sat-
isfy (r3), then the equivalence between formulas of £; is not necessarily
preserved by f.

As we shall see later, the failure of conservative translations showed
in both examples above can be explained by a meta-level analysis: in
both cases, certain metalinguistic existential properties are not pre-
served by the image of £; under translation f. This can be precisely
formalized in the model-theoretic framework to be described now.

The basic idea is to consider a general notion of attribute of logics,
which formalizes any n-ary relation between formulas and/or sets of
formulas. For instance, the consequence relation - of a logic is a relation
between sets of formulas and formulas of that logic. On the other
hand, any n-ary connective is a (functional) relation between n-uples
of formulas and formulas. A mapping between abstract logics (which
is called a transfer) should preserve attributes; translations between
logics are therefore special cases of transfers.

8A logic is said to be trivial if ' - a holds for any set T' U {a} of formulas.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 231-262, jul.-dez. 2005.



NOTION OF TRANSLATIONS LOGICS 245

From now on, abstract logics are defined as being two-sorted, first-
order structures (with one sort for sets of formulas, and the other sort
for formulas). On the other hand, transfers are morphisms between
such structures, in the sense of Model Theory. Formally:

Definition 3.1 The basic language of abstract logics is the first-order
two-sorted language I given by

L = {form, Sform} U {e,} U {y,s} U {0}

where {form, Sform} is the set of basic sorts of L, ¢ and F are predi-
cate symbols of sort form x Sform and Sform x form, respectively;
U : Sform x Sform—Sform and s : form—Sform are function
symbols; and 0 is a constant of sort Sform. O

Asusual, we will write 7 ¢ T, T - 7 and TUZ instead of e(7, 1), (T, 7)
and U(Y, =), respectively. Variables of sort form and Sform will be
denoted by x,y,z and X,Y, Z (possibly with subscripts), respectively.

The models for the basic language are defined as being the abstract
(propositional) logics.

Definition 3.2 An abstract logic’ £ is a two-sorted structure for the
basic language LL of the form

L£=(A,Peg,le,Ug s¢,00)
satisfying the following set of axioms in L:
[Azl] (VX)(WW)(X =Y & (Vo)(ze X S zeY));
[Az2] (Vo) (Vy)(y e s(z) &y = x);

[Az3] (VX)(VY)(Va)(ze XUY & (zeX)V(zeY)));

9Please do not confound this notion with that introduced in Definition 2.4 under

the same name.
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[Az4]  (Vz)-(x € 0);
[Az5] (VX)AY)(Vx)(zeY & =(ze X));
[Az6] (VX)(IY)(Vx)(zeY & X Fx).

Let As be the set of axioms {[Az1],..., [Az6]}. If the language " is an
extension of IL, and £ is a structure for I/, we say that £ is an abstract
logic for the language I if £ restricted to L is an abstract logic. If a
logic £ is a substructure of another logic £/, we say that £ is a sublogic
of £. O

The minimal amount of set theory necessary to refer to single for-
mulas, sets of formulas, (finite) unions and the empty set is guaranteed
by the satisfaction of the set of axioms As. So, for example, [Ax1]
expresses extensionality of sets (in Leibniz’s sense), axiom [Az2] ex-
presses that s(z) is the singleton set just containing the element x, and
[Az6] establishes that, for each set X, there exists the set of logical
consequences of X.

Despite the equality symbol “=" is always interpreted as the iden-
tity relation, it is possible to have non-standard models, in which the
set P is not necessarily a subset of the powerset p(A) of A, or where
the interpretation of the singletons s(z) might not be real singletons,
and so on. A model is said to be standard if P C p(A), and the symbols
€, U, s and 0O are interpreted with its usual set-theoretic sense; in par-
ticular, Og¢ is the empty set (). Fortunately, it can be proven that every
abstract logic is isomorphic to a standard abstract logic. Because of
this, from now on every abstract logic is assumed to be standard. Since
in a standard model the mention to the set-theoretic symbols is super-
fluous, they shall be omitted from now on. Thus, a (standard) abstract
logic £ will be simply denoted by £ = (A, P,Fg¢). It is important to
observe that P is a Boolean algebra w.r.t. the set-theoretic operations,
such that ) € P and A€ P; {a} € Pifa€ A,and {a : T'Fga} € P
if I' € P. An interesting particular case is when P = p(A).

Despite the language L is powerful enough to express meta-proper-
ties of logics, it is bounded by the well-known limitations of first-order

”
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logic. In particular, using the compactness theorem for first-order logic,
it is easy to prove that there is no set ¥(X) of formulas (just depend-
ing on the variable X of sort Sform) in any extension L of L with
the following property: a (standard) logic £ satisfies ¥(X) with para-
meter I' iff the set ' is finite. Thus, meta-properties of logics such as
compactness cannot be expressed in any extension of L.

The notion of attribute of a logic and attribute-preserving mappings
is can be formalized as follows:

Definition 3.3 Let " be an extension of L.

(i) An attribute of an abstract logic £ over I’ is just an element of L.
(i) Let £; be abstract logics over L' such that formg = A; and
Sformge, = P; (i = 1,2). A transfer from £ into £ is a morphism
(T, Ty) : £1— L9 of L'-structures such that T,(T") = T[] for every
I' e P;. If L' = L then a transfer is called a translation. O

Since the mapping T} is redundant in a transfer (T,7) : £,—£o
(because it is obtained from T'), from now on it will be omitted, and
we will simply write T': £;—£o.

It is worth noting that, if L' = L and T : £,—£s is a transfer
(that is, a translation), then

I'bg, a implies that T[] g, T(a),

that is, the usual definition of translation in the sense of Brown &
Suszko (1973) is recaptured. Inspired by this, we will say that a transfer
T : £1— L5 is conservative if, for every I' € P, and every a € Ay,

I'ke, a ifandonlyif T[I kg, T(a).

If T: £ —%y is a conservative transfer and P} = @(A;) then the
image T'(£;1) of £1 under T (which is always a substructure of £9) is
also an abstract logic, that is, it satisfies As (see Definition 3.2).

The approach to abstract logics as model-theoretic structures can
take profit from results from Model Theory, obtaining results about
the preservation of meta-properties.

Thus, it can be proven that the ultraproduct of a family of abstract
logics over a language I’ is a (standard) abstract logic over L', as a
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consequence of Lo$’s theorem. More importantly, if a logic £ satisfies
a set T of II%-formulas (that is, formulas of the form (Vvy - --Voy,)i,
where each v; is a variable of sort form or sort Sform, and 1 has no
quantifiers) then every sublogic £ of £ also satisfies T. Now, consider
an abstract logic £1 such that P; = p(A;). If T': £,— £ is a transfer
then

£1 ): gp[al,...,an;l“l,...,l“m]
implies that

22 ): (p[T(al), . ,T(an); T[Fﬂ, . ,T[FmH

for every positive formula ¢, every (ai,...,an,) € A} and every
(T1,...,Ty) € P10 In particular, considering that T(£;) is a logic
(whenever T is conservative, c.f. remark above), if £; satisfies a set T
of positive properties then, for every conservative transfer 7' : £1—£o,
the logic T'(£1) also satisfies T.

By observing that I/ is a formal metalanguage in which we can
express a wide class of meta-properties of logics, the model-theoretic
results just mentioned have a deep logical content, showing that this
formalism is very appropriate to analyze the meaning of translations
between logics.

Abstract logics are very general: no conditions are imposed on the
consequence relation . Moreover, no connectives are considered in the
set of formulas. In this sense, abstract logics generalize the logics stud-
ied by Universal Logic (see Section 2). However, it is easy to restrict
our attention to Tarskian logics, by requiring the satisfaction of the
following axioms:

Al (VY)Ent(Y,Y)
[A2]  (VY1)(VYa)(Va)((Ent(Y1,Yas) A (Ya F 2)) — Yi b 2)

where Ent(Y1,Ys) stands for (Vy)((y e Ya) — (Y1 F y)). Clearly [Al]
and [A2] express, in the formal metalanguage L, properties (rl) and
(r3) of Section 2, respectively. Thus, an abstract logic £ is Tarskian iff
satisfies [A1] and [A2].

10Recall that a formula ¢ is positive if it has no occurrences of — and —.
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On the other hand, if we want to consider logics in which the set
of formulas is an algebra generated by a set of connectives (as in the
case of “concrete” propositional logics, or as in the case of Brown and
Suszko’s abstract algebras, recall Definition 2.4), it is enough to add
to L a function symbol ¢ : form"—form for each n-ary connective
¢, obtaining an extension IL” of L. This technique is used, for instance,
in abstract algebraic logic, to encode a logic through a (first-order)
equational theory (see, for instance, Blok & Pigozzi (1989)). More-
over, given a Hilbert-calculus H, it is straightforward to obtain a set
of axioms R in I encoding the axioms and inference rules of H. Thus,
the least L'-structure satisfying As U R U {[A1], [A2]} is an abstract
logic £y encoding the Hilbert calculus H.

Now we are ready to explain the failure of conservative translations
in examples (1) and (2) at the beginning of this section. In the case
of the first example, consider the formula 1 (X) given by (Jy)(X V/ y).
Then £5 E ¢(X)[T(T)], but the witness y — b’ does not belong to
T(£1). The key is that T(£;) is not an elementary substructure of
Lo, that is, T' is not an elementary embedding. The second example
is justified by the same reason: consider the formula ¢(z, z) given by
(Fy)((s(x) F y) A (s(z) ¥ y)). Then it is easy to find logics £ and
L9, and formulas a,b € A; such that £9 = ¢(z, 2)[T(a), T(b)], but the
witness y — b’ lies outside the image of T'. Again, one explanation for
this phenomenon is that 7'(£;) is not a elementary substructure of £o.

But then what is, after all, a “good” notion of translation which pre-
serves “as much as possible” the properties of £; into £57 Of course,
a “good” translation could be defined as being an isomorphism, but
this is quite a strong requirement. Looking at the examples above and
the model-theoretical setting presented here, it seems that the notion
of elementary transfer, that is, a transfer which is an elementary em-
bedding, captures our intuitions at the right level. In fact, the concept
of elementary transfer is an intermediate notion between conservative
translation and isomorphism, which characterize the transference of
“meaning of logics” (given by attributes, recall Definition 3.1) in a
good way.
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By the very definition, an elementary transfer between logics £
and £ defined in I/ is a transfer T : £;——£9 satisfying the following
property: for any formula p(z1,...,Z,; X1,...,X;n) in L' and for any
tuples @ = (ay,...,a,) € A7, [ = (I'1,...,T'wm) € P, the following
holds:

L1 = ol@:T] iff € E o[T(ar),...,T(an); T[T, ..., T[Cwll.

As a consequence of this, the logic £1 is “faithfully encoded” within £
through T'. It should be noted that, as a consequence of the definition,
an elementary transfer is an injective mapping, but it is not necessarily
a surjective mapping. If T is an elementary transfer then any existential
property of the form (3z)¢ or (3X ) which is satisfied by £; it must
be also satisfied by £o throughout T'(£1); that is, there must exist a
“witness” in £9 of the form T'(a) or T[I'], respectively.

Transfers T : £1—£5 such that, for every I' € P; and every a € Ay,

ke, a ifandonlyif T[Fge, T(a)

(and, in particular, when I = L, conservative translations) are, in
fact, a very important measure of similarity between £; and £, but
this cannot be overestimated. If T" is not injective, then example (1)
at the beginning of this section shows that a non-injective conservative
translation could be useless. Thus, if we restrict ourselves to injective
conservative transfers, formulas such as ¢(X), given by (Jz)—-(X  z),
or ¢(x), given by (3X)(X F x), contradict the slogan “I" encodes £;
within £5”, in case that T is not surjective. Another interesting ex-
ample (corresponding to example (2) given at the beginning of this
section) is the formula ¢(x, z) given by (Fy)((s(z) F y) A (s(2) ¥/ v)),
mentioned above. In all of these examples, the “witness” for the ex-
istential quantifier could be an element of Ay or P», not belonging
to T[A1] or T,[P1], respectively (because we are assuming that T is
not a surjective mapping). That is, a conservative transfer which fails
to be injective or surjective could not translate faithfully £; into £».
This means that the only possibility would be to consider bijective

"Recall that lower case letters denote variables of sort form, whereas capital
letters denote variables of sort Sform.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 231-262, jul.-dez. 2005.



NOTION OF TRANSLATIONS LOGICS 251

conservative transfers. But in the case of the basic language L, this is
equivalent to require that 7' is an isomorphism, quite a strong require-
ment.

This analysis shows that elementary transfers (in particular, ele-
mentary translations), as already noted, constitute an interesting point
of equilibrium: they preserve all the relevant properties of £ within
the logic £9, but the stronger requirement of 7' being surjective (and,
therefore, an isomorphism) is avoided.

Of course we could consider injective conservative transfers pre-
serving some classes of existential formulas. Under this perspective,
the more existential formulas are preserved, the “better” the transla-
tion. In particular, a basic requirement is to preserve trivialization, in
the sense that T'[['] kg, T'(a) for all @ € A; implies that T[] Fg, b
for all b € Ay. In this sense, the “classical” translations of Godel,
Glivenko and Gentzen from classical logic into intuitionistic logic are
“good”, since they preserve the bottom particle. This a consequence
of the following fact: if £; and £5 are two (standard) logics over a ex-
tension " of L containing a constant | such that £; E (Vz)(s(L) F x)
(1 =1,2), and if £9 satisfies

(VY1) (V¥2) (V) (Vy)[(Y1 - 2) A (YaUs(z) Fy))—=(Y1U Y2 Fy)]

(the cut property) then, for any transfer T : £,—£9 and any I" € Py,
the following holds: T'[I'] k¢, T'(a) for all a € Ay implies that T'I'| kg, b
for all b € A.12

By observing this kind of examples, it would be interesting, as sug-
gested above, to think about a wide range of increasingly “better” no-
tions of translations, depending on the amount of existential formulas
that are preserved.

We hope that the discussion about conservativeness of attributes
of logics through translations, under the model-theoretic perspective
presented in this section, can throw some light to the question about
the meaning of translations between logics. In the next section we

20bserve that, since L is a constant, T(Lg,) = Lg,. From this the result

follows easily.
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will analyze the importance of preserving meta-properties of a special
kind by translations, in the realm of combination of logics. This analy-
sis provides additional evidence in favor of the thesis proposed here:
(most of) meta-properties of a logic should be preserved by a logic
translation.

4. META-TRANSLATIONS FOR COMBINING LOGICS

In recent years the subject of combination of logic systems has
grown up considerably, and a number of news methods have been de-
veloped, whereas techniques already established were improved.

In general, if £1 @ Ly is the logic system obtained by combining
logics £1 and Lo (using some method), then it is expected that £1® Lo
should be the “least” logic system (under some measure) that “ex-
tends” both £1 and L2 (in a certain well-defined sense). The concrete
meaning of the expressions between quotation marks depends on each
combination method.

As a consequence of this, it seems clear that, in general, a method
for combining logics presupposes or requires at least two tasks:

(i) to represent logics systems in a general way; and (ii) to have a
good theory of translations between logics, able to formalize the notion
of extension. This is why the topic of combining logics is relevant to
our discussion here.

Translations between logics, in the sense of Brown and Suskzo, are
usually employed for any method for combining logics. In the case of
decomposing logics into simpler logics, translations are fundamental
for the technique known as possible-translation semantics, introduced
in Carnielli (1990). The basic idea of this method is to analyze a given
logic £, which is not well-known or it is hard to deal with, by means of
translations f; : L—L; (i € I), where each £; is a logic generally sim-
pler than £. The basic property of each translation f; is the usual: the
mapping f; must preserve the consequence relation. At the linguistic
level, these translations are frequently defined as in Definition 2.6, but
sometimes they are a bit more complicated. See, for instance, Marcos
(forthcoming) for some examples of possible-translations semantics.
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On the other hand, there are methods for composing logics, that
is, for obtaining a logic £1 & L3 as a result of combining £1 and Lo, as
it was mentioned at the beginning of this section. Fibring, introduced
in Gabbay (1996), is one of the most developed techniques for com-
posing logics. From the seminal paper Sernadas, Sernadas & Caleiro
(1999), this method can be expressed in terms of Category Theory as
a coproduct of the given logics, computed in the category in which
the logic systems are being represented.'® Independent of the category
chosen for representing the logic systems (consequence relations in the
sense of Definition 2.4, Hilbert calculi, logics presented semantically
etc.), the notion of morphism between logics systems is required to
satisfy the same basic property: all of them must preserve the logical
inferences.

At first sight, it seems reasonable to adopt this point of view: if
we want to define the least (conservative) extension L£; & Lo of the
logics £1 and Lo, then the inclusion maps f; : £L;— L1 ® Lo should
be (conservative) translations. This is rather obvious. If we recall
the model-theoretic analysis of meta-properties preserved by logic mor-
phisms made in Section 3, this is equivalent to say that the morphisms
to be considered preserve (positive) meta-properties of the form ' F .
Of course the preservation of negative meta-properties of the form I' t/ ¢
is, in general, inappropriate for combining logics: it is absolutely plau-
sible to have a situation in which I' /£, ¢ in the logic £;, whereas
I' bz oc, ¢ in the richer combined logic £1 & Lo (note that, in this
case, L1 @ L9 is a non-conservative extension of £1).

3 This is the case of the so-called unconstrained fibring. There is another kind
of fibring called constrained fibring, in which some connectives of the given logics
are allowed to be shared. This operation can also be described in terms of Category
Theory but, by simplicity, and since this goes out of the scope of this paper, we will

not give the details here.
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In order to keep things simple just consider two categories of logic
systems:'* Hil and Con, formed by logic presented by Hilbert calculi
and (Tarskian, structural and compact) consequence relations, respec-
tively. Both categories are based on a fixed category Sign of signa-
tures, and so a logic is a pair (X, R) (in the case of Hil) or a pair
(3,F) (in the case of Con) such that X is a signature (recall the dis-
cussion just before Definition 2.6), that is, an object of Sign; R is a
set of inference rules over the propositional language L(X), and F is
a Tarskian, structural and compact consequence relation defined over
L(X).1 At the linguistic level, the morphisms in Sign are generally
defined as being homomorphisms between the algebras of formulas, as
in Brown and Suszko’s approach (recall Definition 2.5), or can be a
bit more elaborated, as in Wdjcicki’s approach (recall Definition 2.6).
As mentioned above, a morphism between logics in Hil or in Con is a
morphism in Sign which preserves the logic inferences, that is, a trans-
lation in the sense of Brown and Suszko. Thus, an injective morphism
i : L1— Lo in Hil or in Con is an injective morphism 7 : 31—
in Sign between the respective signatures such that: I' g, ¢ im-
plies i[I'] k£, i(¢). In other words, the logic £y is a (not necessarily
conservative) extension of L1, through the injective syntactic transla-
tion i. As mentioned above, the fibring of two logics systems (in Hil
or in Con) is the coproduct of the systems (computed in Hil or in
Con, respectively) and the signature of the obtained system is the co-
product (in Sign) of the respective signatures. As a matter of fact,
the coproduct in Con is given by the supremum of (the embedding of)

11n the sequel, me will use, again, some basic terminology from Category The-
ory. The reader not familiar with these terms just can ignore them, because they are
not strictly necessary for understanding the main ideas underlying the arguments.

5Note the difference between this approach and the notions of institutions and
entailment systems (recall Definitions 2.7 and 2.8): in the latter, each individual
logic owns a category of signatures (“notations”), whereas in the present approach
there is a fixed category of signatures, and each logic system is presented in a single

signature (object of Sign).
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the given consequence relations, computed in the (complete) lattice of
consequence relations over the coproduct signature.

In Coniglio (forthcoming) it was observed the following phenom-
enon: suppose that we try naturally to recover classical logic, defined
over the language consisting of negation and disjunction, from its basic
logical component (that its, the rules for negation, on the one side, and
the rules for disjunction, on the other), by combining both components
using fibring. Surprisingly, the result in both Hil and Con is a logic
weaker than classical logic, in which the formula (¢ V =) is not a the-
orem. In the case of Hil, this result is independent of the (sound and
complete) specific axiomatization chosen for each connective.

In the same article were given another examples of this phenom-
enon. For instance, it is impossible to obtain, by fibring in Hil or in
Con, classical logic by combining the logic of classical negation with
the logic of classical implication, against the expectations. In this case,
the formula ¢ = (—¢ = 1) does not hold in the resulting logic system.
Moreover, the deduction meta-theorem is no longer valid in the result-
ing logic: the formula 9 is always derivable from {¢, —¢}, despite there
are instances of ¢ = (—¢ = 1) which are not derivable, as it was just
mentioned. This means that certain (positive) meta-properties of the
given logics are missing through the process of fibring.

All the examples above show that the logics obtained by fibring are,
in some sense, too weak: some expected formulas cannot be derived.
This problem arises mainly because the only attribute of the logics
(recall Definition 3.3) that is preserved by fibring is the consequence
relation: if I' kg, ¢ then I' -2 ¢ holds in the logic £L = £ & Ly
obtained by fibring. As discussed in Section 3, a (meta)formula of the
form I' £, ¢ is a meta-property of £, a basic one indeed. But, for
instance, a meta-property such as the deduction meta-theorem

Dobe, v iff ke, o= 9

is a more complex meta-property of L1, that would be also preserved
by fibring. However, as it was showed, frequently this is not the case.
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In the case of the combination of negation with disjunction, the meta-

property
Loy A-pb9
ARY

of the consequence relation - associated to the logic of classical nega-
tion was not preserved by the fibring based on usual translations. The
inclusion (mono)morphism i : £1— L1 @ L4 above mentioned just pre-
serves the consequence relation, that is, basic facts of the form “I" - ¢©”,
and not more complex statements (recall the formalized metalanguage
for logics described in Section 3). In Coniglio (forthcoming) were intro-
duced categories of deduction systems (generalizing sequent calculi) in
which the morphism h : £ — L’ preserve meta-properties of the logics
of the form

If 't 21 and ... and I'y, 2 @, then 'k, .
In other words: from a meta-property of £ of the form

If W Fr o1 and ... and '), F2 @, then T' . @
the following meta-property of £’ must be deduced:

If A1) bFg h(p1) and ... and h[ly,] Fo h(pn)
then h[['] Fr h(p).

As a consequence of this, when a logic system is embedded in a larger
one by fibring then any meta-property (of the form above) is preserved
by the canonical injection, by the very definition of morphism. The re-
sulting operation is accordingly called meta-fibring, and the morphisms
preserving this kind of meta-properties are called meta-translations.
Observe that a meta-translation is weaker than an elementary trans-
fer, that is, an elementary embedding with respect to the formal-
ized metalanguages described in Section 3. On the other hand, it is
stronger than the usual notion of translation (or transfer): usually,
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a first-order morphism just preserves positive formulas, and the meta-
properties preserved by a meta-translation are not positives, because
they contain a (meta)implication. The useful applications of meta-
translations to fibring theory show that meta-translations constitute
an interesting intermediate notion between usual translations and ele-
mentary transfers.

Another interesting example of the different results that can be
obtained by fibring using meta-translations in the place of translations
can be found in Béziau & Coniglio (2005). In this paper it was shown
that, in Con, the fibring of the logic £ of classical conjunction with
the logic L9 of classical disjunction produces a logic (over the signature
{A,V}) which is not distributive, that is, where the meta-property

OA (Y1 V) = (o Ah1) V(0 A o)

is not valid. The proof of this fact is simple: the consequence rela-
tion of the logic obtained by fibring in Con is the infimum (in the
complete lattice of the Tarskian, compact and structural consequence
relations over signature {A,V}) of the set of all the consequence rela-
tions containing the valid inferences concerning classical conjunction
and disjunction.'® The logic of lattices is one of them, however this
logic is not distributive (because there exists non-distributive lattices),
so the logic obtained by fibring cannot be distributive.

The explanation is the same that in the other examples of this sec-
tion: the meta-property

If Fuwl |_Cz ® and Aan I_EQ 2 then FvAawl \/1/}2 l_EQ ¥

of the logic Lo of classic disjunction does not necessarily hold in a
given logic extending Ls: in order to obtain the fibring where con-
sidered all the logics containing all the inferences (meta-properties
of the form I' F,, ¢) of L3, and not more sophisticated properties
of L£o. However, if the usual notion of translation between logics is
substituted by meta-translations, the distributivity law is recovered.

16This is the way the supremum of two logics is computed in this lattice.
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This shows that the same operation (coproduct, in this case) produces
very different results when the underlying notion of translation between
logics is changed. It should be noticed that the same result about the
non-derivability of the distributive law by fibring using translations can
be obtained in the category Hil (see Coniglio (forthcoming)). That is,
there are no (sound and complete) axiomatizations for the logics of clas-
sical conjunction and disjunction which allow to recover distributivity
when using standard translations for combining both systems.

Of course, it is possible to argue against the obtainment of distrib-
utivity by combining conjunction with disjunction: after all, this is a
new law of the mixed language and this could be seen as an unexpected
interaction (see Béziau (2004)). However, there are many contexts (for
instance, the question of recovering a logic from its basic components)
that justify the requirement of obtaining new interactions between the
connectives.

In general, some natural interactions between the rules or axioms
defining the connectives of the given logics are to be expected in the
combined logic. Any process of combination presupposes some kind of
interaction between the factors, and not the mere adjunction of them
(chemical processes are a good analogy here). All the examples given
above are characterized by the loss of some expected interactions. In
the case of the combination of negation with disjunction, the interaction
law (¢ V =) is not obtained, whereas ¢ = (—¢ = 1) is the interaction
law that is not valid in the combination of negation with implication.

To conclude, the examples given in this section from the area of
combination of logics support the idea that a stronger notion of trans-
lation between logics should be based on the preservation of meta-
properties stronger than the usual ones.

5. CONCLUDING REMARKS

This article reviewed several approaches to the question of the rep-
resentation of logic systems and their mappings, that is, the logic trans-
lations.
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From this brief analysis, it was supported the thesis that a notion
of translation between logics stronger than the usual one should be
based on the preservation of meta-properties. In Section 3 we saw
that a model-theoretic approach seems appropriate for formalizing the
meta-language in which the meta-properties of logic systems can be
expressed. Moreover, the notion of elementary transfer was found to
be an interesting notion of mapping which allows to “transfer” (first-
order) meta-properties of a logic into another, without requiring to be
an isomorphism.

Finally, in Section 4 we saw that the preservation of certain class
of meta-properties characterize a notion of translation (called meta-
translations) which is useful when applied to mechanisms for combining
logics.

Of course it is possible to disagree with some of the conclusions we
arrive. However, it is interesting to observe that the introduction of a
very general formal concept (in this case, translations between logics) is
connected with the applications we have in mind. The first definition of
translation between logics given by Glivenko today sounds very weak
for most applications; nevertheless, for the applications that it was
created (the proof of consistency of a logic relative to the consistency
of another logic) this definition was enough. Analogously, if we want
to recover a logic from its components, the usual notion of translation
between logics could not be enough, and the use of meta-translations
would be more appropriate. We hope that this discussion can help to
understand what is the meaning of a translation between logics in a
deeper sense.
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