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Abstract: A common misconception among logicians is to think that 
intuitionism is necessarily tied-up with single conclusion (sequent or Natural 
Deduction) calculi. Single conclusion calculi can be used to model 
intuitionism and they are convenient, but by no means are they  necessary. 
This has been shown by such influential textbook authors as Kleene, Takeuti 
and Dummett, to cite only three. If single conclusions are not necessary, how 
do we guarantee that only intuitionistic derivations are allowed? Traditionally 
one insists on restrictions on particular rules: implication right, negation right 
and universal quantification right are required to be single conclusion rules. 
In this note we show that instead of a cardinality restriction such as one-
conclusion-only, we can use a notion of dependency between formulae to 
enforce the constructive character of derivations. The system we obtain, 
called FIL for full intuitionistic logic, satisfies basic properties such as 
soundness, completeness and cut elimination. We present two motivating 
applications of FIL and discuss some future work. 
 
Key-words: Intuitionistic Logic. Multiple-conclusion systems. Dependency 
relations. 

 

INTRODUCTION 

Since Gentzen’s pioneering work it has been traditional to associate 
intuitionism with a single-conclusion sequent calculus or natural deduction 
system. Gentzen’s own sequent calculus presentation of intuitionistic logic, 
the famous system LJ, is obtained from his classical system LK by means of 
a cardinality restriction imposed on the succedent of every sequent. It is 
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well-known that Gentzen’s formulation of the system LK uses sequents 
expressions of the form Γ ⇒ Δ, where both  Γ and Δ may contain several 
formula occurrences. The intuition is that the conjunction of the formulas in 
Γ entails the disjunction of the formulas in Δ. In Gentzen’s calculus LJ for 
intuitionistic logic, sequents are restricted to succedents with at most one 
formula occurrence. This is convenient, but by no means necessary. Since at 
least Maehara’s work in the fifties (see Maehara 1954) it has been known 
that intuitionistic logic can be presented via multiple-conclusion systems. 
Maehara’s system is described in Takeuti’s influential book (Takeuti 1975), 
who calls it LJ’. Also Kleene in his monograph (Kleene 1952) presents 
systems which constitute multiple-conclusion versions of intuitionistic logic. 
But while both of these (classes of) systems stick to the idea that sequents 
can have multiple conclusions, they still keep some form of (local) cardinality 
restriction on succedents: the rules for implication right, negation right and 
universal quantification right must be modified in that they can only be 
performed if there is a single formula in the succedent of the premiss to 
which these rules are applied. If we don’t impose these (local) restrictions, 
the systems collapse back into classical logic. 

In the early nineties the authors devised a sequent calculus for 
(propositional) intuitionistic logic, the system FIL, where all rules may have 
multiple succedents, just as they do in classical logic. To make sure that 
classical inferences would not go through, we considered a relation of 
dependency between formulas and added a side-condition to the implication 
right rule based on these dependencies. In this way, cardinality restrictions 
(local or global) were replaced by restrictions based on control mechanisms 
over dependency relations. The original motivation for the work on FIL 
stemmed from Linear Logic. Martin Hyland and Valeria de Paiva were at 
that time working with full intuitionistic linear logic (FILL), that is, linear 
logic with the full class of additive and multiplicative operators, and in order 
to obtain sequent rules for an intuitionistic multiplicative disjunction, they 
needed multiple conclusion systems (Hyland and de Paiva, 1993). Their first 
attempt was to use Maehara’s LJ’, but this attempt was soon abandoned 
after the discovery of counter examples to cut-elimination (see Schellinx 
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1991)1. The idea of using dependency relations was given to the authors by 
Martin Hyland and it was used in different formulations for FILL. While 
working with FIL, de Paiva and Pereira realized that the intuitionistic system 
FIL could be used to solve the (old) problem of finding a cut-free system 
for the logic of constant domains. The logic of constant domains is an 
extension of intuitionistic first order logic (an intermediary logic) obtained by 
the addition of the axiom scheme (∀x(A ∨ B(x)) → (A ∨ ∀xB(x)), with x 
not free in A. The authors discovered afterwards that a FIL-like system had 
been independently worked on and published by Ryo Kashima and Tatsuya 
Shimura. Kashisma and Shimura (1994) is in fact the first published proof of 
the cut-elimination theorem for the logic of constant domains (see also 
Kashisma 1991), although they did not describe their system as based on a 
multiple succedent system for intuitionistic propositional logic itself.  

Another nice application of the basic intuition of FIL was found by 
Torben Bräuner, who presented (as far as we know, for the first time) a cut-
free system for the modal logic S5 (see Bräuner 2000). 

A natural deduction version of FIL, the system NFIL, was defined and 
studied by Ludmilla Franklin, who proved the equivalence between FIL and 
NFIL, and the normalization theorem for NFIL (Franklin 2000). 

The remaining part of this short note is organized as follows. We will 
give a rough description of the system FIL and its cut-elimination strategy. 
We then show in more detail how to obtain the two applications we 
mentioned above, to wit, the logic of constant domains and full intuitionistic 
linear logic. In the final part of the note, we discuss some possible 
extensions of the basic intuition of FIL. 

 
 

                                                 
1 The following counter-example was independently found by L.C.Pereira. 

p ⇒ p             ⊥, 0 ⇒ q 
 _______        ___________ 
p ⇒ p, ⊥       ⊥ ⇒ (0 -o q) 

_______________________ 
p  ⇒ (0 -o q), p 
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1. THE SYSTEM FIL (FULL INTUITIONISTIC LOGIC) 

In this section we present the sequent calculus FIL (for Full 
Intuitionistic Logic). FIL is a multiple-succedent intuitionistic system, where 
an indexing device allows us to keep track of dependency relations between 
formulas in the antecedent and in the succedent of a sequent. Dependency 
relations determine the restriction in the formulation of the rule for 
introducing implication on the right (⇒→), that guarantees that only 
intuitionistic valid formulas are derived. 

First we introduce some conventions and terminology we will be 
using throughout this paper. Formulas (ranged over by A,B) are built in the 
usual way from propositional variables, propositional connectives for 
conjunction ∧, disjunction ∨ and implication →, and the constant ⊥ for 
absurdity. As usual, negation ¬A is defined as (A → ⊥).  

 
Definition: A (decorated) sequent is an expression of the form  
 

A1(n1),…,Ak(nk) ⇒ B1/S1,…,BBm/Sm 

 
where - Ai for (1 ≤ i ≤ k)  and BBj for (1 ≤ j ≤ m) are formula; 

- ni for (1 ≤ i ≤ k) is a natural number and ∀i,j(1≤i,j≤k), ni≠nj. We 
say that ni is the index of the formula Ai; 

- Sj for (1 ≤ j ≤ m) is a finite set of natural numbers. We call Sj the 
dependency set of the formula BBj. 

 
Now, our decorated sequents have an index for each formula in the 

antecedent and a dependency set for each formula in the consequent. The 
main intuition is that the set of natural numbers Sj records which formulas 
in the antecedent the succedent formula BBj depends on. This extended 
notion of sequent can also be seen as a simplification of a term assignment 
judgement. Capital Greek letters like Γ and Δ denote sequences of indexed 
formulas either in the antecedent or in the succedent. 
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To describe the inference rules of our sequent calculus we need some 
notational conventions. Assume that the set of formulas Δ consists of B1 
/S1,…,BBm /Sm, 

- If S is any finite set of natural numbers, Δ[k|S] denotes the result of 
replacing each Sj in Δ such that k ∈ Sj by (Sj - {k}) ∪ S; 

- Δ[k,S’] denotes the result of replacing each S in Δ such that k ∈ S  
by S ∪ S’. 

 
The system FIL is given by the axioms and rules of inference below. 

We assume that in the case of the rules for conjunction on the right (⇒∧), 
disjunction on the left (∨⇒), implication on the left (→⇒) and Cut, the 
upper sequents of the premises have no index in common. This is in fact no 
strong restriction, since we can always rename the indices. 

 
The System FIL 

 
1. Initial axiom:   A(n) ⇒ A/{n} 
 
2. ⊥-axiom:  ⊥(n) ⇒ A1/{n}, . . . ,Ak/{n} 
 
3. Cut-rule:        Γ ⇒ Δ, A/S       A(n), Γ’ ⇒ Δ’ 
                        ___________________________ 
                                   Γ, Γ‘ ⇒ Δ, Δ‘* 
 
4.  Γ, A(n), B(m), Γ’ ⇒ Δ            Γ ⇒ Δ, A/S, B/S’, Δ’   
    ___________________(perm⇒)        _________________ (⇒perm) 
      Γ, B(m), A(n), Γ’ ⇒ Δ                       Γ ⇒ Δ, B/S’, A/S, Δ’ 
 
5.         Γ ⇒ Δ                                               Γ ⇒ Δ 
       ___________  (weak⇒)                    ___________  (⇒weak)                       
        A(n), Γ⇒Δ*                                      Γ ⇒ Δ, A/{} 
 
6.     Γ, A(n), A(m) ⇒ Δ                           Γ ⇒ Δ, A/S, A/S’ 
    __________________ (cont⇒)          _______________ (⇒cont) 
            Γ, A(k) ⇒ Δ*                                 Γ ⇒ Δ, A/S∪S’ 
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7.   Γ, A(n) ⇒Δ       Γ‘, B(m) ⇒Δ‘                  Γ ⇒ Δ, A/S, B/S’ 
      _______________________ (∨⇒)      __________________ (⇒∨) 
         Γ, Γ‘, (A∨B)(k) ⇒Δ*, Δ‘*                     Γ ⇒ Δ, (A∨B)/S∪S’ 
 
8.   Γ, A(n), A(m) ⇒ Δ                        Γ ⇒ Δ, A/S     Γ ⇒ Δ, B/S’ 
    __________________(∧⇒)          _______________________ (∧⇒) 
         Γ, (A∧B)(k) ⇒Δ*                             Γ ⇒ Δ, (A ∧ B)/S∪S’ 
 
9.   Γ ⇒ Δ, A/S    B(n), Γ‘⇒ Δ‘                   Γ, A(n) ⇒ Δ, B/S 
    _______________________(→⇒)    ___________________ (⇒→) 
      (A → B)(n), Γ, Γ‘ ⇒ Δ, Δ‘*               Γ ⇒ Δ, (A → B)/S - {n} 
   
Comments on the rules: 

1) In the cut-rule, Δ‘* = Δ‘[n|S]. 
2) In the rule (⇒weak), n is a new index and Δ* is obtained from Δ 

through the introduction of n in at least one S in Δ. 
3) In the rule (cont⇒), k = min(n,m), and Δ* = Δ[max(n,m)|{k}]. 
4) In the rule (∨⇒), k is a new index, Δ* = Δ[n|{k}] and Δ‘* = 

Δ‘[m|{k}]. 
5) In the rule (∧⇒), k = min(n,m) and Δ* = Δ[max(n,m)|{k}). 
6) In the rule (→⇒), Δ* = Δ‘[n,S]. 
7) Finally, and most importantly, in the rule (⇒→) we have the 

restriction that n ∈ S and that for every other S’ in Δ, n ∉ S’. If the 
restriction is satisfied, it means that no other formula in Δ depends 
on the indicated occurrence of A. 

Let us illustrate how the system works with two examples of 
derivations. 
 
Example 1: 

A(1) ⇒ A/{1} 
_____________________ 

B(2), A(1) ⇒ A/{1,2} 
______________________ 

A(1) ⇒ (B → A)/{1} 
______________________ 
⇒ (A → (B → A))/{} 
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Example 2: 
 
       A(1) ⇒ A/{1}     B(2) ⇒ B/{2} 
     ____________________________ 
           (A ∨ B)(3) ⇒ A/(3), B/(3)                           C(4) ⇒ C/{4} 
     __________________________________________________ 
                      (A ∨ B)(3), (B → C)(4) ⇒ A/{3}, C/{3,4} 
     __________________________________________________ 
                   (A ∨B)(3), (B → C)(4) ⇒ (A ∨ C)/{3}, C/{3,4} 
     __________________________________________________ 
                (A ∨ B)(3), (B → C)(4) ⇒ (A ∨ C)/{3}, (A ∨ C)/{3,4} 
     __________________________________________________ 
                        (A ∨ B)(3), (B → C)(4) ⇒ (A ∨ C)/{3,4} 
     __________________________________________________ 
                          (A ∨ B)(3) ⇒ ((B → C) → (A ∨ C))/{3} 
 

Consider now the following attempt to construct a proof of the law 
of the excluded middle: 
 

A(1) ⇒ A/{1} 
____________________ 

A(1) ⇒ A/{1}, ⊥/{} 
____________________ 

⇒ A/{1}, (A → ⊥) 
 
The last inference clearly doesn’t satisfy the restriction imposed on (⇒→). 

The system FIL is sound and complete with respect to LJ. The proof 
of completeness is completely straightforward: every proof in LJ can be 
easily “decorated” with labels and transformed into a proof in FIL. The 
proof of soundness is certainly more involved and can be obtained, for 
example, from the proof of Kashima and Shimura (for the case of Constant 
Domains) if we leave out of the proof the first order apparatus.  

The proof of the cut-elimination theorem for FIL is quite standard. 
As usual the rule of contraction presents some difficulties that are dealt with 
through the use and eliminability of a generalized form of cut; instead of 
eliminating simple cuts, we will show how to eliminate indexed cuts (see 
Schellinx 1991). An indexed cut is defined as follows: 
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                           Γ ⇒ Δ     Θ ⇒ Λ 
                        _________________  (A;n1, … ,nk;m1, … mj) 
                             Γ, Θ‘ ⇒ Δ‘, Λ* 

 
The information standing on the right of the inference line indicates that the 
cut-formula is A, and that Δ‘ (Θ‘) is obtained through the deletion of the 
cut-formula A in positions n1,...,nk  (m1,...,mj) in Δ (Θ). 

 
It is routine matter to prove that the indexed-cut rule is equivalent to 

the simple cut rule. Trivially, an application of the cut rule is an (unary) 
application of indexed-cut. The other side of the equivalence can be proved 
with the use of permutations, contractions and the  cut-rule.  As in Gentenz’s 
original proof of the Hauptsatz, we prove the following basic lemma: 
 
Lemma: Let Π be a derivation Γ ⇒ Δ in FIL such that: 

1) The last rule applied in Π is an indexed cut. 
2) There is no other application of indexed-cut in Π. 

 
Then, Π can be transformed into an indexed cut-free derivation Π‘ of Γ ⇒ 
Δ. 
 
Proof: By a routine induction over (lexicographically ordered) pairs (α,β) 
where α is the degree of the cut-formula and β its rank. In fact, we are not 
really working with Gentzen’s rank, but rather with the sum of the longest 
cluster sequences for the cut-formulas. We shall show one case where the left-
rank is equal to 1, the right-rank is greater than 1, and the right upper 
sequent is obtained by an application of (⇒→). 
 
 Γ ⇒ Δ, A/S                 Γ , C(n) ⇒ Δ , D/S’’ 1 1
___________         _______________________ 
 Γ ⇒ Δ, A’/S’           Γ  ⇒ Δ , (C → D)/S’’ - {n} 1 1
________________________________________ (A;n1, … ,nk;m1, … mj) 
              Γ, Γ1’ ⇒ Δ‘, Δ1*, (C → D)(S’’ - {n})*  
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This derivation can be transformed into the following derivation: 
 
    Γ ⇒ Δ, A/S 
 _____________ 
    Γ ⇒ Δ, A’/S’               Γ , C(n) ⇒ Δ , D/S’’ 1 1
 _____________________________________ (A;n1, … ,nk;m1, … mj) 
                 Γ, Γ1 , 1
_______________________________________ 

’ C(n) ⇒ Δ‘, Δ *, D/(S’’)*

           Γ‘, Γ1* ⇒ Δ‘, Δ1*, (C → D)/(S’’)* - {n} 
 
The result now follows directly from the side-condition on the implication 
rule, as n is not an element of Δ and S’, and (S’’)* - {n}=(S’’ - {n })*. 
 
Theorem (Cut-elimination): If Π is a derivation of Γ ⇒ Δ in FIL, then Π 
can be transformed into a cut-free proof Π‘ of  Γ ⇒ Δ.  
Proof: Directly from the basic lemma 
 

2. TWO APPLICATIONS OF FIL 

The two original applications of the system FIL were related to 
Linear Logic and to the Logic of Constant Domains. The system FIL was 
introduced in connection with a variant of Linear Logic, due to Martin 
Hyland and Valeria de Paiva, called Full Intuitionistic Linear Logic. On the 
one hand, the intuitionistic nature of this logic required that the logical 
operators were not defined in terms of each other, and hence one could not 
use the duality to define the multiplicative or (℘) in terms of tensor, say.  
On the other hand, the multiplicative or (℘) demanded a multiple succedent 
in the formulation of (⇒℘): the condition for introducing (A ℘ B) is that 
we have “disjunctively” both A and B, the classical rule for (⇒℘) being 
 

Γ ⇒ Δ, A, B 
________________________ 

Γ ⇒ Δ, (A ℘ B) 
 

The system FIL can be seen as a natural intuitionistic basis for the 
formulation of a system FILL for Full Intuitionistic Logic; after all FIL has 
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multiple succedents, no cardinality restrictions, and a fairly standard cut-
elimination strategy. The natural rule for (⇒℘) in the system FILL is a 
simply a linear version of the rule for (⇒∨) in the system FIL: 
 

Γ ⇒ Δ, A/S, B/S’ 
________________________ 

Γ ⇒ Δ, (A ℘ B)/S ∪ S’ 
 
The cut-elimination theorem holds for FILL and a nice proof of it is 
presented in Braüner and de Paiva (1996). Other formulations of Full 
Intuitionistic Linear Logic can be found in Bellin (1997) and Bierman 
(1996). 
 

In the early eighties it was conjectured that the Logic of Constant 
Domains (CD) would not admit a “complete, cut-free, sequent axio-
matization” (see Lópes-Escobar 1983), where cut-free axiomatizations 
should satisfy the following two criteria: 

 
1) The axioms should contain only atomic formulas; and 
2) The operational rules should introduce a single logical operator. 
 
The problem of finding a cut-free system for CD was solved by Ryo 

Kashima and Tatsuya Shimura in 1994 (see Kashima 1991 and Kashima and 
Shimura 1994) through the use of a FIL-like system CLD. The main idea of 
these authors in the definition of CLD was to use a binary relation, called by 
them “connection”, described as expressing “a dependency between 
formulas in the antecedent and formulas in the succedent of a sequent”. In 
order to obtain a cut-free sequent calculus for the Logic of Constant 
Domains we simply add the first order apparatus on the top of FIL, with 
dependencies being inherited in the quantifier rules, as in the example 
below: 

A(t)(n), Γ ⇒ Δ 
________________ (∀-R) 

∀xA(x)(n), Γ ⇒ Δ 
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CONCLUDING REMARKS 

This short note described the multiple-conclusion system FIL for 
intuitionistic propositional logic and recounted some of its original 
applications. We are convinced that FIL is not simply a trick that logicians 
can play to reformulate a traditional system. Dependency relations and 
discharging functions play a fundamental role in the proof theory of natural 
deduction systems. Crude discharging strategies for several well-known 
natural deduction systems entail that good proof-theoretical properties are 
simply lost (strong-normalization, uniqueness of normal form, generality). 
From a very general conceptual point of view, FIL shows that classical logic 
can be distinguished from intuitionistic logic by the way dependency 
relations and discharging functions are handled in both systems. The 
introduction of multiple conclusions in intuitionistic logic imposes some 
constraints on which assumptions are available for discharge at each 
conclusion. In the case of propositional logic this means that in a multiple-
conclusion system, it is the rule for implication introduction that 
distinguishes classical logic from intuitionistic logic: every assumption in 
classical logic is global, while some assumptions in intuitionistic logic may be 
local.  

The idea that the distinction between intuitionistic logic and classical 
logic lies in the rule for implication introduction also suggests that there 
might be interesting translations from classical logic into intuitionistic logic 
which are not based on negation, but rather on implication. We plan to 
investigate these prospective translations in future work. 

As for other future work, the system FIL is a propositional system 
and we know that the simply addition of the first order apparatus to FIL 
does not produce Intuitonistic First order Logic, but rather the Logic of 
Constant Domains. Quantifier rules require a different kind of dependency 
relation (connection) that has not so far been defined. The same applies to 
some intuitionistic modal logics: if we add the modal apparatus of S4 to FIL, 
we obtain a kind of “intermediary” modal logic S4, lying between classical 
S4 and (one of the several proposals for) intuitionistic S4. The proof theory 
and the model theory of this intermediary S4 have been studied (de 
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Medeiros 2001), but no multiple-conclusion (strictly) intuitionistic S4 has so 
far been defined. 

And finally we should mention that although a natural deduction 
version NFIL of the system FIL has already been defined, see Franklin 
(2000), we do not have yet a corresponding more “liberal” semantic tableaux 
that incorporates the idea of dependency relations into its rules. Traditional 
intutionistic tableaux have the strong restriction that on each branch there 
can occur at most one f formula, and the use of dependency relations might 
produce more flexible tableaux, where multiple f-formulas are allowed to 
occur on the same branch. 
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