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Abstract: From generalized quantifiers we move to modulated logic. So with 
this motivation we show ways for the construction of some modal logics. 
With the translations between logics we show some inter-relations between 
modal logics. Finally, we introduce some opportune concepts for a type of 
classification of deontic logic. 
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INTRODUCTION 

In this moment that we have the opportunity to write an article to 
homage professor Itala Maria Loffredo D’Ottaviano, we try to mention 
aspects of logic of her interest and as her students we share the same 
interest. Another aspect to be mentioned is the fact that this work is 
motivated by a Brazilian production in logic. In Section 1, we comment 
about the logic with generalized quantifiers, that although it does not have 
appeared and expanded in Brazil, has our attention directed to recent works 
elaborated in Brazil. Particularly, we detach the modulated logic shown in 
Section 2, which has taken us to several and constant reflections. In Section 
3, we show how motivation in modulated logic takes us to the analysis and 
construction of some modal logics. In Section 4, we deal with translations 
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between logics, which is a subject of professor Ítala’s interest. In the last 
section, we use the translations to show some interrelations between modal 
logics and we introduce some concepts considered opportune for a type of 
classification of modal logic, particularly, deontic logic. 
 
1. LOGIC WITH GENERALIZED QUANTIFIERS 

The first order logic considers mathematical structures with certain 
algebraic particularities, where it is chosen an arbitrary set as the domain of 
individuals for a structure B and relations and functions, which serve as 
interpretations for the predicate symbols and functional symbols. Besides, 
expressions constructed from the operators “not”, “and”, “or”, “if ..., then”, 
and from the quantifiers “all” and “exist”, or others that can be expressed 
from these are relevant. 

The basic idea that crosses the inquiries in first order logic is that it 
can establish a relation between some mathematical structures and some 
collections of expressions given in a language to describe properties of such 
structure. 

The notion of satisfaction in a structure B, denoted by B ⊨ ϕ,  
means that the expression ϕ is true in B or it is satisfied in B. 

However, besides the universal character of logic, we must 
acknowledge that several mathematical concepts as so many expressions of 
natural language cannot be treated in this theoretical context. 

Particularly we are interested in the concepts that cannot be 
investigated from the universal (∀) and existential (∃) logical quantifiers. 
This leads us to the creation of new quantifiers different from the usual, 
which can be used as two sources: (i) the characterization of specific 
mathematical aspects or (ii) the analysis of quantifiers used in natural 
language that cannot be defined from the logical ones as: many, some, 
almost all, almost none, the majority, the minority, amongst others. 

The motivation for the first source is the question “What is the logic 
of specific mathematical concepts?”. Or directly, given a particular mathe-
matical property as: good order, infinitude, continuity, etc ..., what would be 
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the implicit logic in the use of this property? What type of structure isolates 
this property more naturally? What type of language better mirrors the 
mathematical idea given by the property? Which reasoning is legitimated? 

Thus, the theory of extended models takes the basic idea and expands 
it in some ways, producing richer mathematical structures or structures with 
greater power of expression in its language or both. In this scope, logic 
consists of a collection of mathematical structures, a collection of formal 
expressions and the satisfaction relation among them, or, in other words, 
logic is something constructed to study the coherence of parts of 
mathematics. 

The first clear proposal to investigate the extensions of the first order 
logic through methods of model theory is attributed to Mostowski (1957). 
Since concepts as finitude (infinitude) and denumerability, important for the 
modern mathematics, are not defined in the first order logic, the author 
suggested the following syntactical rule: 
• if ϕ(x) is a formula, then Qxϕ(x) is also a formula, which x does not occur 
free in this new formula. 

This rule of formation is increased to make the interaction with 
“and”, “or”, “not”, “if ..., then”, “all” and “exists” possible. 

The meaning of Q depends on a new semantical rule that, in general, 
works this way: 
• given a cardinal ℵα, we get a logic L(Qα) defined by the following 
semantial rule:  
 

B ⊨ Qxϕ(x) if there is at least ℵα elements b, such that B ⊨ ϕ(b). 

 
The logic L(Q0) considers the distinction finite/infinite not 

contemplated by first order logic; the logic L(Q1), on the other hand, 
contemplates the distinction countable/uncountable, also absent in first 
order logic. 

Mostowski left many open problems on its logic with generalized 
quantifiers, particularly in establishing a formal calculus in which it is pos-
sible to prove all the sentences that involve the new introduced quantifier. 
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Lindström (1966) redefined the concept and studied the extended 
logic by quantifiers in semantical structures a little more general, but still had 
not obtained complete success in introducing axioms and structure that 
allowed a proof of completeness for L(Q). 

Other properties of the deductive systems are in the context of the 
extended logic. 

The compacity is defined by: 
Strong compacity: if Δ is a set of logical sentences and if every finite subset 
of Δ has a model, then Δ has a model; 
Countable compacity: if Δ is a set of logical sentences and if every countable 
subset of Δ has a model, then Δ has a model. 

There are two reasons for the interest in these results. The first 
reason is because it is nearly related to the problem of completeness. The 
completeness theorem usually establishes that when ϕ is a logical 
consequence of some set (possibly countable) Δ of hypotheses, then ϕ is 
derivable from some finite subset of Δ. In particular, if Δ is inconsistent, that 
is, it does not have models, then some contradictory sentence is a 
consequence of Δ and, in this in case, some finite sub set of Δ is 
inconsistent. This way, the compacity, in the two versions, agrees to the 
completeness if it exists. 

The second reason is that in a first order model theory, the compacity 
theorem is a very important tool and it is used almost all the time. So, when 
present, a lot of the first order model theory can be recouped. 

Fuhrken (1964) proved that the compacity theorem holds in L(Q). 
Vaught (1964) proved that the set of valid formulas of L(Q) is recursively 
denumerable and, later, supplied a test of the completeness with a short but 
complex collection of axioms. These results had been refined, but Keisler 
(1970) proved correction and completeness for L(Q) in a sufficiently 
natural and intuitive system. 

This way stimulated many research works about logic with 
generalized quantifiers to deal with certain mathematical structures. We can 
mention the research work on topological logic of Sgro (1977) and 
Garavaglia (1978). 

Manuscrito – Rev. Int. Fil., Campinas, v. 28, n. 2, p. 351-373, jul.- dez. 2005. 



MODULATED LOGIC, MODAL LOGIC 355 

Before mentioning the other source, we imagine that we must 
mention another result of Lindstrom (1969) that imposes new reflections on 
the extended logic. 

To establish what becomes natural an extended logic or what allows 
us to find useful and interesting logic, the experience has shown that some 
of the next three principles must be followed:  

(i) to construct in natural semantic a language that discloses the 
important notions of some particular domain of mathematical activity;  

(ii) to keep the semantic restricted at the field of relevant ideas and 
implicit concepts of notions; 

(iii) to find a syntax in which the basic ideas can naturally be 
expressed. 

In any way, when it is left the target of the first order logic with the 
objective to prevent some difficulty, some results are lost. In particular, 
theorems on non-definable concepts in first order logic are defective in the 
extended theories. 

Lindstrom proved in 1969 a theorem that opened new ways for the 
study of logic. This result affirms that in any attempt of constructing a more 
expressive logic than the first order logic, one of the analogous theorems of 
Countable Compacity or Löwenheim will not be satisfied. 

With this, the first order logic can be characterized as a strong logic, 
which satisfies the two following properties: 
Countable Compacity Property: if a countable set of sentences Δ does not 
have a model, then some finite subset of Δ does not have a model; 
Löwenheim property: if a sentence has an infinite model, so it has a 
countable model. 

The Compacity and Löwenheim (-Skolem) theorems are two of the 
most remarkable ones results in the first order model theory and they are 
quite used tools for investigations of the subject. The Lindstrom’s 
characterization theorem is in a certain way discouraging, because it affirms 
that in the interest for extensions of first order logic, one of two results must 
be abandoned. Fortunately, some success was reached in the extended 
theories. 
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The second source deals with the relation between natural language 
and quantifiers. Montague (1974) presented a theory that unifies or identifies 
substantive expressions of the English language, such as “all the birds”, 
“Maria”, “it”, to the notion of generalized quantifiers. 

Barwise and Cooper (1981), following Montague, deal with the 
identification between this syntactical category (noun expressions) of the 
natural language and the generalized quantifiers of logic, contributing for a 
re-approaching between logic and natural language, which attracted the 
interest of linguists and computers. 

Barwise and Cooper had argued that the quantifiers of the classical 
first order logic are inadequate to deal with the quantified sentences of the 
natural language in at least two aspects: 
• in natural language there are quantified sentences that cannot be expressed 
through the quantifiers ∃ and ∀. In this way, a semantical theory for the 
natural language cannot be based on a context restricted to classical 
predicate logic. 
• the syntactical structure of quantified sentences in natural languages is very 
different from the syntactical structure of quantified sentences in the 
classical first order logic. 

The central idea of Barwise and Cooper is that the non logical 
quantifiers correspond to the noun phrases of the natural language. 

Thus, a quantifier has the syntactical form Dη, where D is a 
determiner and η is a set of terms, or yet, a set of individuals.  

More specifically, let’s consider a model M = (E, || ||), where E is 
the domain and || || is a function of attribution. In this case, η denotes a 
set of individuals given by subsets X of E, whose the expression Dη(X) 
holds. 

Some of the most usual determiners as every, some, many and exactly 
one are given by: 

||every η|| = {X ⊆ E / ||η|| ⊆ X} 
||some η|| = {X ⊆ E / ||η|| ∩ X ≠ ∅} 
||many η|| = {X ⊆ E / ||η|| ∩ X > | ||η|| - X|} 
||exactly one η|| = {X ⊆ E / ||η|| ∩ X = 1}. 
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 Since ||Dη|| = ||D||(||η||), so the determiners denote 
functions from P(E) into PP(E), as in the case of || none||: 

||none||(Y) = {X ⊆ E / Y ∩ X = ∅}. 
The other generalized quantifiers can be defined in the same 

acceptance, as Mostowski’s quantifier Q1 or Rescher’s quantifier of majority. 
The notion of “majority”, whose formalization appeared at the first time in 
Rescher (1962), is centered in a generalized quantifier semantically 
interpreted by a collection of subsets of the universe whose cardinal 
numbers are bigger than their complements: 

||Q1 η|| = {X ⊆ E / ||η|| = ω} 
||the majority η|| = {X ⊆ E / ||η|| > ||E - X||}. 

Elements of this theory which were started with Barwise and Cooper 
(1981) are in several research works about generalized quantifiers as in 
Westerstahl (1984 and 1985). 

Applications of the generalized quantifiers in computational contexts 
had led many investigators to imagine that the best environment for its 
treatment would be from non monotonic logic, as in Reiter (1980). 

Further to this context, some interesting contributions of Brazilian 
thinkers had appeared. Sette, Carnielli and Veloso (1999) introduced a 
monotonic logic in which could be interpreted the natural quantifiers almost 
always (almost all) and almost never (almost none) through filters (ideal) 
prime and argued that this was a more productive alternative than in the non 
monotonic contexts. 

From these perspectives, Grácio (1999) introduced an ample family 
of logical systems, the family of modulated logic, that will be more detailed 
in the next section. Each modulated logic is syntactically characterized for 
the inclusion of new generalized quantifiers, the modulated quantifiers, in 
the language of first order logic. Semantically, such quantifiers are 
interpreted by subsets of the set of the parts of the universe. 

Grácio introduced two new monotonic logical systems, indicated by 
the formalization of the following notions of quantity: “many” and “for a 
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‘good’ part”, semantically interpreted, respectively, by structures of superior 
closed set and reduced topology. 

In this Brazilian environment we have directed our research in 
partnership with professor Maria Claudia Cabrini Grácio. 
 
2. MODULATED LOGIC 

The family of modulated logic is characterized by the inclusion of a 
generalized quantifier Q at first order logic language, named modulated 
quantifier, which must be semantically interpreted by a set Q of set of parts 
of universe. Intuitively, this subset Q represents an arbitrary set of 
propositions justified by evidences, into a basis of knowledge. So we present 
a formalization of modulated logic denoted by L(Q). 

 
Let L be the first order language of type τ, with symbol for 

predicates, functions and constants, closed to the logical operators ∧, ∨, →, 
¬ and also to the quantifiers ∃ and ∀. 

The extension of first order logic L obtained by the inclusion of a 
generalized quantifier Q, named modulated quantifier, is denoted by L(Q).  

The formulas (and sentences) of L(Q) are those of L increased by 
formulas generated by the following clause: 
• if ϕ is a formula in L(Q), so (Qx)ϕ is a formula of L(Q). 

The concepts of free and bounded variable in a formula are extended 
to the quantifier Q, that is, if x is free in ϕ, then x occurs bounded in (Qx)ϕ. 

We denote by ϕ(t/x) the result of replacing every free occurrences of 
the variable x by the term t in ϕ. By simplicity, where there is no problem, 
we write only ϕ(t) in the place of ϕ(t/x).  

The semantics of modulated logic is defined as it follows. 
Let A be a classical structure of first order with domain A, and Q a 

set of subsets of A, such that ∅ ∉ Q, that is, Q ⊆ P(A) – {∅}. The modulated 
structure for L(Q), denoted by AQ, is determined by the pair (A, Q). 

Veloso (1998) named this type of structure of complex structure and 
Keisler (1970) of weak structure. 
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The interpretation of relational symbols, functional symbols and 
individual constants of L(Q) is the same of L in A. 

The satisfaction of a formula of L(Q) in a structure AQ is defined 
recursively as usual by the inclusion of the clause: 
• let ϕ a formula whose set of free variable is included in {x} ∪ {y1, ..., yn} 
and consider a sequence ā = (a1, ..., an) in A. Then: 

AQ ⊨ (Q x)ϕ[x, ā] iff {b ∈ A / AQ ⊨ ϕ[b, ā] } ∈ Q. 
In this case, AQ ⊨ ψ[ē] denotes that AQ ⊨s ψ, when the free variable 

of the formula ψ occurs in the set {z1, ..., zn}, s(zi) = ei and ē = (e1, ..., en). 
Since A ≠ ∅, if x does not occur free in ϕ, then AQ ⊨ (Qx)ϕ[ā] iff AQ ⊨ 

ϕ[ā]. In particular, for a sentence (Qx)σ(x), we have AQ ⊨ (Qx)σ(x) iff {a ∈ 
A / AQ ⊨ σ(a)} ∈ Q. 

 As mentioned, when identifying the set Q with mathematical 
structures, Grácio (1999) formalized propositions of the type “majority”, 
“many” e “for a ‘good’ part”. The logic of ultra filters, introduced by Sette, 
Carnielli and Veloso (1999) and Carnielli and Veloso (1997), formalizes 
propositions of the type “almost all” or “generally”, and must also be 
considered as a particular case of modulated logic. 

As we can observe, the notions of true and false, associated to the 
modulated quantifiers do not depend only on the underlying logic, but of 
which measure (quantification) we are using and that “[...] must be included 
as part of the model before the sentences have any true value whatsoever” 
(Barwise, Cooper 1981, p. 163). 

The usual semantical notions such as model, validity, logical 
consequence, etc., for these systems, can appropriately be adapted. 

The axioms of L(Q) are the same of L, with the identity axioms, plus 
the following axioms destined to the quantifier Q: 

(Ax1) (∀x)ϕ(x) → (Qx)ϕ(x) 
(Ax2) (Qx)ϕ(x) → (∃x)ϕ(x) 
(Ax3) (∀x)(ϕ(x) ↔ ψ(x)) → ((Qx)ϕ(x) ↔ (Qx)ψ(x)) 
(Ax4) (Qx)ϕ(x) ↔ (Qy)ϕ(y). 
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Intuitively, given an interpretation whose universe is A and the 
formulas ϕ and ψ, with exactly one free variable x, then for the sets [ϕ] = {a 
∈ A / ϕ[a]} and [ψ] = {a ∈ A / ψ[a]}, the axiom (Ax1) affirms that if all 
the individuals satisfy ϕ, then the universe A belongs to the family of 
subsets Q of A that interprets the quantifier Q. The axiom (Ax2) affirms 
that the empty set does not belong to Q. The axiom (Ax3) affirms that if [ϕ] 
and [ψ] are identical, then one of them belongs to family Q that interprets Q 
if, and only if, the other also belongs to Q. 

The rules of modulated logic are the usual rules of: Modus Ponens (MP) 
e Generalization (Gen). 

Other axioms must be introduced to characterize specific modulated 
logic as we can see in (Grácio, 1999). 

The usual syntactical notions for L(Q) as sentence, proof, theorem, 
logical consequence, consistence and others are defined from an analogous 
way to the classical logic. 
 
2.1 SOME STRUCTURES FOR Q 

In this subsection we introduce some mathematical structures which 
are relevant for the next discussions. 

  
Let E be a universe of discourse. For each subset B ⊆ E, we denote 

its complement by BC.  
We define following a hierarchy of structures showing up, for the all 

E (superior closed set, filter, prime filter). Dually, we can define another 
hierarchy pointing down, for the empty set (inferior closed set, ideal, prime 
ideal), but due to their similarity we define only one of the hierarchies. 

Let E be a non empty set. A superior closed set in E is a collection Θ 
⊆ P(E) for which: 

(i) if A∩B ∈ Θ, them A, B ∈ Θ1; 
(ii) E ∈ Θ; 
(iii) ∅ ∉ Θ. 

                                                 
1 This condition is equivalent to (i’): if A ∈ Θ and A ⊆ B, them B ∈ Θ. 
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A filter2 in E is a collection Θ such that Θ is a superior closed set and 
holds: 

(iv) if A, B ∈ Θ, them A∩B ∈ Θ. 
A prime filter or ultra filter is a filter Θ such that: 
(v) if A ∈ Θ or B ∈ Θ, them A∪B ∈ Θ3. 

 
3. GENERALIZED MODALITIES 

In this section, following motivations originated in modulated 
predicate logic, we introduce a new kind of modal logic. 
 
3.1. STRUCTURES, DOMAINS AND “LOGIC” 

We saw, in previous sections, how it is possible to interpret 
generalized quantifiers through aggregation of mathematical structures to 
the domain of individuals. These structures supply measures to the domain 
of individuals (Barwise, Cooper, 1981). We also saw how logic associated to 
these generalized quantifiers can be constructed. Such logic had been initially 
designated “generalized logic”, and in the research work of Maria Cláudia 
Cabrini Grácio (1999) a particular class of such logic had been designated 
“modulated logic”, for which we had reserved a special look. The same 
procedure can be applied, mutatis mutandis, to the achievement of generalized 
modalities and, with these, to the construction of modulated modal logic. 
The adaptation consists of substituting the domain of individuals for the 
domain of possible worlds. Thus, instead of aggregating mathematical 
structures to the domain of individuals, one aggregates structures to the 
domain of possible worlds or, alternatively, for each possible world we 
aggregate specific structures to the set of its accessible possible worlds. 

A proposal of semantics for this last case will be exemplified in the 
next section. In the rest of this section, we make two brief comments on 
                                                 

2 This definition correspond to usually known proper filter in which the empty 
set ∅ does not belong to Θ. 

3 In Boolean structures, the item (v) is equivalent to (v’ ) : for each A ∈ P(E), 
exactly one um among A and AC is in Θ. 
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what we consider a non critical reception of some notions employed in the 
Brazilian tradition of research in logic, that is, notions in relation to which 
our tradition adopts an eminently pragmatic position.  

However, it conveys before to stand out that the use of the term 
“world” is not necessarily associated to any specific ontological thesis. We 
can, for instance, simply adopt it as a technical term, like Kant in the 
Inaugural dissertation of 1770. In that research work, Kant compares the 
notion of world with the notion of simple in the following way: “(...) just as 
analyses does not come to an end until a part is reached which is not a 
whole, that is to say a SIMPLE, so likewise synthesis does not come to an 
end until we reach a whole which is not a part, that is to say a WORLD” 
(Kant, 1770). Here, still, the notion of possible world makes sense, since we 
need a criterion, in that case the joint possibility (co-possibility), to guideline 
the synthesis process and to indicate its limits. 

The first comment is regarding the attribution of the expression 
“logical” to the constructions obtained by aggregation of mathematical 
structures to the domains, which are domains of individuals as well as 
domains of possible worlds. Barwise and Cooper (1981) suggested that, 
when aggregating such structures to the domains, we lose the characteristic 
notes of a logic, that is, its generality, its universal applicability, its 
application to arbitrary domains. 

The second comment, also suggested by the reading of (Barwise, 
Cooper, 1981), regards the adoption of the generalized operators (quantifiers 
and/or modalities) as monadic operators. Barwise and Cooper suggested 
that the universal and the existential quantifiers are atypical cases of 
quantifiers of the ordinary language, because they are monadic operators. 
According to Barwise and Cooper, the majority of the quantifiers of the 
ordinary language are dyadic operators, including those formalized as 
generalized quantifiers. The same could be said of the corresponding 
modalities. 

It is not up to us, at this moment, to make a value judgment on such 
comments of Barwise and Cooper. However, we consider important to 
mention them, because the technical development is not always followed in 
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the same degree of sophistication, with critical examination of the notions 
obtained this way. 
 

3.2. EXTENDED STANDARD MODELS 

Sautter (2000) gives an alternative to the semantical treatment of 
modulated modal logic. The author examines a family of multi-modal logic 
in which, simultaneously to the study of arbitrary normal modalities, also 
associated modalities with filters and modalities associated with ideals are 
examined, that is, generalized modalities are examined. The unified 
semantical treatment of these types of modalities is developed with the help 
of the following extension of the notion of standard model: 

M = 〈W, R, P, F, I〉 is an extended standard model if: 
(i) W is a non-empty set of possible worlds; 
(ii) R is a binary relation of accessibility in W; 
(iii) P is a mapping of natural numbers in subsets of W. P(n) = W’ 

establishes that the atomic sentence Pn is true in all the possible worlds 
pertaining to W’ and only in these; 

(iv) F is a mapping of W in subsets of P(W) such that, for each w ∈ 
W, F(w) is a filter on R[w], that is, there is a filter for each possible world; 

(v) I is a mapping of W in subsets of P(W) such that, for each w ∈ 
W, I(w) is an ideal on R[w], that is, there is an ideal for each possible world; 

(vi) For all w ∈ W, F(w)∩I(w) =∅. 
The truth conditions of the normal modalities are the usual ones and 

the truth conditions of the generalized modalities are the supplied ones by 
the following definitions: 

(a) ⊨Mw ∇A if {w’ ∈ R(w) / ⊨Mw’ A} ∈ F(w), where ∇ is a generalized 
modality whose meaning is associated to filters and that has a non-logical 
necessity character. 

(b) ⊨Mw ΔA if {w’ ∈ R(w) / ⊨Mw’ A} ∈ I(w), where Δ is a generalized 
modality whose meaning is associated to ideals and that has a non-logical 
impossibility character. 
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Here the association to filters and to ideals is obviously not essential: 
definitions can be easily adjusted for generalized modalities associated to any 
other mathematical structures. 

 
4. TRANSLATIONS BETWEEN LOGIC 

Our advisor Itala, some of her fellows, and some of her students have 
a great interest in translations between logics (Da Silva, D’Ottaviano and 
Sette 1999, D’Ottaviano and Feitosa 1999, Feitosa and D’Otaviano 2001). It 
is subject matter of their interests: the characterization of useful notion of 
translations between logics; a taxonomy for these translations; model-
theoretical, algebraic and category treatments of translations; elements of a 
Theory of Translations Between Logics; as well as the construction or proof 
of existence of diverse translations between logics. In (Feitosa, 1997) we 
have a complete exhibition of these contributions. 

Afterwards, we will mention two case studies, one of which uses 
generalized modalities, the importance of the ‘theory of translations between 
logics’ as an instrument for philosophical analysis. Before, however, we will 
introduce the notion of conservative translation between logics, essential to 
the rest of the research work. 

Let L1 = 〈L1, C1〉 and L2 = 〈L2, C2〉 be logics, such that L1 and L2 are 
sets of formulas and C1 and C2 are consequence operators of the respective 
logic. A translation from L1 into L2 is a mapping t: L1 → L2 such that, for all 
subset Γ∪α of L1, we have: 

α ∈ C1(Γ) ⇒ t(α) ∈ C2(t(Γ)). 
 A conservative translation of L1 into L2 is a mapping t: L1 → L2 such 

that, for all subset Γ∪α of L1, we have: 
α ∈ C1(Γ) ⇔ t(α) ∈ C2(t(Γ)). 
 

5. MODAL LOGIC AND TRANSLATIONS 

In this section we introduce some concrete modal logics having as a 
motivation the structures associated to the modulated predicate logic and we 
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use the translations as an instrument for analysis of the interrelations 
between diverse modal logics, with emphasis on deontic logic. 

 
5.1 A HIERARCHY OF MODULATED MODAL LOGIC 

We initially introduce some concrete modal logics and show, with the 
help of conservative translations, their connections with more known logics 
in literature. 

The clauses related to the notion of a family of superior closed sets 
(see Section 2 for an examination of this mathematical structure and other 
structures used in this section) are formalized by the following modal 
axioms schemes: 

(i) ∇(α∧β) → (∇α∧∇β), 
corresponds to the clause of closure for supersets, 

(ii) ∇(α∨¬α), 
corresponds to the clause that affirms that the unitary set is a superior closed 
set, and 

(iii) ¬∇(α∧¬α), 
corresponds to the clause that affirms that the empty set is not a superiority 
closed set. 

Adding these axioms schemes and the deduction rule: 
(iv) α ↔ β / ∇α ↔ ∇β 

to the classical propositional logic we get the logic of the superior closed 
sets. 

The clauses related to the notion of a family of inferior closed sets are 
formalized by the following modal axioms schemes: 

(i) Δ(α∨β) → (Δα∧Δβ) 
that corresponds to the clause of closure for subsets, 

(ii) Δ(α∧¬α), 
corresponds to the clause that affirms that the empty set is an inferior closed 
set, and 

(iii) ¬Δ(α∨¬α), 
corresponds to the clause that affirms that the unitary set is not an inferior 
closed set. 
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Adding these axioms schemes and the deduction rule: 
(iv) α↔β / Δα↔Δβ 

to the classical propositional logic we get the logic of inferior closed sets. 
Adjoining the logic of superior closed sets and inferior closed sets 

and adding the axioms scheme: 
(v) ¬(∇α∧Δα), 

we get the logic of superior closed sets and inferior closed sets. 
If we interpret the symbol ∇ as an operator of necessity and the 

symbol Δ as an operator of impossibility, this set of axioms schemes 
corresponds to the set of axioms schemes characteristic of the normal 
deontic logic (Chellas, 1980, p. 224). 

The filter logic results from adding to the logic of superior closed sets 
the axioms scheme: 

(vi) (∇α∧∇β) → ∇(α∧β), 
that corresponds to the clause of closure for finite intersections. 

The interpretation of ∇ as a necessary operator supplies a 
conservative translation of the filter logic in the modal logic K, to be precise, 
in these conditions, the systems coincide (Chellas, 1980, p. 115). 

The ideal logic results from adding to the logic of inferior closed sets 
the axioms scheme: 

(vi) (Δα∧Δβ) → Δ(α∨β), 
that corresponds to the clause of closure for finite unions. 

The interpretation of Δ as an impossible operator also supplies a 
conservative translation of the ideal logic in the modal logic K, therefore, in 
these conditions, the systems coincide. 

 
Adjoining the ideal and filter logic and adding the axioms scheme: 
(vii) ¬(∇α∧Δα), 

we get the filter and ideal logic. 
If we interpret the symbol ∇ as a necessary operator and the symbol 

Δ as an impossible operator we have a conservative translation of the filter 
and ideal logic in the modal logic KD, the basic normal logic of deontic 
modalities. 
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The prime filter (ultra filter) logic results from adding to the filter 
logic the axioms scheme: 

(viii) ∇α∨∇¬α, 
which corresponds to the clause of complementing the filter. 

If we interpret ∇ as a necessary operator we have a conservative 
translation of the prime filter logic into the modal logic KDc (Hughes, 
Cresswell, 2003, p. 123). 

The prime ideal logic results from adding to the ideal logic the axioms 
scheme: 

(ix) Δα∨Δ¬α, 
which corresponds to the clause of complementing the ideal. 

If we interpret Δ as an impossible operator it still supplies in time, a 
conservative translation of the prime ideal logic into the modal logic KD. 

Adjoining the prime filter and prime ideal logic and adding the 
axioms scheme: 

(x) ¬(∇α∧Δα), 
 we get the prime filter and prime ideal logic. 

If we interpret ∇ as a necessary operator and Δ as an impossible 
operator we have a conservative translation of the prime filter and prime 
ideal logic into the modal logic KD! (Chellas, 1980, p. 93). 

The principal filter logic results from adding to the filter logic the 
axioms scheme: 

(xi) ((∇α∧(β→α) → ¬∇β) ∧ (∇χ∧(δ→χ) → ¬∇δ)) → (α↔χ), 
which corresponds to the clause of the existence of a base for the filter. 

The principal ideal logic results from adding to the ideal logic the 
axioms scheme: 

(xii) ((Δα∧(α→β) → ¬Δβ) ∧ (Δχ∧(χ→δ) → ¬Δδ)) → (α↔χ) 
which corresponds to the clause of the existence of base for the ideal. 

Adjoining the principal filter and principal ideal logic and adding the 
axioms scheme: 

(xiii) ¬(∇α∧Δα), 
we get the principal filter and principal ideal logic. 
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Finally, the clauses associated to the notion of ubiquity are formalized 
with help of the following modal axioms schemes: 

(xiv) (•α∧•β) → •(α∧β), 
which corresponds to the clause of closure for supersets, and 

(xv) (•α∧•β) → • (α∨β), 
which corresponds to the clause of closure for subsets). 

Adjoining these axioms schemes and the rule of inference 
(xvi) α↔β / •α↔•β 

to the classical propositional logic we get the ubiquity logic. 
The existence of simple conservative translations between logic 

constructed by means of the mere use of very general mathematical 
structures and the logic KD only stands out the incapacity of this last logic in 
capturing any significant deontic content. Rigorously, the axioms scheme for 
D, characteristic of the normal logic of deontic modalities, simply affirms 
the non-vacuity of true mandatory propositions, that is, the proposition 
according to which α is mandatory in a possible world w only if it is a 
possible world w’ (not necessarily distinct to w) accessible to w such that α is 
true in w’. 

 
5.2 KANTIAN DEONTIC LOGIC 

Modulated modal logic is not the only one that, thanks to the use of 
conservative translations, discloses an unsuspected relation with deontic 
notions (or notions considered deontic). Kielkopf (1975) considers a 
conservative translation of the standard deontic logic in one subsystem of 
the temporal logic K1 resulting from the restriction to the following 
language: 

(1) if p is a propositional constant, then p is a formula. 
(2) if α and β are formulas, then ¬α, α⊃β, □◊α and ◊□α are 

formulas. 
(3) formulas are only those which result by the application of steps 

(1) e (2). 
Kielkopf considers the following function of translation t, where ○ it 

is the modality of deontic necessity, P is the modality of deontic possibility, 
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◊ is the modality of temporal possibility and □ is the modality of temporal 
necessity: 

(i) t(α) = α, if α is a propositional constant. 
(ii) t(¬α) = ¬t(α). 
(iii) t(α⊃β) = t(α)⊃t(β). 
(iv) t(○α) = ◊□t(α).  
(v) t(Pα) = □◊t(α). 
This conservative translation has the peculiar property (peculiar 

because it does not normally consider the inquiry of the characteristics 
preserved by the translation function) of preserving the irreducible 
modalities, that is, K and SDL are the same ones, modulo translation 
function. This example gives us a way to continue the development of the 
‘theory of translations between logics’, to point general conditions to be 
satisfied by the functions of translations such that some relevant properties 
are preserved. 

This conservative translation of Kielkopf has also the merit to light 
up the approach proposed by Kant, when considering the Categorical 
Imperative in its diverse formulations, particularly that formulation which 
puts in analogy the Kingdom of Nature and the Kingdom of Ends. Kielkopf 
suggests that, far from making us incur into the Naturalistic Fallacy, this 
conservative translation shows us that the modalities of K1 are morally 
tinged. 

Even if we disagree with the reading of Kielkopf, his proposal will be 
able to show us how much the ‘theory of translations between logics’, 
independently of its mathematical value, can be an useful instrument of 
philosophical analysis. 
 

5.3 PROTO AND HYPOMODALITIES 

The existence of simple conservative translations between the 
standard deontic logic and the temporal logic K1 on one side, and between 
the standard deontic logic and modal modulated logic on the other side, is 
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an indication that the way adopted in the formalization of the deontic 
reasoning has not succeeded. 

The standard deontic logic is a subsystem of the modal logic S5, 
whose modalities are, traditionally, adopted as the canonical interpretation of 
the ontic (alethic) modalities used by the philosophers. This seems to be an 
error, for this reason an example of the history of philosophy will help us to 
clarify such error. 

Let us consider, on one hand, the logical necessity and the logical 
possibility, that is, a pair of dual logical modalities, and, on the other hand, 
the real necessity and the real possibility, that is, a pair of dual real 
modalities. There are the following relations between these pairs of 
modalities: 

(i) if a proposition is logically necessary, then it also has real necessity, 
but the inverse is not always the case. 

(ii) if a proposition has real possibility, then it is also logically possible, 
but the inverse is not always the case. 

Disregarding, for argumentative purposes, the problem proposed by 
Hume, Moore and others concerning the existence of conceptual and 
inferential barriers between the ontic and the deontic, the relations between 
ontic and deontic modalities, in case they are permissible, are analogous to 
that which subsists between the logical modalities and the real modalities: 

(i) if a proposition is ontically necessary, then it also is deontically 
necessary (obligatory), but the inverse is not always the case. 

(ii) if a proposition is deontically possible (permissible), then it also is 
ontically possible, but the inverse is not always the case. 

This similarity gives us the opportunity to propose the following 
distinction: 

Let L1 = 〈L1, C1〉 and L2 = 〈L2, C2〉 be logics, M1 be a modality of L1, 
M*1 be another modality of L1 dual of M1, M2 be a modality of L2 and M*2 
be another modality of L2 dual of M2. At least two types of correlation are 
allowed between the pairs of modalities 〈M1, M*1〉 and 〈M2, M*2〉: 

(i) M1 is a prototype of M2 (and M2 a deuterotype of M1) if M1α ∈ C1(∅), 
them M2α ∈ C2(∅), and if M*1α ∈ C1(∅),them M*2α ∈ C2(∅). 
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(ii) M1 is a hypotype of M2 (and M2 is a hypertype of M1) if M1α ∈ C1(∅), 
them M2α ∈ C2(∅), and if M*2α ∈ C2(∅), them M*1α ∈ C1(∅). 

Translated to this terminology, our thesis assumes the following way: 
although we usually formalize the deontic necessity as a prototype of the 
ontic necessity, the correct formalization is the one in which that is a 
hypotype of this. This would point out the deontic logic as an incomparable 
logic with the most traditional systems of modal logic (S5 and K, for 
example), which does not seem to be out of question, considering the 
differences between the ‘is’ being reality and the ‘ought’ being reality. 
 
FINAL CONSIDERATIONS 

In this research work we started with two sufficient general results of 
logical analysis: (i) the generalized quantifiers, viewed from the perspective 
of modulated logic, a Brazilian logical contribution and (ii) translations 
between logics, subject matter investigated by our Brazilian colleagues and 
our advisor, to make a comparative analysis of diverse modal systems. Based 
on these reflections we suggested a definition that allows us a conceptual 
separation of the ontic and of the deontic in the modal logical contexts. 
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