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Abstract: The propositional calculus AoC, “Algebra of Classes”,

and the extended propositional calculus EAC, “Extended Algebra of

Classes” are introduced in this paper. They are extensions, by addi-

tional propositional functions which are not invariant under the bicon-

ditional, of the corresponding classical propositional systems. Their

origin lies in an analysis, motivated by Cantor’s concept of the cardinal

numbers, of A. P. Morse’s impredicative, polysynthetic set theory.

INTRODUCTION

In the Foreword to Boyer’s “History of Mathematics” (Boyer 1989),
Isaac Asimov makes the following observation:

Now we can see what makes [the history of] mathematics unique.

Only in mathematics is there no significant correction—only exten-

sion. Once the Greeks had developed the deductive method, they

were correct in what they did, correct for all time. Euclid was incom-

plete and his work has been extended enormously, but it has not had

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 417-448, jul.-dez. 2005.



418 E.G.K. LOPEZ-ESCOBAR

to be corrected. . . . Each great mathematician adds to what came
previously, but nothing needs to be uprooted. . . . and is as func-
tional now as it was when Thales worked out the first geometrical
theorems nearly 26 centuries ago.

Nothing pertaining to humanity becomes us so well as mathematics.
There, and only there, do we touch the human mind at its peak.

Now although I agree in principle with Asimov’s remark, neverthe-
less I find that there have been exceptions. A particularly interesting
exception concerns the work of George Boole (Boole 1847), which to-
gether with (Boole 1854), is generally recognized as the starting point
of Mathematical Logic. Perhaps the following quotation from (Burris
1998), page 32, expresses the current sentiment towards Boole’s meth-
ods:

Needless to say Boole’s book is not used as an introduction to logic,

except perhaps to study how so many good ideas could be mixed up

with so much confusion.

One of the consequences of this article is a logical resolution (of
some) of Boole’s ‘confusions’. Of course this comes as no surprise;
Bertrand Russell stated it in Russell (1945), p. 52:

I have put the argument here to remind the reader that philosophical

theories, if they are important, can generally be revived in a new form

after being refuted as originally stated. Refutations are seldom final;

in most cases, they are only a prelude to further refinements.

PART I

The first goal of this paper is to examine the following methods
used by G. Boole:

1. The use of 0 as both1 the empty set and the truth value ‘False’.

2. The use of 1 as both the class of all things and as the truth value
‘True’.

1Boole also considers 0 as a real number.
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3. The use of variables both as sets (that is members, or perhaps
subsets, of 1) and as propositions.

0.1. THE ALGEBRA OF LOGIC

At the time the above identifications were not considered to be
problematic and in fact C. S. Peirce started using the same symbol for
the conditional and for the subset relation; then Ernst Schröder in his
monumental compendium Vorlesungen über die Algebra der Logik took
Peirce’s lead and many other symbols were given dual interpretations,
for example, the universal quantifier was often interpreted as intersec-
tion. The ambiguities in the operator symbols led to an economy of
notation; but a price had to be paid for the economy, namely it made
expressions more difficult to understand.

0.1.1. POLYSYNTHETIC LANGUAGES

As a consequence of the identification Schröder, in (Schröder 1890),
obtained expressions that would be considered nonsense by the (late)
XXth Century standards. A typical example consists of the following2:

(A =0) = (Ap =111) =Ap

Consider the expression: (A =0) = Ap included in the one above.
From the current viewpoint, that is, as an expression of first-order
logic, it is not a well formed expression since it equates an expression
which is has a truth value, namely: (A =0), with Ap, which represents
a class. To many the above sentence would be as ridiculous as the
English phrase:

Snow is white is equal to the set of algebraic numbers.

A probable reason for the unacceptability of the above English ex-
pression is that the English language requires that the words of the
language belong to separate categories; noun, verb, adjective etc., from
which one can then construct ‘noun phrases’ etc. which in turn belong
to different categories.

2Schröder uses 0 for the empty class, 1 for the universal class and Ap for the
complement (or the negation) of A.
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And yet there are other natural languages, such as the polysyn-
thetic3 Yup’ik Inuit, in which the words of the language can not be so
easily characterized4.

Since in Schröder (1890) the ‘words’ of the formal (symbolic) lan-
guage may belong to more than one semantical category, I propose to
call it a polysynthetic formal language5.

0.2. HILBERT’S BEWEISTHEORIE

In the early 1900’s David Hilbert introduced his Beweistheorie with
its clinically unambiguous, and thus simpler to understand, formal
language with the result that the Boole-Schröder polysynthetic lan-
guage was essentially forgotten. Furthermore Hilbert’s Proof Theory
allowed one to state as combinatorial problems some very interesting
mathematical questions about Cantor’s Set Theory; for example the
Continuum Hypothesis. Since the problems could now be stated in a
combinatorial form, the euphoria of those times led people (including
Hilbert) to believe that it was only a matter of time before they would
be resolved.

Since Cantor’s Set Theory was much more mathematically interest-
ing than the logic of classes, research in the foundations of mathematics
veered away from the Algebra of Logic. It had a partial revival in the
Henkin/Tarski’s Cylindric Algebras; however the formal language used

3Synthetic: (Form, language) in which grammatical distinctions are realized
by inflections. Opp. analytic: e.g. a possive construction is realized analytically
in Italian (la casa a Cesare, lit. ‘the house of Cesar’), but was realized syntheti-
cally with a genetive inflection, in Latin domus Cesaris ‘house-nomsg Caesar-gensg’.
Polysynthetic:(Type of language) in which there is a pattern of incorporation or
in which, in general affixes realize a range of semantic categories beyond those of
synthetic languages in e.g. Europe. The Concise Oxford Dictionary of Linguistics,
Oxford University Press 1997.

4For example the single word: tuntussuqatarniksaitengqiggtuq, built up as fol-
lows: tuntu ssur qatar ni ksaite ngqiggte uq, and whose interpretation is ‘He had not
yet said again that he was going to hunt reindeer’.
Source //www.sil.org/linguistics/GlossaryOfLinguisticTerms... and Eliza Orr, cited
by Payne, T. 1997a.

5As far as I know, the term polysynthetic has not been used in the context of
formal or symbolic languages; polymorphic has been used but with quite a different
interpretation.
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was modelled on Hilbert’s language for mathematical logic and not on
the Boole-Schröder polysynthetic one.

0.3. MORSE’S POLYSYNTHETIC LANGUAGE

A. P. Morse (1911-1984) developed an (almost) universal tool for
mathematics. ‘Universal’ in a practical sense rather than in a founda-
tional sense. Although at that time (middle 1900’s) personal comput-
ers were only in Science-Fiction stories, Morse’s language was in many
ways like a computer language in that there were a few reserved sym-
bols6 and then it was up to the individual how to generate additional
expressions7. In that way mathematicians could use their own familiar
symbols, and Morse did in fact use it for his research in Functional
Analysis.

Morse considered that all the mathematical ‘objects’ of interest
were either sets or collections of sets so it is not surprising that the
fundamental basis of his system is a set (class) theory. The require-
ments that he placed on the theory were that (i) it be powerful and
at the same time avoided the known pitfalls, (ii) it follow as close as
possible the mathematicians’ definitions for specific sets and (iii) be as
economical as possible.

Cantor’s (unrestricted) set theory was inconsistent, Zermelo’s was
more suitable for logicians and philosophers, Frege’s was flawed and
Boole’s ‘Logic of Classes’ barely got off the ground! The one that he
found most suitable was that one developed by J. von Neumann8 in
which there were classes and sets (that is classes which are members
of other classes)

Unlike Hilbert who carefully distinguished what belongs to Logic

6The most important reserved symbols in Morse’s system are:
V

, → , ∈ , and
the definor : ≡.

7As long as they adhered to some very general directives, such as: ‘a mark is a
more or less connected inscription’ and ‘a symbol is a mark which is not a quotation
mark ’. It is clear that A. P. Morse was influenced by St. Leśniewski, perhaps through
Tarski.

8Although often ignored, Mirimanoff also deserves much of the credit, see (Mi-
rimanoff 1917), (Mirimanoff 1917a), (Mirimanoff 1920) and (Specker 2001). The
reader is warned that Morse called ‘sets’ what nowadays are ‘classes’ and ‘points’
what now are called ‘sets’.
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and what belongs to Mathematics, Morse had a more holistic approach
and did not find any advantage in separating logic from mathematics9.
In particular he eschewed the separation of the well formed expressions
of the Hilbertian languages into the terms, which represent mathe-
matical ‘objects’ and the formulae which correspond to ‘truth values’.
Thus in Morse’s Set Theory one finds well formed expressions of the
form:

x↔ (0 ∈ x) .

0.4. MORSE’S SET THEORY

Although for many years Morse had been using his Set Theory in
the courses he presented at Berkeley, few persons outside of the Bay
area knew of its existence. In the middle fifties, John L. Kelley, also at
Berkeley, published the book (Kelley 1955) whose appendix contains a
formulation, in the first order language of Hilbert’s mathematical logic,
the synthetic part of Morse’s Set Theory. It became known through-
out the research community as ‘KM’ (Kelley/Morse Impredicative Set
Theory).

Finally in 1965 Morse published the monograph ‘A Theory of Sets’
which not only contains his (polysynthetic) impredicative class theory,
but also the directives for constructing one’s own ‘Calculus Ratiocina-
tor’.

Morse’s book10 has the dubious distinction that it is always men-
tioned in the bibliography of just about every article concerning im-
predicative set theory and yet the set theory actually used (or men-
tioned) in the paper itself is KM rather than Morse’s!

9A view shared by L. E. J. Brouwer, but for quite different reasons. It is in-
teresting to note that Hao Wang, in (Wang 1996), p. 266, reports that “On
June 1971 I asked Gödel about the scope of logic and, specifically, about the
view that logic should be identified with predicate logic. He had told me ear-
lier that for him, logic included set theory and concept theory. On this occa-
sion, however, he expanded on the relation between logic and predicate logic:
8.4.11 The propositional calculus is about language or deals with the original notion of language: truth,

falsity, inference. We include the quantifiers because language is about something—we take propositions

as talking about objects. They would not be necessary if we did not talk about objects; but we can-

not imagine this. Even though predicate logic is “distinguished” there are also other notions, such as

many. . . .”
10Reprinted in 1985 (Morse 1985).
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0.5. MORSE’S POLYSYNTHETIC AXIOMS

The inferential apparatus for Morse (1965) consists basically of
modus ponens and the rule for universal generalization. Following
Leśniewski, he allows definitions as theorems and in this way he is
able to introduce, as part of the formal language and not as external
definitions, both additional symbols for logical connectives and quanti-
fiers as well as special classes, for example: 0 (for the empty class) and
U (for the class of all sets).

Morse liked to present the most compact axioms possible and thus
in the axioms for sets he often made use of the polysynthetic nature of
the language. However one may rewrite those axioms in the language
of KM without affecting the theory.

The axioms which establish the polysynthetic nature of Morse’s
Class Theory, and which could not be rewritten in the first order lan-
guage of Set Theory are basically the following:

2.5.0 x←→ (0 ∈ x)
2.5.1 (t ∈ U )−→ ((t ∈ (x ∈ y))←→ (x ∈ y))
2.5.2 (t ∈ a)−→ ((t ∈ (p−→ q))←→ ((t ∈ p)−→ (t ∈ q)))
2.5.3 (t ∈

∧
xux)←→

∧
x(t ∈ ux)

ux is Morse’s way of presenting a schema of formulae.
Although at first sight the above axioms may appear strange, I

propose to show that they have at least two plausible interpretations.

1. THE CARDINAL NUMBERS OF CANTOR

It is fairly well recognized that for Cantor, cardinals and ordinals
were not sets although sets could be constructed from them, see (Wang
1974, p. 222); in effect they were urelementen. Since Cantor claimed
that to every set A there corresponded a unique cardinal number CA

(Cantor’s notation was:
=
A ), if one were to try to express Cantor’s

ideas in a first order language then in addition to the primitive term
∈ one would require a primitive term to represent the ‘extraction’ of
the cardinal number of a set; for the sake of definiteness I will use: C.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 417-448, jul.-dez. 2005.
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Let us use ‘(x ∼= y)’ as an abbreviation for the (formal) set theo-
retic statement that the sets x and y are equinumerous, i.e. that there
exist a bijection between them and let us use ‘≡’ for the biconditional.
Then the following would be the kind of axiom required:∧

x

∧
y( (Cx = Cy) ≡ (x ∼= y) ). (AxCard)

In the early 1900’s Mirimanoff (and later, von Neumann) defined
the ordinal numbers as specific well-ordered sets. The ℵ-cardinal num-
bers were then defined as the initial ordinal numbers. However in the
absence of the axiom of choice, it was not clear whether all cardinal
numbers were in fact ℵ-cardinals; hence it was not known whether one
could consider all of Cantor’s cardinals to be sets rather than urele-
menten.

It was not until much later that Richard Montague (1930-1971) and
Dana Scott defined CA as being the set of all those sets
of minimal rank that are equinumerous with A and thus showing11

that Cantor’s set theory was just that, i.e. ‘a theory of sets’ and not
‘a theory of sets and cardinal numbers’; and not only that, but also
that pure sets and classes (i.e. without any urelementen) suffices for
mathematics.

No one disputes that the iterative concept of pure sets has been
extremely rewarding for the understanding of sets. Nevertheless it is
worthwhile to remember that Cantor never discarded the view that the
cardinal numbers had an independent existence and appeared to be
ambivalent concerning the definition of sets; for example—as reported
in (Wang 1974, p. 188):

One feels vaguely that the iterative concept corresponds pretty well

to Cantor’s 1895 ‘genetic’ definition of set:12 ‘By a “set” we shall

understand any collection into a whole M of definite, distinct objects m

(which will be called “elements” of M) of our intuition or our thought’.

11This definition clearly does not require the axiom of choice, however it does re-
quire well-foundedness. Wang states, in (Wang 1974, p. 212), that Cantor operated
under the assumption that all sets were well-founded.

12‘Unter einer “Menge” verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschieden Objecten m unserer anschauung oder unseres Denkens (welche
die “Elemente” von M gennanten werden) zu einem Ganzen’.
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In 1882, Cantor explains that a set of elements is well defined, if by

its definition and by the logical principle of excluded middle we must

recognize as internally determined whether any object of the right kind

belongs to the set or not13. One is inclined to think that the concept

of set implicit in this context is closer to the logical concept rather

than the mathematical one.

1.0.1. RELATION BETWEEN A SET AND ITS CARDINAL

NUMBER

Note that even in a thoroughly Platonistic (or Theistic) interpre-
tation of Set Theory, we still have the problem of understanding the
relation between a set S and its Cantorian cardinal number C(S).

The Cantorian 1882 logical concept of ‘set’ only considers its ‘mem-
bers’ and thus leaves open the question of the cardinality of the set.

The 1895 definition, which can be read as an iterative ‘construction’,
says that a set is a

‘collection into a whole M of definite, distinct objects m (which will
be called “elements” of M ) of our intuition or our thought’.

This seems to suggest that the set M comes into ‘existence’ with the
act of ‘collecting the distinct objects m into a whole’; however the
act of collecting into a whole could not be considered complete until
M has been assigned its cardinal number C(M).

Of course this puts quite a different slant to Cantor’s conception
of ‘collecting into a whole’ ! On the other hand, I do not think that
Cantor’s idea is far fetched; for suppose that a, b and c are distinct
pebbles and then we collect them into the whole {a, b, c}14; in doing so
we seem to be instantly aware that

C({a, b, c}) = 3.

13Eine Mannigfaltigkeit (ein Inbegriff, eine Menge) von Elementen, die ir-
gendwelcher Begriffssphäre angehören, nenne ich wohldefiniert, wenn auf Grund
ihrer Definition und infolge des logischen Prinzips vom ausgesscholssenen Dritten
es als intern bestimmt angesehen werden muss, sowohl ob irgendein derselben Be-
griffssphären angehöriges Objekt zu der gedachten Manningfaltigkeit als Element
gehört oder nicht, wie auch, ob zwei zur Mengen gehörige Objeckte , trotz formaler
Unterschiede in der Art des Gegebenseins eindander sind oder nicht.

14The set {a, b, c} is an abstract object which goes beyond the heap of stones
consisting of a, b and c.
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Furthermore in Cantor’s view it was not our responsibility to create
the sets, cardinal numbers, etc.; they were created long before homo
sapiens made its appearance and the Demiurge would have had no
difficulty in assigning the cardinal numbers of larger sets, for example:
c to the set R of reals15.

This brings up another interesting point, which although may have
been obvious to many, I have not seen it in print; namely that in a
Platonic Class Theory an iterative conception of sets is in effect
what nowadays would be called reverse engineering. In other words, it
is a useful tool for determining the structure of the available sets and
not (necessarily) a way of creating them. Naturally in a constructive
interpretation—or even in ZF—one often interprets the iteration as a
way of constructing the sets16.

2. CLASSES WITH ATTRIBUTES

The view that the cardinal numbers are urelementen has the advan-
tage that one need not specify what they are. It has the disadvantage
that each set must then be correlated with a unique urelemente (namely
its cardinal number) and how this correlation is obtained is not at all
clear.

Now although the works of Mirimanoff et al., in which the cardinal
numbers are pure sets, eliminated the urelementen and all their associ-
ated problems, one should not forget that having the cardinal numbers
as attributes enabled Cantor to lay the foundations upon which later
philosophers and mathematicians developed into the fully fledged mod-
ern set theory.

Hilbert may have hoped that Cantor’s Set Theory would turn out
to be a TOEM (Theory of Everything Mathematical), it is now known
(thanks to Kurt Gödel) that it could never be. Furthermore Cantor’s
original question about the size of the real number line is still unknown
and thanks to Paul Cohen it is known that ZFC17 will not decide it.
Consequently there is a search for reasonable axioms that may decide

15It would be nice to know if He had also assigned ℵ1 (or even ℵ2) to R!
16Of course this brings up the question of when does, or did, the ‘construction’

take place.
17Nor KM.
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it; and not only new axioms but also new formalizations, e.g. Gödel’s
idea of incorporating the theory of concepts, or Lawvere’s categorial
sets (Lawvere 1964).

One idea that seems to be missing is to return to Cantor’s original
conception of sets with attributes18.

2.1. MORSE’S CLASS THEORY AS A THEORY OF CLASSES

WITH ATTRIBUTES

A. P. Morse was the quintessential Set Theorist; to him every math-
ematical thing is a set[class] and even statements about mathematics
were to him ‘mathematical things’ and thus had to be classes. His
view is succinctly expressed in page 63 of (Morse 1985) [recall that for
Morse: ‘set’ = ‘class’]:

We believe every (mathematical) thing is a set. We believe there is

no difference between the conjunction of two or more things and their

intersection. We believe there is no difference between the disjunction

of two things and their union. We believe there is no difference between

the negation of a thing and its complement. We have come to believe

a thing if and only if the empty set is a member of the thing. We

believe (x ∈ y) if and only if x is a member of y. We believe (x ∈ y) if

and only if (x ∈ y) is the universe. We disbelieve (x ∈ y) if and only if

(x ∈ y) is the empty set.

Now it is irrelevant whether we accept or disregard Morse’s dogma, all
that need be said is that it may have been relevant to Morse in his
visualization of sets19.

Assuming that to: “believe that x is a member of y” is tantamount
to accepting that: “the sentence ‘x is a member of y’ has the truth value
True,” I propose to show that if one lets the classes have a truth value
attribute, instead of a cardinality attribute, then one obtains a plausible
interpretation of Morse’s Polysynthetic Impredicative Class Theory.

18For some intuitionists the natural numbers carry along (as an attribute?) the
proof that they are natural numbers.

19Just as Cantor’s belief that the transfinitum resided in the Mind of God may
have helped him formulate properties of the cardinal numbers.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 417-448, jul.-dez. 2005.



428 E.G.K. LOPEZ-ESCOBAR

2.2. TRUTH [BOOLEAN] ATTRIBUTES

One difference between Cantor’s and Morse’s systems is that in
Morse’s there are no urelementen. Furthermore, Cantor was able to
take the cardinal urelementen and use them to form classes of the
theory so that the cardinal numbers became part and parcel of his Set
Theory. Morse accomplishes a similar feat by stipulating20 that the
truth value attributes are to be classes of the theory.

Why not sets? Because then we would have the class T of all
truth attributes, and then T would also have a truth attribute, and
we would be on the borderline of a Burali-Forti type of paradox. In
addition Morse, perhaps following Boole, required that the universe—
that is , the class of all sets—should also be the truth value ‘True’.

Now the underlying ‘logic’ in Morse’s system is traditional classical
logic and thanks to the works of Boole et al. we know that the classical
truth values are epitomized by Boolean algebras, or more specifically:
fields of sets. However since the members of any field of sets are sets,
Morse’s truth attributes can only be required to be closed under unions,
intersections and complements; we shall abbreviate the latter by saying
that Morse’s truth attributes form a Boolean collection of classes.

Since the English word ‘truth’ is laced with emotional denotations I
shall replace it by the word ‘Boolean’ when referring to the class truth
attributes.

In Morse’s system (and in just about every class/set theory) one
has that for any class A of the theory:

0 ⊆ A ⊆ U . (*)

Let us, temporarily denote by b(A) the Boolean attribute of the
class A; note that the following, which is not part of Morse’s polysyn-
thetic language, holds:

0 ⊆ b(A) ⊆ U .

As in any set theory, the set-theoretic structure of a class A is an-
alyzed through the use of the copula ∈ . The novel idea of Morse is

20I should emphasize that I have no idea if Morse viewed his sets as having at-
tributes, although it is pretty clear that he must have been aware of Cantor’s view
of the cardinals as urelementen.
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to analyze the Boolean attributes of classes by the use of the logical
operators on the classes themselves. In Cantor’s Theory two sets had
the same cardinal number attribute if and only if there was a bijec-
tion between the sets. In Morse’s Theory, the equality of the Boolean
attributes of two classes is determined by the biconditional:

b(A) = b(B) if and only if (A ≡ B)

The polysynthetic nature of Morse’s language and the above ob-
servation allows us to avoid the need for explicitly introducing the
Boolean operator b(). In particular, if A and B are classes then the
‘output’ of ‘(A → B)’, is the class whose Boolean attribute is:

( U − b(A)) ∪ b(B).

Clearly the universe of sets: U , and the empty set: 0 correspond to
the top and bot, respectively, of the Boolean collection of classes and
thus it is reasonable to assume:

b(0) = 0.

b(U ) = U .

Consequently for every class A the following should be the case:

0 → A → U . (**)

In Peirce’s work, (*) and (**) were synonymous however in Morse’s
system (*) conveys more information than (**).

2.3. OBTAINING THE BOOLEAN ATTRIBUTE OF A CLASS

In Morse’s polysynthetic language there is no distinction between
the what traditionally would have been called terms and the formulae.
Following Morse let us call all the well formed expressions of the
polysynthetic language: formulae. Thus the underlying assumption is
that all the formulae represent classes and that the classes have Boolean
attributes (that are also classes).
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Let us now consider the (traditional) formula: (a ∈A). What class
should correspond to it? Now it is clear that—at least in a given
context— (a ∈A) has a truth value and thus we should assign to the
formula (a ∈A) a class whose Boolean attribute is the one represented
by (a ∈A)21.

Next consider the (polysynthetic) formula: A. It obviously repre-
sents—again, in a given context—a class. The question this time is
what is its Boolean attribute? Furthermore the correspondence should
be as uniform as possible. Since we have a fairly good understanding
of the truth value of a traditional formula, Morse’s idea was to choose
a traditional formula FA, whose only free variable was A and then add
the polysynthetic axiom:

( A ≡ FA ),

which is the way to guarantee that:

b(A) = b(FA).

Since this is one of the most fundamental axioms—in the sense
that it is used over and over to generate additional logical and set
theoretical concepts—it is clear that the (traditional) formula FA must
be as simple as possible. We are thus led to two possible cases: (1)
(A ∈ τ) or (2) (τ ∈A), where τ is a defined constant.

Since the polysynthetic axiom must also apply to proper classes it
is clear that (1) is not suitable. Thus the required formula must be of
the form (2), that is:

( τ ∈A ).

The only classes that can be shown to exist, without the use of
fairly complicated set theoretical axioms, are: 0 and U ; furthermore
U is a proper class and (0 ∈ U ).

Also, U representing the Boolean value of ‘True’ should be prov-
able in the system. And 0 is also the empty set and thus the Boolean
attribute of ‘(0 ∈ 0)’ should be 0. Combining all these observations
one obtains that an obvious candidate for ‘τ ’ is ‘0’.

21It is of interest to note that Morse had developed his polysynthetic set theory
well before the Boolean valued models of first order logic of Rasiowa/Sikorski and
before the Scott/Solovay Boolean valued models of set theory.
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Thus the ‘Boolean attributes’ interpretation has led us to Morse’s
axiom: ∧

x( x ≡ (0 ∈ x) ).

2.4. THE CLASSES CORRESPONDING TO TRADITIONAL

ATOMIC FORMULAE

If, in a given context, the set a is indeed a member of the class
A, then the truth value of (a ∈A) is True, that is: U . But U is a
class with Boolean attribute True, so there should be an axiom whose
interpretation is:

(a ∈A) ≡ [(a ∈A) = U ].

In order to avoid introducing equality at this early stage the above
formula can be rendered as Morse’s second polysynthetic axiom:∧

x

∧
a

∧
A[ (x ∈ U ) → ((x ∈ (a ∈A)) ≡ (a ∈A)) ].

Since the primitive logical atoms used by Morse were → and
∧

,
the remaining two polysynthetic axioms mentioned in Subsection 0.5
express the idea that the logical operations are the traditional set the-
oretic operations on the collection of Boolean attributes.

3. A RELATIVE CONSISTENCY RESULT FOR MORSE’S
POLYSYNTHETIC SYSTEM

Since the interpretation that I gave to Morse’s Polysynthetic Sys-
tem22 makes fundamental use of the Boolean operations, one would
expect that the Boolean valued models for ZF of D. Scott and R. Solo-
vay could be extended to Morse’s system. And that is indeed the case.

An informal outline of the method is as follows: Start with an
ε-model M of ZFCI (Zermelo Fraenkel, with Choice and with an
inaccessible cardinal κ). Then let B be a Boolean algebra of M of
cardinality strictly smaller than κ.

22Which, as I have already mentioned, may or may not be the one that Morse
had in mind when he developed the system.
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Iterating the B-valued universes through the ordinal κ + 1, one
obtains a set of M which can then be used to interpret Morse’s sys-
tem. For the traditional formulae (a ∈ b), (a = b), one uses the method
of Scott/Solovay. The polysynthetic axioms can then be used as di-
rectives on how to extend the interpretation to the remainder of the
polysynthetic formulae.

4. AN ALTERNATE VIEW OF MORSE’S SYSTEM

As already mentioned, the polysynthetic axioms, for example:∧
x(x ≡ (0 ∈ x)),

appear strange when one uses the traditional first-order languages of
ZF or KM as a reference; the Boolean attributes interpretation pro-
vided both a way to understand its content as well as to provide a
justification for it.

On the other hand, there is a much simpler reading of the polysyn-
thetic axioms; namely as sentences of an Applied Extended Classical
Propositional Calculus23.

There are some interesting byproducts of considering Morse’s sys-
tem as an Extended Propositional Calculus—specially when presented
as a Natural Deduction System for the logical atoms—for example: (i)
it clearly shows that the impredicativeness of Morse’s system is caused
by the logical rules of inference for

∧
and (ii) the powerful axiom of

choice used by Morse is a restricted version of Hilbert’s epsilon symbol
and in fact naturally suggests an even stronger version of Choice.

Another byproduct, which I very much doubt that Morse would
have appreciated, is that it could be argued that ‘every mathemati-
cal thing is a proposition’.

23‘Extended ’ because of quantifications involving propositional variables, ‘Applied ’
because of the binary propositional function symbol: ∈ . Instead of the ‘Extended
Propositional Calculus’ one often finds the ‘Second Order Propositional Calculus’;
however that would make the usual Propositional Calculus the ‘First Order Propo-
sitional Calculus’. Thus we prefer the name used by Russell,  Lukasiewicz et al.
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PART II

5. EXTENDED ALGEBRA OF CLASSES
By the ‘Extended Algebra of Classes’, EAC, I understand the the-

ory obtained from Morse’s Polysynthetic Class/Set Theory by elimi-
nating most of the axioms that guarantee the existence of sets (that
is, classes that are members of other classes). Note that this theory
is much weaker than Tarski’s General Class Theory (Chuaqui 1981),
since, for instance, the singleton of a set is not guaranteed to be a set;
consequently ordered pair of sets need not be sets and thus relations,
functions, etc. are not available. One could even argue that the ‘C’ in
EAC should be read as ‘Concept ’ rather than ‘Class’, specially since
EAC can be considered as an Extended Propositional Calculus.

The second goal is to develop EAC so that eventually one can
determine24 the status of Morse’s Propositional Calculus:

MPC = { θ : θ a quantifier free theorem of EAC},

and specially its relation to the works of Boole.

6. THE LANGUAGE OF EAC

From a purely syntactical viewpoint, the Polysynthetic language
of Morse can be considered as an Extended Propositional Calculus
with symbols for additional propositional functions25. Consequently
there is no need to describe in detail the syntax, except that, perhaps,
some details should be given about the Leśniewskian/Morse definitional
axioms.

6.0.1. RESERVED SYMBOLS

The (non-parsing) reserved symbols are to be:

→ ,
∧

, ∈ , and $ .

‘ $ ’ is my symbol for Morse’s definor.
24In a future article.
25I reserve the name of ‘propositional connective’ to those propositional functions

which are invariant under the logical biconditional ‘≡’.
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6.0.2. PRIMARY DEFINITIONS

By primary definitions I understand those definitions of the de-
fined constants which allow us to simplify the sentences expressing the
axioms. They are (the universal closure of) the following formulae:

D1. 0 $
∧

xx
D2. ∼p $ (p → 0)
D3. U $ (0 → 0)
D4. (p ∧ q) $ ∼(p → ∼q)
D5. (p ≡ q) $ ((p → q) ∧ (q → p))
D6. (x ⊆ y) $

∧
z(z ∈ x → z ∈ y)

D7. (x e= y) $
∧

z(z ∈ x ≡ z ∈ y)

D8. (x l= y) $
∧

z(x ∈ z → y ∈ z)

‘ e= ’ corresponds to extensional equality, ‘ $ ’ to definitional (inten-
sional) equality and ‘ l= ’ to Liebnizian equality26.

6.1. AXIOMS OF EAC

For the axioms of EAC we take the universal closure of the follow-
ing formulae—F being an arbitrary formula—:

A1. (x $ y) e= (x e= y)

A2. x ≡ (0 ∈ x)

A3. t ∈A → [t ∈ (x ∈ y) ≡ (x ∈ y)]

A4. t ∈A → [t ∈ (p→ q) ≡ ((t ∈ p) → (t ∈ q))]

A5. (t ∈
∧

xF) ≡
∧

x(t ∈F)

A6. x ∈ U → [(x e= y) ≡ (x l= y)]

26Note that, when considering the system as a set theory, ≡ is also a kind of
equality (of Boolean attributes) and if ordered pairs are definable (and hence so are
the functions), then ∼= is yet another kind of equality—this time, of cardinality—.
Also, not surprisingly, some ‘equalities’ are more equal than others.
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A7. B ∈ U → (A⊆B → A ∈ U )

A8. (0 ∈ x) ∨ ∼(0 ∈ x)27

The following axioms of Choice and of Well-foundedness, which are
also included in Morse’s system, will not be included in EAC.

Ch. z ∈A → mel(A) ∈A

We.
∧

y ∼(y ⊆A ∧ y ∈ ∼A) → A
e= U

Axiom (A1.) is not a definitional axiom; it claims that the class
(x $ y) is extensionally equal to the class (x e= y). Note also that (5.)
is the only schema.

6.2. LOGICAL RULES OF INFERENCE OF EAC

For ‘→ ’ and ‘
∧

’ we take their Intuitionistic Natural Deduction
rules of inference and as usual we split them into the Introduction and
Elimination rules. The form of the

∧
-Elimination is as follows:

...∧
xFy

x

Fy
G

where Fy
x is the result of properly substituting all free occurrences of

the variable y by the variable x and correspondingly for Fy
G where G is

an arbitrary formula. It is precisely this ‘logical’ rule of inference that
gives to Morse’s System its impredicative power.

6.3. DEFINITIONAL RULES OF INFERENCE OF EAC

Although the only time that ‘ $ ’ is used is in the definitional
axioms of new operators—and consequently subject to all the rules
and regulations concerning definitions—nevertheless (a $ b) is a well

27This axiom had to be added because the rules of inference that I chose are
the intuitionistic ones. Note that this axiom brings out a requirement that Cantor
placed in his 1882 definition of ‘set’. Through the use of the universal quantifier I
could have chosen the primary definitions to have an intuitionistic flavour, but at
the moment there is no particular advantage in so doing.
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formed formula of the language and thus represents (in a given context)
a class with a Boolean attribute28.

The first rule for $ does not have any premises (i.e. it is an axiom
schema):

(F $ F)

And the second one is:

(A $ B) Fy
A

Fy
B

I prefer to use rules of inference for $ , rather than listing equiv-
alent axioms, because I like to consider the rules of inference as being
logical rules of inference and they are to be dependent solely on the log-
ical form of the formulae; the axioms are to be much more dependent
on ∈ .

7. THEOREMS OF EAC

Since the formalization presented here is technically (but hopefully,
not conceptually) different from the one given by Morse, I shall give a
sketch of how to obtain the basic theorems of (Morse 1965) so as to be
able to use Morse’s book as a reference for other theorems.

Derivibality ‘`’ is to be understood with respect to EAC.

28If one is more interested in the metatheory of EAC than in the actual theorems
of EAC then one could completely avoid $ and its rules and axioms by the tried
and true way of treating the definitions as temporary typographical abbreviations
which are introduced merely as a courtesy to the reader and are not even part of
the system.
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Lemma 7.1

1. ` p ≡ p

2. ` x ∈A ≡ x ∈A

3. ` A
e= A

4. ` A
e= B → B

e= A

5. A
e=B,B

e=C ` A
e=C

6. A⊆B,A ` B

7. A
e=B,A ` B

8. A $ B ` A
e=B.

9. A
e=B ` A $ B

10. A
e= B, Fy

A ` F
y
B

11. A
e=B ` Fy

A ≡ F
y
B

12. A
e= B, x ∈Fy

A ` x ∈Fy
B

13. A
e=B ` Fy

A
e= Fy

B

14. ` 0 e=
∧

pp

15. ` U
e= (0 → 0)

16. ` U

17. ` 0 ∈ U

18. ` (p ∨ ∼p)

19. ` (A ∨ ∼A) e= U
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20. ` (A⊆B) → (A→B)

21. ` A
e=B → A ≡ B

Proofs:
The first one to make essential use of the axioms of EAC is (6.):

A⊆B,A ` 0 ∈A
` 0 ∈B
` B

2

Note that (13.) corresponds to (Morse 1965) axiom (schema) 2.5.5.

Next it must be shown that 0 is both falsum and the empty class
(actually a set since ` 0 ∈ U ):

Lemma 7.2

1. ` 0 → A

2. ` 0 ∈ 0 ≡ 0

3. x ∈ 0 ` 0

4. `
∧

x∼(x ∈ 0)

5. ` 0⊆A

Proof: Of (3.)

x ∈ 0 ` x ∈
∧

pp

`
∧

p(x ∈ p)
` x ∈ (0 → (0 ∈ 0))
` x ∈ 0 → x ∈ (0 ∈ 0)
` x ∈ (0 ∈ 0)
` (0 ∈ 0)
` 0
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Before giving the corresponding properties for U , let us introduce
the existential quantifier

∨
by a definitional axiom schema:

For every formula F the universal closure of the following
formula is a definitional axiom:

D9. [
∨

xF $ ∼
∧

x∼F ].

It is a routine matter to show that
∨

satisfies all the standard properties
of the existential quantifier in the Classical Extended Propositional
Calculus29.

Lemma 7.3

1. ` A→ U

2. x ∈A ` x ∈ U

3. ` A⊆ U

4. ` x ∈ U ≡
∨

A(x ∈A)

Proof: Of (2.)
x ∈A ` (x ∈ 0) → (x ∈ 0)

` x ∈ (0→0)
` x ∈ U .

2

7.1. CLASS BUILDING THEOREMS

Following (Morse 1965) let us introduce the following definitional
axioms and axiom schema:

D10. sng x $
∧

y(y → (x ∈ y))
D11. ExFx $

∨
x((0 ∈Fx) ∧ sng x)

Read ‘ExFx’ as ‘the class of sets x such that Fx (holds)’. ‘ sng x’
should be read as ‘singleton x’.

29One could have just as well used the Intuitionistic definition:

[
W

xF $
V

y((
V

xF → y) → y) ].
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7.1.1. PROPERTIES OF THE SINGLETONS

Lemma 7.4

1. ` x ∈ U → (x ∈ sng a) ≡ (x e= a)

2. ` (x ∈ sng a) ≡ (x ∈ U ∧ (x e= a))

3. ` x ∈ U → x ∈ sng x

4. ` x ∈ U → (x ∈A ≡ ( sng x⊆A))

5. `∼(x ∈ U ) → ( sng x
e= 0)

Note that the axioms of EAC are not strong enough to obtain:

x ∈ U → sng x ∈ U .

7.1.2. THE CLASSIFIER

The system EAC is nevertheless powerful enough to prove the basic
property of the classifier E :

Theorem 7.1
a ∈ ExFx ≡ (a ∈ U ∧ Fa).

The proof is given as a sequence of biconditionals:

a ∈ ExFx ≡ a ∈
∨

x((0 ∈Fx) ∧ sng x)
≡

∨
x(a ∈ (0 ∈Fx) ∧ a ∈ sng x)

≡
∨

x((0 ∈Fx) ∧ a ∈ sng x)
≡

∨
x(Fx ∧ a ∈ U ∧ (a e= x))

≡
∨

x(a ∈ U ∧ Fx ∧ (a e= x))
≡ a ∈ U ∧

∨
x(Fx ∧ (a e= x))

≡ a ∈ U ∧
∨

x(Fa ∧ (a e= x))
≡ a ∈ U ∧ Fa ∧

∨
x(a e= x)

≡ a ∈ U ∧ Fa ∧ U
≡ a ∈ U ∧ Fa.
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In traditional first-order systems, such as KM, theorem 7.1 is usu-
ally presented as an axiom schema; in EAC it is a consequence of the
(propositional) quantifiers and the polysynthetic axioms.

The following lemma gives both some of the familiar properties
of the classifier as well as some that are specific to the polysynthetic
nature of the system:

Lemma 7.5

1. ` A
e= Ex(x ∈A)

2. `
∧

x(Fx→Gx) → ExFx ⊆ ExGx

3. ` Ex((x ∈ U ) ∧ Fx) e= ExFx

4. ` sng A
e= Ex(x e=A)

5. ` Ex(Fx→Gx) e= (ExFx→ ExGx)

6. ` Ex(∼Fx) e= ∼ExFx

7. ` Ex(
∧

yFxy)
e=

∧
y ExFxy

8. ` ∼(Ex[∼(x ∈ x)] ∈ U )

9. ` Ex[∼(x ∈ x)] ⊆ U

10. ` ∼( U ∈ U )

Already the above small sample of the theorems involving the clas-
sifier show that if EAC is viewed as an extended propositional calculus
then E has the role of a definable propositional quantifier. Also it is
clear that with the classifier one can define many classes; for exam-
ple, the class of all ordinals30. However how many of them are in
fact different classes can not be ascertained in EAC. All that can be
proven is that there is at least one set, namely: 0, and one proper
class, namely: U . It is consistent with EAC that any other class be
extensionally equal to one of those two.

30Using the definition of ordinals given in (Morse 1965).
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7.2. A TWO ELEMENT MODEL FOR EAC

Let 2 be the two element Boolean algebra {0, 1}. Then define the
binary functions ∈ and $ on 2 as follows:

∈(0, 1) = 1
∈(0, 0) = 0
∈(1, 1) = 0
∈(1, 0) = 0

$(0, 1) = 0
$(0, 0) = 1
$(1, 1) = 1
$(1, 0) = 0

It is then a routine matter to verify that in the algebra M = 〈{0, 1},
∈ , $ 〉 we have the following:

1. (a e= b) = 1 iff a= b.

2. (a ∈ b) = 1 iff a = 0 and b = 1.

3. sng 0 = 1 and sng 1 = 0.

4. Ex[∼(x ∈ x)] = 1

Routine calculations show that all the axioms of EAC have the
value 1.

7.2.1. THE THEORY EACω

The simplest additional axiom that would eliminate finite models
is:

x ∈ U → ( sng x ∈ U );

however the natural numbers generated would correspond to the ones
considered by Zermelo: 0, {0}, {{0}}, . . . . Hence I prefer to let EACω

be the extension of EAC by the addition of (the universal closure of):

x ∈ U → ((x ∨ sng y) ∈ U ).

Then in EACω it can be shown that the Mirimanoff/von Neumann
finite ordinals are distinct. If in addition one adds an axiom that
guarantees that the union of a set is again a set, then one obtains
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a theory equivalent to Tarski’s General Class Theory (presented in, for
example, (Chuaqui 1981)).

8. THE AXIOM OF CHOICE IN MORSE’S SYSTEM

Morse tackles the axiom of Choice by introducing a new primitive
symbol ‘mel’ together with the additional axiom:∧

A

∧
z(z ∈A → melA ∈ A).

It is well documented that this is a very strong form of the axiom of
choice since it allows the universe U to be well-ordered by a (single)
function of the system. Nevertheless it is not the strongest possible,
Marek, in (Marek 1973), makes use of an even stronger form.

If one rewrites Morse’s axiom as:∧
A[

∨
z(z ∈A) ≡ (melA ∈ A)],

then one cannot fail to see it as a special case of Hilbert’s epsilon symbol
ε: ∨

z(z ∈A) ≡ (εz(z ∈A) ∈ A).

In other words, if one had Hilbert’s epsilon symbol then Morse’s mel
could be defined as:

melA $ εz(z ∈A)

Thus instead of adding the primitive symbol ‘mel’ one could instead
add the variable binding operator ‘ε’ together with its natural rules of
inference—since we are dealing with a ‘logical notion’—so as to lead to
the theorem schema: ∨

zFa
z → Fa

εzFz

Since in Morse’s system:

A
e= B → melA

e= melB,

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 417-448, jul.-dez. 2005.



444 E.G.K. LOPEZ-ESCOBAR

the following axiom schema—since we are now dealing with a ‘set the-
oretical notion’—would have to be to be added∧

z(Fz ≡ Gz) → ( εzFz
e= εzGz)

The resulting system is formally stronger than the one with ‘ mel’
since melA is always a set but there is no such restriction on εzFz.

9. THE PROPOSITIONAL PART OF EAC

It is clear that the formula ‘ sng x’ is a formula of EAC which
is dependent on the quantifier ‘

∧
’ and thus should not be considered

as a propositional formula. On the other hand the formula ‘0’, whose
definition is [0 $

∧
pp], should be considered as a propositional

formula!
Hence I propose that:

A basic propositional formula of EAC is any proposi-
tional formula generated by (i) the variables, (ii) the symbol
0 and (iii) the operational binary infix symbols: → , and ∈ .

The propositional formulae of EAC are those formulae which are
equivalent, through ‘unwinding’ the definitional axioms, to a basic
propositional formula.

By the ‘Algebra of Classes’ and ‘Algebra of Classesω’ we under-
stand the following sets of propositional formulae:

AoC = {P : `EAC P and P is a propositional formula of EAC}
AoCω = {P : `EACω P and P is a propositional formula of EAC}

The principal challenge before us is to determine the status of the above
propositional calculi as well as their relation to their parent theories
and to the Algebra of Logic of Schröder et al.
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9.1. A POSSIBLE AXIOMATIZATION FOR AoC

For rules of inference of AoC let us take those of EAC concerning
→ and in addition let us add the following two rules about falsum and
classical negation:

[(F →0)]
Π

0 F
G F

Instead of using definitional axioms, let us use the more relaxed
attitude of the traditional propositional calculus in which the ‘defini-
tions’ are considered as temporary typographical abbreviations. The
following are useful temporary abbreviations (where abbr←→ corresponds
to ‘abbreviates’):

Ab1. ∼P abbr←→ (P → 0)

Ab2. U
abbr←→ (0 → 0)

Ab3. (P ∧ Q) abbr←→ ∼(P →∼Q)

Ab4. (P ∨ Q) abbr←→ (∼P → Q)

Ab5. (P ≡ Q) abbr←→ ((P → Q) ∧ (Q → P))

As axiom schemata let us take the following:

AS1. (P ∈ 0) → 0

AS2. ( U ∈ U ) → 0

AS3. P ≡ (0 ∈ P)

AS4. P ∈Q → [P ∈ (A ∈ B) ≡ (A ∈ B)]

AS5. P ∈Q → [P ∈ (A→B) ≡ ((P ∈A) → (P ∈ B))]

Let us call the propositional calculus described above: ‘MP’.
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Lemma 9.1

1. `MP ∼(P ∈ 0)

2. `MP ∼0

3. `MP ∼( U ∈ U )

4. `MP U

5. `MP (P ∈ 0) → (P ∈A)

6. `MP (P ∈A) → (P ∈ U )

An informal way of reading the last two results is that:

0 ⊆ A ⊆ U .

In other words in AoC all the classes (a.k.a. propositions) are sub-
classes of the Universe U , furthermore the Universe is not a member
of itself.

The following theorems give further credence to the claim that MP
is indeed an algebra of classes:

Lemma 9.2

1. `MP P ∈ (A ∧ B) ≡ (P ∈A ∧ P ∈ B)

2. `MP P ∈ (A ∨ B) ≡ (P ∈A ∨ P ∈ B)

3. `MP P ∈ U → [∼(P ∈A) ≡ (P ∈ ∼A)]

4. `MP P ∈ U → [P ∈ (A ≡ B) ≡ ((P ∈A) ≡ (P ∈ B)]

It is now routine to verify that the propositional calculus MP is a
subsystem of AoC.
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10. FOR THE FUTURE

AoC and, if ‘definitions’ are replaced by ‘abbreviations’, EAC, are
simply propositional and extended propositional logics, respectively.
They are invariant logics in the sense that:

If ` Fxyz... then ` FABC....

However, because of ∈ , they are not logically invariant since the fol-
lowing is not a theorem schema:

(A≡B) ∧ FA → FB.

AoC and EAC can thus be considered as two (abstract) propositional
logics obtained from an analysis of the Paradise that Cantor created
for us. It is hoped that their exact place amongst the abstract logics
will be determined in future papers.
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