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Abstract: In the algebraic treatment of quantum statistical systems,
the claim “Nature does not have ideals” is sometimes used to convey
the idea that the C*-algebras describing natural systems are simple,
i.e., they do not have nontrivial homomorphic images. Using our in-
terpretation of AF C*-algebras as algebras of  Lukasiewicz calculus, in
a previous paper the claim was shown to be incompatible with the ex-
istence of a Gödel incomplete AF C*-algebra for a quantum physical
system existing in nature. In this note we survey recent developments
on Gödel incompleteness and decidability issues for AF C*-algebras.
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1 Recapitulation

This paper is a continuation of [29]. For background on quantum me-
chanics and MV-algebras we refer to [13] and [9] respectively. Ob-
servables and pure states of quantum mechanical systems with finitely
many degrees of freedom are represented by self-adjoint operators and
normalized vectors in a Hilbert space, respectively. This representation
is based on the assumption that the operators q and p for position and
momentum satisfy the canonical commutation relation pq− qp = −i~I
where I is the identity operator and ~ is Plank constant divided by 2π.
Von Neumann’s uniqueness theorem states that all irreducible represen-
tations satisfying the above relation are equivalent to the Schrödinger
representation on the Hilbert space of square integrable functions of the
particle. This justifies the standard practice of using the Schrödinger
representation on the Hilbert space of the system.

By contrast, for a system S with infinitely many degrees of free-
dom, (e.g., a system arising in quantum statistical mechanics or in
relativistic quantum field theory) von Neumann’s uniqueness theorem
fails in general: S has many inequivalent representations, in correspon-
dence with its macroscopically different classes of states, and one can
no longer speak of the Hilbert space of S. The C*-algebraic formulation
turns out to yield the appropriate framework for S. Here observables
are identified with self-adjoint elements of a C*-algebra A = AS , and
states with normalized positive linear functionals on A.

In the particular case of a quantum statistical mechanical system
S one usually neglects finite-size effects, [34]: while the observables of
S in any bounded region j are those of a finite system S(j), S itself
is the “thermodynamic limit” of the S(j)’s. The observables of S are
constructed from the self-adjoint elements of an abstract C*-algebra,
given by the following

Definition 1.1 [4, 5, 16] An AF (approximately finite-dimensional)
C*-algebra is the norm closure of the union of an ascending sequence
of finite dimensional C*-algebras, all with the same unit.

AF C*-algebras include Glimm’s UHF (uniformly hyperfinite)
algebras, which yield the standard tool for the algebraization of certain
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quantum spin systems [5, 13, 34]. Among them, the Canonical An-
ticommutation Relation (CAR) algebra provides a mathematical de-
scription of the ideal Fermi gas. While UHF algebras are simple (i.e.,
without nontrivial ideals), general AF C*-algebras A have a rich ideal
structure. Following Fell [14], two representations are said to be “phys-
ically”, or “weakly” equivalent if they have the same kernel. In this
way different primitive ideals (= kernels of irreducible representations)
of A correspond to physically inequivalent irreducible representations.
It turns out that the C*-algebras considered in mathematical physics
are usually simple—they do not have any (nontrivial) ideal. This state
of affairs is summarized by Kastler’s claim [17, pp. 851 ff], [19, p.468],
“Nature does not have ideals”.

2 AF C*-algebras as Lindenbaum algebras of
∞-valued logic

Elliott [12] classified AF C*-algebras A in terms of certain partially de-
fined abelian monoids D(A). Subsequent work by Effros, Handelman,
Shen, Goodearl and others [11, 16], showed that D(A) can be replaced
by a countable, directed, unperforated, partially ordered abelian group
having the Riesz interpolation property together with a distinguished
order-unit: the classifying functor is (an order-theoretic refinement of)
Grothendieck’s group K0.

In his paper [23] the author established a categorical equivalence Γ
between the variety of MV-algebras and the category of unital `-groups.
Thus, the composite functor Γ ◦K0 yields an MV-algebraic classifica-
tion of those AF C∗-algebras whose Murray-von Neumann order of
projections is a lattice. Here is a precise result:

Theorem 2.1 [23, 31]

(i) For every AF C*-algebra A there is at most one associative com-
mutative monotone extension ⊕ of Elliott’s partial operation, hav-
ing the property that, for every projection p ∈ A, among all
Murray-von Neumann classes [q] such that [p] + [q] = [I] there is
a smallest one, denoted ¬[p], namely the class [I − p].
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(ii) Such a unique extension exists if and only if the Murray-von Neu-
mann order of A is a lattice. In this case the resulting structure
B(A) = (D(A), 0,¬,⊕) is a countable MV-algebra.

(iii) Conversely, every countable MV-algebra B is the set of equiva-
lence classes of projections of a unique AF C*-algebra A = A(B)
whose Murray-von Neumann order is a lattice, in such a way that
Elliott’s partial addition in A agrees with the addition operation
of B.

(iv) The maps A 7→ B(A) and B 7→ A(B) are inverses of each
other and yield a one-one correspondence between AF C*-algebras
whose Murray-von Neumann orders are lattices, and countable
MV-algebras.

(v) Under this correspondence, commutative AF C*-algebras corre-
spond to Boolean algebras, Glimm’s UHF algebras correspond to
rational subalgebras of [0, 1], finite-dimensional C*-algebras cor-
respond to finite MV-algebras.

AF C∗-algebras whose Murray-von Neumann order of projections
is a lattice include many physically relevant AF C*-algebras, e.g., the
CAR algebra and, more generally, all of Glimm’s UHF algebras. They
also include the Effros-Shen C*-algebras Fρ for ρ irrational, [11, p.65],
which—as we shall see below—play an interesting role in topological
dynamics, the Behncke-Leptin C*-algebras with a two-point dual [1,
27], and all liminary C*-algebras with separable Boolean spectrum [10]
(also see [26] for an important particular case). Trivially, they include
all commutative AF C*-algebras, as well as the “universal” AF C*-
algebras M and M1 of [23] and [25].

The suggestive claim that AF C*-algebras are “noncommutative
zero-dimensional spaces”, [11, p.66], [2, p.53], can be extended by say-
ing that AF C*-algebras are the algebras of infinite-valued logic, [28]:
indeed, by Theorem 2.1, every MV-algebra B(A) is the Lindenbaum
algebra of some (deductively closed) theory Θ = Θ(A) in the infinite-
valued calculus of  Lukasiewicz. While Θ(A) is just a countable string
of symbols from a finite alphabet, from Θ(A) one can unambiguously
reconstruct the AF C*-algebra A.
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Since every theory Θ in the infinite-valued  Lukasiewicz calculus
uniquely determines an AF C*-algebra A(Θ), the complexity of the
decision problem of Θ impinges upon the algebraic structure of A(Θ).
Thus for instance, A(Θ) is simple if and only if Θ is maximally consis-
tent, [23].

We naturally say that an AF C*-algebra A is Gödel incomplete if
A = A(Θ) for some undecidable and recursively enumerable theory Θ.

In [23, 6.1] it is proved

Theorem 2.2 Every Gödel incomplete AF C*-algebra A has a nonzero
ideal. Thus Gödel incompleteness never affects simple AF C*-algebras.

We also have [32]:

Theorem 2.3 Fix an integer n ≥ 1, and let Θ be a recursively enumer-
able prime theory in the infinite-valued calculus of  Lukasiewicz with n
variables. In other words, for any two formulas φ and ψ, either φ→ ψ
or ψ → φ belongs to Θ. Then Θ is decidable.1 In other words, Gödel
incompleteness never affects those AF C*-algebras with comparability
of projections whose Grothendieck group is finitely generated.

Most AF C*-algebras existing in the mathematical-physical litera-
ture [5, 13, 34] are indeed simple, and hence, by Theorem 2.2 they are
not Gödel incomplete.

A different class of AF C*-algebras A = A(Θ) without Gödel in-
completeness arises when Θ is decidable.2 Such algebras abound in the
literature. Thus for instance, references [24, 27] provide many exam-
ples of AF C*-algebras A = A(Θ) where Θ is decidable in polynomial
time:

Theorem 2.4 The following AF C*-algebras have the form A = A(Θ)
where the decision problem of Θ is solvable in polynomial time:

(i) Each AF C*-algebra corresponding to a free MV-algebra, includ-
ing the universal C*-algebra M of [23].3

1This result ceases to exist if Θ has infinitely many variables [32].
2Note that the decision problem of Θ is the same as the problem of computing

identities between Murray-von Neumann equivalence classes of projections in A.
3Every AF-algebra whose Murray-von Neumann order of projections is a lattice,

is a quotient of the AF-algebra M described in [23, Section 8].
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(ii) Every finite-dimensional C*-algebra.

(iii) The universal UHF algebra.

(iv) The CAR algebra.

(v) Each Effros-Shen algebra Fσ, for σ a quadratic irrational, or σ =
1/e.

Summing up, none of the AF C*-algebras A considered in [5, 13,
34, 24, 27] is affected by Gödel incompleteness—and a fortiori, none
of these algebras is essentially Gödel incomplete. Suppose, however, a
certain quantum system S is described by an essentially Gödel incom-
plete AF C*-algebra A = A(Θ).4 Then A has at least two physically
inequivalent Hilbert space representations. Since A does not represent
a maximum information system, one should rather consider all possible
simple algebras A′ = A/M , where M ranges over maximal ideals M
of A. Any such M canonically determines a theory ΘM . The maxi-
mality of M is reflected by ΘM being maximally consistent. In other
words, no consistent theory strictly contains ΘM . Let A′ = A(ΘM ).
The completion process of Θ by ΘM parallels the surjection of A onto
A/M . By definition of essential Gödel incompleteness, for every max-
imal ideal M of A, the theory ΘM cannot be recursively enumerable.
In the completion process ΘM ⊇ Θ the recursive enumerability of Θ is
irreparably lost.

3 Decision problems for finitely presented AF
C*-algebras

In the previous sections we have considered decision problems for a
single AF C*-algebra A = A(Θ), in terms of the complexity of its
associated theory Θ in  Lukasiewicz calculus. Decidability and unde-
cidability problems naturally arise also for classes of AF C*-algebras

4The AF C*-algebra of all complex-valued continuous functions over the Stone
space of the Lindenbaum algebra of Peano arithmetic provides a straightforward
example of essentially Gödel incomplete commutative AF C*-algebra.
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as described by their (Bratteli) diagrams.5

In his monograph [2, p.55] Blackadar (using the informal notion of
“reasonable algorithm”) notes

...one major problem restricts the usefulness of the study of AF C*-
algebras by diagrams: many quite different diagrams yield isomorphic
algebras, and there is no known reasonable algorithm for determining
when two diagrams give isomorphic algebras.

As we will see in Theorem 3.1 below, the Turing undecidability of
the isomorphism problem for AF C*-algebras does not depend on the
fact that Bratteli diagrams (as well as theories in  Lukasiewicz logic)
yield a presentation of AF C*-algebras in terms of infinite strings of
symbols. As a matter of fact, in [30] the author associates to every fi-
nite abstract simplicial complex C a stable6 AF C*-algebra A(C). Two
abstract simplicial complexes C and C′ are said to be C∗-equivalent if
their associated stable AF-algebras A(C) and A′(C) are isomorphic.7

The main result of [30] is the Gödel-incompleteness (whence, the un-
decidability) of the isomorphism problem for the subclass of stable AF
C*-algebras that are presentable by abstract simplicial complexes: 8

Theorem 3.1 The set of pairs of abstract simplicial complexes rep-
resenting isomorphic stable AF-algebras can be effectively enumerated.
On the other hand, there is no algorithm to decide isomorphism of
stable AF-algebras associated to abstract simplicial complexes.

5These diagrams yield the first string-theoretic presentation of AF C*-algebras,
[4].

6Recall that an an AF C*-algebra A is said to be stable if it is isomorphic
to its tensor product with the compact operators on a separable Hilbert space.
Grothendieck’s K0-functor transforms every stable AF C*-algebra A into a count-
able dimension group (K0(A), K0(A)+), in such a way that isomorphism classes of
stable AF-algebras are in 1-1 correspondence with isomorphism classes of countable
dimension groups.

7Every stable AF-algebra whose Bratteli diagram is generated by an abstract
simplicial complex is a quotient of the “universal” AF C*-algebra M of [23].

8As shown in [30], a stable AF-algebra A arises from an abstract simplicial com-
plex C if and only if its associated dimension group (K0(A), K0(A)+) is a finitely
generated projective `-group having infinitely many maximal `-ideals.
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Abstract simplicial complexes are not the only tool for giving finite
presentations of classes of AF C*-algebras. Thus for instance, integer
matrices are used in [6, 7, 8]. A matrix M is said to be primitive if all
sufficiently high powers of M have all entries > 0. By an abacus we
mean a square, nonsingular, integer, primitive matrix. In [6] any abacus
M is canonically associated to a stable AF C*-algebra A(M). Two
abaci are said to be C∗-equivalent if their associated AF C*-algebras are
isomorphic. In sharp contrast with the second statement of Theorem
3.1, in [7, 8] it is proved

Theorem 3.2 There exists an algorithm to decide isomorphism of AF
C*-algebras associated to abaci.

Via Grothendieck’s functor K0 this result also yields a decision
procedure for isomorphisms of the ordered simple dimension groups
associated to these AF C*-algebras; this class of groups is important
for a variety of other problems, especially in symbolic and topological
dynamics, [33, 18, 3, 22, 20, 21].

Putting together Theorems 3.1 and 3.2 we have [30]:

Corollary 3.3 Let ϕ be an arbitrary function from the set of pairs of
abstract simplicial complexes to the set of pairs of abaci. Consider the
following conditions:

P1 : ϕ preserves C∗-equivalence;

P2 : ϕ preserves C∗-inequivalence;

P3 : ϕ is Turing-computable.

Then for any two distinct indexes i, j ∈ {1, 2, 3} there is a function
ϕi,j satisfying properties Pi and Pj, but there is no function ϕ having
simultaneously the three properties.

A new interesting technique yielding finite presentations of AF
C∗-algebras can be drawn from the constructions of the paper [15].
Here the authors introduce finite presentations of countable abelian
`-groups as quotients of free nonabelian `-groups. In this way they can
give, among others, finite presentations of all Effros-Shen groups Fρ, for
ρ a recursive real. While the algorithmic aspects of main techniques of
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[15] are as yet unexplored, one can naturally pose new decidability
and undecidability problems for various important classes of AF C∗-
algebras having finite presentations in the sense of [15].
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[17] Haag, D., Kastler, D. “An algebraic approach to quantum
field theory”. J. Math. Physics, 5, pp. 848-861, 1964.

[18] Handelman, D. “Positive matrices and dimension groups affili-
ated to C*-algebras and topological Markov chains”. J. Operator
Theory, 6 , pp. 55-74, 1981.

[19] Kastler, D. “Does ergodicity plus locality imply the Gibbs struc-
ture?”. Proc. Symp. Pure Math., II, 38, pp. 467-489, 1982.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 547-558, jul.-dez. 2005.
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morphism problem”. Transactions of the American Mathematical
Society, 356, pp. 1937-1955, 2004.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 547-558, jul.-dez. 2005.



558 DANIELE MUNDICI

[31] Mundici, D., Panti, G. “Extending addition in Elliott’s local
semigroup”. Journal of Functional Analysis, 117, pp. 461-471,
1993.

[32] ———–. “Decidable and undecidable prime theories in infinite-
valued logic”. Annals of Pure and Applied Logic, 108, pp. 269-278,
2001.

[33] Palis, J., Takens, F. Hyperbolicity and Sensitive Chaotic Dy-
namics at Homoclinic Bifurcations. Cambridge University Press,
1993. (Cambridge Studies in Advanced Mathematics, 35).

[34] Sewell, G.L. Quantum Theory of Collective Phenomena. Ox-
ford: Clarendon Press, 1986.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 547-558, jul.-dez. 2005.


