
CDD: 511.3

BOUNDED COMMUTATIVE B-C-K LOGIC AND
 LUKASIEWICZ LOGIC

MARTA SAGASTUME

Departamento de Matemática
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Abstract: In [9] it is proved the categorical isomorphism of two va-
rieties: bounded commutative BCK-algebras and MV -algebras. The
class of MV -algebras is the algebraic counterpart of the infinite valued
propositional calculus  L of  Lukasiewicz (see [4]). The main objective of
the present paper is to study that isomorphism from the perspective of
logic. The B-C-K logic is algebraizable and the quasivariety of BCK-
algebras is the equivalent algebraic semantics for that logic (see [1]).
We call commutative B-C-K logic, briefly cBCK, to the extension of
B-C-K logic associated to the variety of commutative BCK–algebras.
Moreover, we present the extension Boc of cBCK obtained by adding
the axiom of “boundness”. We prove that the deductive system Boc is
equivalent to  L. We observe that cBCK admits two interesting exten-
sions: the logic Boc, treated in this paper, which is equivalent to the
system  L of  Lukasiewicz, and the logic Co that is naturally associated
to the system Balo of `-groups (see [10], [5]) . This constructions es-
tablish a link between  L and Balo , that would be a logical approach
to the categorical relationship between MV–algebras and `-groups (see
[4]).

Key-words: B-C-K-logic. BCK-algebras. MV-algebras.  Lukasiewicz
logic.
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1. BCK-ALGEBRAS AND B-C-K LOGIC

The notion of BCK–algebra was introduced by Iseki [6], [7]. A
BCK–algebra is a system 〈A, ∗, 0〉 of type (2, 0), where the operation
∗ has the properties of set-theoretical difference. We can define an
implication in each BCK-algebra by

y → x = x ∗ y.

So, we can see ∗ as the dual of implication of B-C-K-logic.
The class of BCK–algebras is defined by a set of identities and

quasi–identities, so it is a quasi–variety. In fact, Wronski [11] has shown
that does not form a variety.

Definition 1. (Iseki and Tanaka [7]) The system 〈A, ∗, 0〉 is a BCK–
algebra if the following identities and quasi–identity hold.

(IT1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.

(IT2) (x ∗ (x ∗ y)) ∗ y = 0.

(IT3) x ∗ x = 0.

(IT4) 0 ∗ x = 0.

(IT5) x ∗ y = 0, y ∗ x = 0 implies x = y.

If 〈A, ∗, 0〉 is a BCK–algebra, then it is known that 〈A,≤〉 is a poset
with the order defined by

x ≤ y if and only if x ∗ y = 0.

The B-C-K logic is defined as follows.

Language

The only connective considered is →.

Axioms

(B) (ϕ→ ψ) → ((χ→ ϕ) → (χ→ ψ)),
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(C) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ)),

(K) ϕ→ (ψ → ϕ),

Inference Rules

The only rule considered is Modus Ponens (MP):

ϕ , ϕ→ ψ

ψ

Note (see [1]) that preceding axioms imply

(I) ϕ→ ϕ,

Theorem 1. (see [1]) The B-C-K logic is algebraizable with equivalence
formulas {ϕ → ψ,ψ → ϕ} and defining equation ϕ ≈ (ϕ → ϕ). The
class of BCK–algebras is the equivalent algebraic semantics for B-C-K
logic.

The class of BCK- algebras is thus defined by the identities obtained
making the expressions of axioms (B), (C), (K) equal to 0 and the
quasiidentity: x→ y ≈ 0, y → x ≈ 0 implies x ≈ y.

2. COMMUTATIVE BCK-ALGEBRAS AND LOGIC cBCK

It was proved by Yutani [12] that the class of commutative BCK–
algebras has the following equational basis.

(Y1) (x ∗ y) ∗ z = (x ∗ z) ∗ y

(Y2) x ∗ (x ∗ y) = y ∗ (y ∗ x)

(Y3) x ∗ x = 0

(Y4) x ∗ 0 = x
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A commutative BCK–algebra is a lower semi-lattice with respect
to the order above defined, where the infimum is given by

x ∧ y = x ∗ (x ∗ y).

We will call the following deductive system commutative B-C-K
logic, briefly cBCK.

Language

The only connective considered is →.

Axioms

(B) (ϕ→ ψ) → ((χ→ ϕ) → (χ→ ψ)),

(C) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ)),

(K) ϕ→ (ψ → ϕ),

(In) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)

Inference Rules

The only rule considered is (MP).

Theorem 2. The deductive system cBCK is algebraizable and the vari-
ety of commutative BCK–algebras is the equivalent algebraic semantics
for that logic.

Proof. Being an extension of an algebraizable logic, this logic is also
algebraizable with the same defining equations ϕ ≈ ϕ→ ϕ and equiva-
lence formulas {ϕ→ ψ , ψ → ϕ}. The corresponding class of algebras
is determined by the equations and quasiequations that result of alge-
braization process in theorem 1 (that are equivalent to Iseki-Tanaka
conditions, [7]) plus the condition

(x→ y) → y ≈ (y → x) → x

that is, (Y2) in terms of →.
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It is known that Iseki-Tanaka conditions plus (Y2) are equivalent
to Yutani conditions Y1–Y4.

3. MV-ALGEBRAS AND THE INFINITE-VALUED  Lukasiewicz LOGIC

In 2000, Cignoli, D’Ottaviano and Mundici ([4]) presented a deep
algebraic approach of the infinite-valued sentential calculus  L of  Luka-
siewicz. In [2], [3] Chang studied this calculus and established that the
variety of MV–algebras is the algebraic counterpart of  L.

An MV –algebra (Chang, [2] Mangani, [8]) is a system A = 〈A;⊕,
¬,0〉 satisfying the following equations.

MV1 x⊕ (y ⊕ z) = (x⊕ y)⊕ z

MV2 x⊕ y = y ⊕ x

MV3 x⊕ 0 = x

MV4 ¬¬x = x

MV5 x⊕ ¬0 = ¬0

MV6 ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

In every MV –algebra we can define the constant 1 and the binary
operator → by the formulas: 1 := ¬0, x→ y := ¬x⊕ y

The following is the definition of infinite-valued propositional cal-
culus  L of  Lukasiewicz.

Language

The language is of type (1, 2), given by two connectives ¬ and →.

Axioms

(B) (ϕ→ ψ) → ((χ→ ϕ) → (χ→ ψ)),

(K) ϕ→ (ψ → ϕ),
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(In) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ),

(Ne) (¬ϕ→ ¬ψ) → (ψ → ϕ)

Inference Rules

The only rule is Modus Ponens.

From Prop. 4.3.4, ch. 4, [4] we see that

(C) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ))

is a theorem of  L.

4. BOUNDED COMMUTATIVE BCK-ALGEBRAS AND LOGIC Boc

The logic Boc is the extension of commutative B-C-K logic obtained
by adding the axiom of “boundness”. The algebraization of this logic
provides the class of commutative bounded BCK–algebras.

A bounded commutative BCK–algebra is a commutative BCK-
algebra 〈A, ∗,0,1〉 with a maximun element 1 such that the following
identity holds.

(Ma) x ∗ 1 = 0.

The system Boc of bounded commutative B-C-K logic is defined as
follows.

Language

Let us consider the language L = {→,>} of type (2, 0).

Axioms and Inference Rules

(B) (ϕ→ ψ) → ((χ→ ϕ) → (χ→ ψ)),

(C) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ)),

(K) ϕ→ (ψ → ϕ),

(In) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)

(Bo) > → ϕ
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Theorem 3. The deductive system Boc is algebraizable and the vari-
ety of bounded commutative BCK–algebras is the equivalent algebraic
semantics for that logic.

Proof. The system Boc is an extension of cBCK logic, so is algebraiz-
able with the same defining equations ϕ ≈ ϕ → ϕ and equivalence
formulas {ϕ → ψ , ψ → ϕ}. As a consequence of theorem 2, the
corresponding class of algebras is determined by conditions (Y1), ...,
(Y4) of Yutani, plus the condition corresponding to axiom (Bo), that
is, > → x ≈ 0.

Theorem 4. Let FBoc be the set of formulas of Boc, let the binary
relation ≡ over FBoc be defined by ϕ ≡ ψ iff ` ϕ→ ψ and ` ψ → ϕ.
The system FBoc/ ≡ = 〈FBoc/ ≡ ; ∗, O, U〉 is a bounded commutative
BCK- algebra, where operations are defined in the quotient by

[ϕ] ∗ [ψ] = [ψ → ϕ] , O = [ϕ→ ϕ] , U = [>].

Proof. It suffices to prove that (Ma) holds. In fact,
[ϕ] ∗ U = [> → ϕ] = O.

5. EQUIVALENCE BETWEEN  L AND Boc

The rest of the paper is devoted to show that Boc is equivalent to  L
with an adequate translation of connectives. This relationship seems
to be the logical approach to the definitional equivalence proved by
Mundici in [9] between the varieties of bounded commutative BCK-
algebras and MV–algebras.

We can remark that the interpretation of “truth” in B-C-K logic is
0, but in  L is 1.

Theorem 5. The logic  L is equivalent to Boc.

Proof. The axioms (B), (K) and (In) are common to both systems and
Prop. 4.3.4, ch. 4, [4] gives a proof in  L of condition (C) from (B), (K)
and (In). So, it suffices to show that (Bo) is a theorem of  L considering
the translation > := ¬(ϕ → ϕ) and that (Ne) follows from (B), (C),
(K), (In) and (Bo), if we define ¬ϕ := ϕ→ >.

Manuscrito - Rev. Int. Fil., Campinas, v. 28, n. 2, p. 575-583, jul.-dez. 2005.



582 MARTA SAGASTUME

In first place, it is known that (I) is a B-C-K theorem (see section
2) and the proposition 4.3.4 mentioned above also states that ` L ϕ↔
¬¬ϕ. So, ` ¬¬(ϕ→ ϕ). We have also:

1. ` (¬¬(ϕ→ ϕ)) → (¬ψ → ¬¬(ϕ→ ϕ)) (instance of (K))

2. ` (¬ψ → ¬¬(ϕ→ ϕ)) → (¬(ϕ→ ϕ) → ψ) (instance of (Ne))

Therefore, by (MP)

1. ` ¬(ϕ→ ϕ) → ψ, that is, (Bo).

On the other hand, we give a proof of (Ne) from the axioms (B),
(C), (K), (In) and (Bo) as follows.

We first prove ` ((ϕ→ >) → >) ↔ ϕ (that is, ` (¬¬ϕ) ↔ ϕ).

1 ` (ψ → ϕ) → (ψ → ϕ) (instance of (I))

2 ` ψ → ((ψ → ϕ) → ϕ) (by (C) and (MP))

3 ` (> → ϕ) → (((> → ϕ) → ϕ) → ϕ) (by (2))

4 ` ((> → ϕ) → ϕ) → ϕ (by (3), (Bo) and (MP))

5 ` ((ϕ→ >) → >) → ((> → ϕ) → ϕ) (instance of (In) )

6 ` ((ϕ → >) → >) → ϕ (by (4) and (5), by hypothetical syllo-
gism, that holds in B-C-K logic.)

The converse
` ϕ→ ((ϕ→ >) → >)
is an instance of (2), above.
Now, (Ne) follows from
` (¬ϕ→ ¬ψ) → ((¬¬ψ) → (¬¬ϕ)) (instance of (B)),
` (¬¬ϕ) → ϕ, and
` ψ → (¬¬ψ),
by adequate application of hypothetical syllogism.
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