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1. THE CONTINUUM HYPOTHESIS

The notion of infinite appears in mathematics in many different
ways. The notion of limit or endless processes of approximations have
been considered since ancient times, but it was in the decade of 1870
that the systematic study of infinite collections as completed totalities
was initiated by George Cantor, originating what is now known as set
theory. Cantor’s original motivations, related to certain problems of
mathematical analysis, led him to consider properties of sets of real
numbers, in particular their size, or number of elements.

Given two collections of objects, we say they have the same size, or
the same number of elements, if we can establish a one to one correspon-
dence between them, that is, if to each element of the first collection
we can assign a unique element of the second, in such a way that every
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element of the second collection gets assigned to exactly one element
of the first collection. In mathematical terms, this is called a bijection
between the two collections. We will thus say that two sets A and B are
equipotent, or that they have the same cardinality, if there is a bijection
from A to B. It is easy, to verify that the set N of natural numbers
(0, 1, 2, . . . ) has the same cardinality as the set of even numbers (just
set the correspondence sending the number n to the number 2n). Some
interesting collections of real numbers have also the same cardinality,
for example, the set of rational numbers, and the set of algebraic real
numbers (those real numbers which are roots of a polynomial with
integer coefficients) can be also put in a bijective correspondence with
N.

Cantor proved that there is no bijection between the points of the
real line R and the set of natural numbers; there are, thus, at least two
different kinds of infinite sets: those infinite sets which have the same
cardinality as N, called countable, and the others, like the set R of real
numbers, which are said to be uncountable. Cantor also noted that the
interval [0, 1] and R have the same cardinality, as well as the sets Rk,
RN and {0, 1}N, the set of all sequences of zeroes and ones. All of these
sets are uncountable.

A very natural question to ask is if every uncountable set of real
numbers has the same cardinality as R. Cantor’s continuum hypothesis
is precisely that statement: every uncountable set of real numbers has
the same cardinality as the whole set of real numbers. Cantor worked
without success to prove this hypothesis, and, as we will see, still today
the problem remains unsolved.

Hilbert considered this problem so important that he put it first
in the list of problems he presented to the International Congress of
Mathematicians held in Paris in 1900. It continues to be one of the
most important problems of mathematics, and it can be said that it
has guided the development of set theory for over a century.

We will try to present here, in a very schematic way, some of the
most important developments related to the continuum hypothesis.
The book (Jech 2003) is a good reference to consult for those interested
in further reading on this subject and set theory in general; Kanamori
(1994) is also an excellent source of information, specially on topics
related to large cardinals.
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2. AXIOMS OF SET THEORY

Cantor introduced transfinite ordinals and cardinals to deal with
infinite collections. When we count the elements in a collection, we
assign natural numbers to the elements of the collection. If we count
real numbers, for example, the elements of the unit interval [0.1], we
run out of natural numbers before we end the counting, so we need new
numbers to continue, the infinite ordinal numbers. The ordinals, thus,
start with the natural numbers and go on indefinitely:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω, ω + ω + 1, . . .

When we count the elements of a set, we order these elements,
the first one, the second, etc. ω is the first infinite ordinal, it is the
number assigned to the first element counted after we run out of natural
numbers, then comes ω + 1, obtained adding one new element, adding
another we obtain ω + 2, and so on. In the limit we have ω + ω, The
ordinals obtained starting from ω and applying the operations of adding
one more element, and passing to the limit are the countable ordinals.
Any set counted with a countable ordinal has the same cardinality
as N, which was called ℵ0 by Cantor. It turns out that the set of
all countable ordinals is not countable, and its cardinality is the next
infinite cardinal, called ℵ1. The process can be continued, if ω1 is the
ordinal that comes after all the countable ordinals; then, adding one
more element we get ω1 +1, then ω1 +2, and so on. The limit is ω1 +ω,
and in this way we get the ordinals that count sets which have the same
cardinality as ω1. The cardinality of this set of ordinals is ℵ2, the next
cardinal after ℵ1. The transfinite cardinals are

ℵ0,ℵ1,ℵ2, . . . ,ℵω,ℵω+1, . . . ,ℵω1 , . . .

For each ordinal α there is a cardinal ℵα, and these are all different
“sizes” of infinite sets. An infinite cardinal ℵβ is a successor cardinal
if β = α + 1 for some ordinal α, otherwise it is a limit cardinal.

Cantor conjectured that every set can be put in one to one corre-
spondence with an ordinal. In other words, that every set can be well
ordered, which means totally ordered in such a way that every non-
empty subset has a minimal element. This statement is called the well
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ordering principle. If it holds, then the real numbers, in particular, can
be well ordered and there is a unique cardinal c equipotent with the
set of real numbers; c is the cardinality of the set of real numbers. The
continuum hypothesis just means that c is ℵ1, the least uncountable
cardinal. Since the set of real numbers is equipotent with the set

of sequences of sequences of zeroes and ones, c, the cardinality of the
set of real numbers is the same as 2ℵ0 . Thus, the continuum hypothesis
is sometimes expressed as 2ℵ0 = ℵ1.

Soon after, around the turn of the century, several paradoxes were
discovered in the theory of sets, the most famous of which is Russell’s
paradox. Bertrand Russell showed that the intuitive idea that every
property determines a set (the collection of objects having the property)
leads to contradictions. Consider the collection B of all sets x with the
property that x is not an element of x. If B is not an element of B
then, by its own definition, B is an element of B; and vice-versa, if B
is an element of B it is because B is not an element of B. Therefore
this collection B cannot be a set. The collection of all sets is another
collection which cannot be a set, as well as the collection of all ordinals.

Ernst Zermelo, in 1908, proposed an axiomatization of set theory
to avoid these paradoxes. This axiomatization, modified later by Abra-
ham Fraenkel, is the theory ZF , and together with the axiom of choice
it is called the theory of sets ZFC (Zermelo-Fraenkel with Choice).

The axioms of ZFC are the following.

1. Axiom of extensionality. If X and Y have the same elements,
they are equal.

2. Axiom of pairs. Given X and Y , there is a set {X, Y } whose
elements are exactly X and Y .

3. Axiom of union. For every set X, there is a set Y = ∪X which
is the union of the elements of X.

4. Axiom of power set. For every set X, there is a set Y = P(X),
the set of all subsets of X.

5. Axiom of infinity. There is an infinite set.
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6. Axiom of replacement. If F is a definable function, for every set
X there is a set Y = {F (x) : x ∈ X}.

7. Axiom of regularity. Every non-empty set has an ∈-minimal ele-
ment.

8. Axiom of choice. Every family of non-empty sets has a choice
function.

The well ordering principle, which states that every set can be well
ordered, is equivalent to the axiom of choice.

The ordinals are identified in the theory ZFC with some specific
sets, in such a way that each ordinal is the set of its predecessors.
Starting with 0 = ∅, 1 = {0}, 2 = {0, 1}, . . . n + 1 = n ∪ {n}, etc,
we get the natural numbers. Then, ω = {0, 1, 2, . . . } is the set of all
natural numbers, ω+1 = ω∪{ω}; and in general, every ordinal α has a
successor α + 1 = α∪{α}. The limit of a set of ordinals is their union.

The cardinals are those ordinals that are not equipotent with any
of its elements; for example, the finite ordinals are cardinals, ω = ℵ0,
ω1 = ℵ1, etc.

The axioms of ZFC describe the universe of all sets, and they imply
that the universe can be organized in a cumulative hierarchy defined
by induction.

V0 = ∅, is the empty set.
Vα+1 = P(Vα), the set of all the subsets of Vα, and
Vλ =

⋃
ξ<λ Vξ, the union of all the sets Vξ with ξ less than λ, if

λ is a limit ordinal.

The Vα’s constitute an increasing collection of sets, and from the
axioms of ZFC follows that every set is in Vα for α sufficiently large.
Thus, V =

⋃
α∈Or Vα, the union of all the Vα’s is the universe of all

sets. As a matter of fact, the axiom of regularity is equivalent to “all
sets are in V ”.

For every n ∈ ω, Vn is finite, Vω is infinite, but all its elements are
finite, and moreover, any element of an element of Vω is finite, and
the same for any element of an element of an element of Vω, and so on.
Vω is the collection of all the hereditarily finite sets. In particular, every
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natural number n belongs to Vω, so ω ⊂ Vω; but ω itself is not an
element of Vω, it is an element of Vω+1, as is the case for any subset of
ω.

3. TRUTH, PROOF, UNDECIDABILITY

The truth of a mathematical statement is established by means of
deductive methods. We know that a statement ϕ is true if we can prove
it starting from basic principles applying the rules of logic. How do we
know if there is a proof for a given statement ϕ? Even if such a proof
exists, it might be very hard to find. It could happen that there is no
proof of ϕ. For example, if there is a proof of the negation of ϕ then
ϕ cannot be provable, unless mathematics is inconsistent. But it can
happen that neither ϕ nor its negation have proofs. In this case it is
said that ϕ is undecidable.

In 1931, Kurt Gödel proved his famous incompleteness theorem,
which says that for any axiomatic system which satisfies a few reason-
able requirements, there are statements which are undecidable, that is,
neither the statement nor its negation are provable in the system. The
requirements that must be satisfied are, first, that the system is not
contradictory; second, that the axioms can be algorithmically recog-
nized, in other words that there is an effective procedure to decide if
a given statement is one of the axioms; and finally, that elementary
arithmetic can be developed within the system. The theory ZFC has
the last two properties, so if we assume that it is consistent, it follows
that there are mathematical statements that are undecidable in ZFC.

Another remarkable result of Gödel, known as the second incom-
pleteness theorem, implies that the consistency of ZFC cannot be
proved from the axioms of ZFC. To prove his incompleteness the-
orems, Gödel devised a way to express questions about mathematical
theories by means of arithmetical statements. In particular, there is
a formula of the language of arithmetic which expresses “there is no
proof of 0 = 1 from the axioms of ZFC”. This formula says that ZFC
is consistent, and Gödel showed that it is not provable in ZFC. The
second incompleteness theorem is more general, it says that the same
holds for any formal theory satisfying the conditions mentioned above.
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The continuum hypothesis is one of those statements undecidable in
ZFC; assuming ZFC is consistent, there is no proof of the continuum
hypothesis nor of its negation from the axioms of ZFC. The next
section is devoted to describe how this has been established.

4. THE INDEPENDENCY OF CONTINUUM HYPOTHESIS

A way to prove that a statement is not provable in a certain ax-
iomatic system is to find a model of the axioms in which the statement
is false. Gödel proved in 1936 that if there is a model of ZFC, then
there is a model of ZFC in which the continuum hypothesis holds.
This implies that the negation of CH is not provable in ZCF , unless
the theory ZFC is itself inconsistent. Gödel’s model is called the con-
structible universe, and it is denoted by L. This model L is obtained
like V , defining by transfinite induction a hierarchy of sets, for each
ordinal α, a set Lα. For α = 0, L0 = ∅, to define Lα+1 we do not take
all the subsets of Lα like it is done for V , but only the subsets of Lα

which are definable in Lα, and if α is a limit ordinal, then Lα is the
union of all the Lβ with β < α.

The idea is that at every stage of the construction we put in the
model just the sets that are strictly necessary. This will give as a result
that we only include the minimal possible quantity of real numbers,
which is ℵ1. Thus, since ℵ1 is the first uncountable cardinal, in L,
every uncountable set of real numbers has cardinality ℵ1.

The axiom of choice is not used in the construction of L, and by the
way the Lα’s are defined, every set in L can be well ordered. This gives
that the axiom of choice holds in L, and therefore, if ZF is consistent,
then ZFC is consistent as well.

Once we have a model of ZFC where CH holds, we know that the
negation of CH is not provable in ZFC. So, to complete the proof
of the undecidability of the continuum hypothesis, it remains to find a
model of ZFC where CH does not hold, which would show that CH
itself is not provable in ZFC. This was done by Paul Cohen in 1963.
Cohen invented a very powerful method to build models of set the-
ory known as forcing. Starting with a model M of ZFC and a partial
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order in M , the method of forcing consists in using the partial order to
add some new elements to M , in order to get a larger model preserving
some of the properties of M and changing others. The properties of the
new model are determined by the partial order used. This technique is
reminiscent of the process of going from a certain field to an algebraic
extension which contains a root for a polynomial with no roots in the
original field.

Let us try to describe how the method works to add a new real
number to a model M . First, we can identify real numbers with subsets
of ω, or their characteristic functions, functions from ω into {0, 1}. In
M , consider the set P of all functions from a finite subset of ω taking
values in {0, 1}. This set can be partially ordered putting q ≤ p if q
extends p as a function. A subset D of P is dense if for every p ∈ P
there is q ∈ D such that q ≤ p. A subset G of P is a generic filter over
M if it has the following three properties:

(i) For any p, q ∈ P, if p ∈ G and p ≤ q, then q ∈ G,

(ii) If p, q ∈ G, then there is r ∈ G such that r ≤ p and r ≤ q
(p and q are compatible), and

(iii) For any dense subset D of P which belongs to M , G ∩D 6= ∅

This is usually expressed saying that G is P-generic over M . It
is not hard to prove that if M is countable such a generic filter G
exists, and that it cannot be an element of M . Since the elements of
G are pairwise compatible, ∪G, the union of all the elements of G is a
function, and by the properties of G, it can be shown that its domain
is ω. Therefore g = ∪G is a real number which does not belong to M .
This g is called a generic real. A model M [g] can be defined in terms of
M and g, in such a way that M [g] is also a model of ZFC, M ⊆ M [g],
and g ∈ M [g]. The models M and M [g] have the same ordinals, and
M [g] is contained in any other model N satisfying M ⊆ N and g ∈ N .
The model M [g] is called a generic extension of the model M . Since
the real g is defined from G, and G can be reconstructed from g, the
roles of G and g are interchangeable in the construction of the generic
extension, thus M [g] = M [G].
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The construction of the model M [g] and the proof that it has the
desired properties is quite elaborate. Certain elements of the model
M are used as “names” for elements of M [g]. Which set is the object
named by a name τ depends on the generic g, and given g, the model
M [g] is the collection of sets named by names in M according to g.
A relation  is defined between elements of P and formulas of the
language of set theory with “names” for elements of M [g]. A formula
ϕ(x) is satisfied in M [g] by a set a if and only if there is a p ⊂ g such
that p  ϕ(τ), where τ is a name for a.

How can this be used to show the independence of the continuum
hypothesis? The idea is to add to a model M many new real numbers,
say, at least ℵ2 many new reals. This can be achieved as before, but
using simultaneously ℵ2 copies of the partial order P. The generic filter
G obtained this way will give rise to ℵ2 many distinct real numbers,
all of them in the model M [G]. One more thing has to be taken care
of. Since there are new sets in M [G], in particular there might be
new functions, and conceivably, the ordinal that in M is ℵ2, the second
uncountable cardinal, could cease to be a cardinal in M [G], for example
if one of the new functions is a surjection from ω onto that ordinal, in
which case the ℵ2 of M becomes countable in M [G]. The properties of
the partial order used to construct M [G] are used to show that this is
not the case, that if we use this particular partial order, the cardinals of
M are still cardinals in M [G]. This is due to the fact that this partial
order has the property known as the countable chain condition, or ccc.
To explain this property, first some definitions. As it was mentioned
in the definition of a generic filter, two elements a and b of a partially
ordered set are compatible if there exists an element c of the partial
order such that c ≤ a and c ≤ b. If no such c exists, then a and b
are said to be incompatible. An antichain in the partial order is just
a set of pairwise incompatible elements. A partial order is ccc if every
antichain is at most countable. Any generic extension of a model M
obtained using a ccc partial order has the same cardinals as M .

A very good presentation of the method of forcing and independence
proofs in set theory can be found in Kunen (1980).

We have seen that the continuum hypothesis is true in the model
L defined by Gödel, and is false in Cohen’s model M [G]; it is thus
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undecidable in ZFC. For some mathematicians, this settles the prob-
lem: there is no answer to the continuum question. For others, and
this is a more common position among set theorists, this only shows
that the axioms of set theory are not strong enough to give an an-
swer to the question, and that new natural axioms should be found to
really give an answer to the problem. In a very illuminating article,
Gödel (1947) expressed this views about this. He thought that new
axioms for the theory of sets could settle the continuum problem, and
suggested in particular large cardinal axioms. As we will see, the con-
nection between large cardinals and properties of sets of real numbers
that has been gradually uncovered, has been shaped into a very deep
and exciting theory.

5. LARGE CARDINALS

The axioms of ZFC allow us to organize the universe of sets in
an increasing collection of sets, Vα, α an ordinal. It can be verified
that Vω satisfies several of the axioms of ZFC, but it fails to satisfy
the axiom of infinity. If α is an ordinal, α > ω, then Vα satisfies the
axiom of infinity, but it might not satisfy some other of the axioms.
Can we find an ordinal κ such that Vκ satisfies all he axioms of ZFC?
In other words, is there a κ such that Vκ is a model of ZFC? Gödel’s
second incompleteness theorem says that it is impossible to prove the
existence of such a κ in ZFC.

A cardinal κ > ω is said to be weakly inaccessible if it satisfies the
following two conditions:

1. κ is regular, which means that the union of fewer than κ sets of
cardinality less than κ has cardinality less than κ, and

2. κ is a limit cardinal.

If in addition for any set A of cardinality less than κ, P(A), the set
of subsets of A, has also cardinality less than κ, then κ is said to be
(strongly) inaccessible.

We could say, thus, that an inaccessible cardinal cannot be reached
applying the usual set theoretic operations to smaller cardinals. If κ
is an inaccessible cardinal, then Vκ satisfies all the axioms of ZFC,
so, by Gödel’s theorem, the existence of an inaccessible cardinal is
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not provable in ZFC. We can add to ZFC the axiom “there is an
inaccessible cardinal” to obtain a stronger theory. In this theory, the
consistency of ZFC can be proved, of course, since it can be proved
that there is a model of ZFC, but again, by Gödel’s theorem, this
theory does not prove its own consistency.

The axiom “there is an inaccessible cardinal” is our first example
of a large cardinal axiom. It is an axiom stating the existence of a
cardinal so large that its existence can not be proved in ZFC.

In 1930, S. Ulam, concerned with problems related to the theory of
Lebesgue measure, formulated the concept of measurable cardinal. The
existence of a measurable cardinal is much stronger than the existence
of an inaccessible cardinal. In particular, if κ is a measurable cardi-
nal, not only is κ also inaccessible, but there are κ-many inaccessible
cardinals below κ.

The original definition of measurable cardinal was given in terms of
measures taking values in {0, 1}, but an equivalent definition is that κ
is measurable if there is a non-trivial elementary embedding

j : V → M

of the universe V into a transitive class M containing all the ordinals
such that κ is the first ordinal moved by the embedding.

The class M cannot be the whole universe, as has been shown by
Kunen. Axioms stronger than measurability are obtained if the class
M is required to be rich. A cardinal κ is λ-supercompact if there is
an elementary embedding j : V → M such that κ is the first ordinal
moved by j, j(κ) > λ, and Mλ ⊆ M , which means that all the λ-
sequences of elements of M are elements of M . A cardinal κ is said to
be a supecompact cardinal if it is λ-supercompact for every λ.

If κ is supercompact, then it is measurable and there are κ many
measurable cardinals below κ. The axiom “there is a supercompact
cardinal” is therefore very strong. As we will see below, it has many
interesting consequences related to basic properties of sets of real num-
bers. It has been shown by Woodin that to prove many of these con-
sequences, the full force of the axiom is not needed. He formulated the
concept of what is now called a Woodin cardinal.

A cardinal κ is a Woodin cardinal if for every function f : κ → κ
there is α < κ such that α is closed under f (i.e., ξ < α implies that
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f(ξ) < α), and an elementary embedding j : V → M such that α is
the first ordinal moved by j and Vj(f)(α) ⊆ M .

The existence of a Woodin cardinal κ implies that there are many
measurable cardinals, but κ itself does not need to be measurable.

6. SETS OF REAL NUMBERS AND LARGE CARDINALS

The area of set theory known as Descriptive Set Theory studies sets
of real numbers that can be defined in some way, for example in terms
of topological notions. An open interval of the real line R is a set of
the form (a, b) = {x ∈ R : a < x < b}. A subset of R is open if it is the
union of a family of open intervals. A set is closed if its complement
is open. The Borel sets are those obtained from the open sets (or the
closed sets) taking complements and countable unions, in other words
the sets in the least σ-algebra containing the open sets. Taking images
of Borel sets under continuous functions one goes beyond the Borel sets.
A set of real numbers is analytic if it is the image of a Borel set under a
continuous function. The projective sets are those generated from the
Borel sets taking images under continuous functions and complements
any finite number of times.

The projective sets can be organized in a hierarchy as follows. The
symbol Σ1

1 is used to denote the collection of analytic sets. Π1
1 is the

collection of complements of analytic sets, or co-analytic sets. Σ1
2 is

the collection of images of co-analytic sets under continuous functions,
and Π1

2 is the collection of complements of sets in Σ1
2.

Inductively, we define Σ1
n and Π1

n. Σ1
n+1 is the collection of images

by continuous functions of sets in Π1
n, and Π1

n+1 is the collection of
complements of sets in Σ1

n+1. For every n, the classes Σ1
n and Π1

n are
both strictly contained in Σ1

n+1 (and also in Π1
n+1).

The union of these classes,
⋃

n Σ1
n =

⋃
n Π1

n, is the collection of
projective sets. Most sets that appear naturally in mathematics are
Borel sets, or sets in the lower levels of the projective hierarchy.

These classes of sets can be defined in similar ways for any euclidean
space Rn.

A non-empty set of real numbers is perfect if it is closed and does
not have isolated points. It can be shown that every non-empty perfect
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set has the cardinality of R. A set of real numbers has the perfect
subset property if it is either countable or contains a perfect subset.

A set A ⊆ R has the property of Baire if it differs from an open set
in a meager set. Recall that a set is nowhere dense if its topological
closure has empty interior, and a set is meager if it is the union of a
countable collection of nowhere dense sets. Notice that this definition
makes sense also if A is a subset of any topological space.

In ZFC it can be proved that the analytic sets have several regu-
larity properties, for example, they are Lebesgue measurable, have the
property of Baire, and any uncountable analytic set contains a perfect
subset, and therefore it has the cardinality of R.

Nevertheless, ZFC is not strong enough to show the same for the
Σ1

2 sets. In 1969, Solovay showed that if there is a measurable cardinal,
then all Σ1

2 sets are Lebesgue measurable, have the property of Baire
and the perfect set property.

Shelah and Woodin (1990) proved that if there is a supercompact
cardinal, then all the projective sets have the regularity properties
mentioned (see also Foreman, Magidor & Shelah (1988)). It is very
surprising that the existence of such large cardinals has such strong
consequences in the realm of the projective sets. The importance of
this result is evident if we consider that all the sets of real numbers
that appear normally in mathematics are projective.

The following generalization of the property of Baire has become
an important notion in the recent development of set theory. A set
A ⊆ Rn is universally Baire if for every compact Hausdorff space Ω,
and every continuous function f : Ω → Rn, the preimage of A by f has
the property of Baire. Clearly, every universally Baire set has the Baire
property, it is enough to consider the identity function. All universally
Baire sets are also Lebesgue measurable.

7. GAMES AND REALS. DETERMINACY

Given a set A ⊆ [0, 1] a game GA is defined for two players, I
and II, who alternate playing 0’s and 1’s to form an infinite sequence.
Player I chooses ε1 ∈ {0, 1}, then player II chooses ε2 ∈ {0, 1}, player
one plays again to choose ε3 ∈ {0, 1}, and so on. In this way they form
a sequence 〈εi : i = 1, 2, . . . 〉 with each εi ∈ {0, 1}. Player I wins GA if
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∞∑
i=1

εi2−i ∈ A,

otherwise, player II wins. A strategy is a function defined on the set
of all finite sequences of 0’s and 1’s and taking values in {0, 1}. A
strategy σ is a winning strategy for player I if every run of the game
in which I uses the function σ to decide what to play is won by I.
In other words, if for every sequence {εi} such that ε1 = σ(∅) and
ε2k+1 = σ(〈ε1, . . . , ε2k〉) for k = 1, 2, . . . , the number

∑∞
i=1 εi2−i is in

A. Analogously, a strategy σ is a winning strategy for II if
∑∞

i=1 εi2−i

is not in A for every sequence {εi} such that ε2k +2 = σ(ε1, . . . , ε2k+1).
The set A is determined if one of the players has a winning strategy
in the game GA. Obviously, at most one of the players has a winning
strategy for a game GA . Using the axiom of choice it can be shown
that there are sets which are not determined, however, such sets are
quite complicated, for example they are not Borel sets. In fact, Martin
(1970) proved that all Borel sets are determined. He had previously
shown (Martin 1975) that if there is a measurable cardinal, then every
analytic set is determined.

The axiom of projective determinacy states that all projective sets
are determined. This axiom decides all important questions about pro-
jective sets, for example it implies that every projective set is Lebesgue
measurable and has the property of Baire, and that every uncountable
projective set has cardinality 2ℵ0 . So, under the axiom of projective de-
terminacy, no projective set can be a counterexample to the continuum
hypothesis.

The work of Martin, Steel, Woodin and others has brought up a
very interesting and deep relationship between determinacy and large
cardinals. Martin and Steel proved that if there are infinitely many
Woodin cardinals, then every projective set is determined. Woodin
has found that projective determinacy is equivalent to the existence
of certain type of models with an arbitrarily large finite number of
Woodin cardinals.

I. Neeman has shown that if there is a Woodin cardinal, every
universally Baire set is determined. The existence of arbitrarily large
Woodin cardinals implies that every projective set is universally Baire,
and thus that the projective sets have the perfect set property.
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8. FORCING AXIOMS

Let (P,<) is a partially ordered set, a subset D of P is dense if for
every p ∈ P there is q ∈ D such that q ≤ p. A subset F of P is a filter
if the elements of F are pairwise compatible and if p ∈ F and p ≤ q,
then q ∈ F . Given a family D of dense subsets of P , we say that a filter
F is D-generic if F ∩D 6= ∅ for every D ∈ D. Recall that an antichain
of P is a set of pairwise incompatible elements of P . The partial order
P satisfies the countable chain condition (ccc) if every antichain of P
is at most countable.

The following statement is called Martin’s Axiom (MA): If (P,<)
is a partially ordered set that satisfies the countable chain condition,
and D is a collection of fewer that c dense subsets of P , then there is
a D-generic filter on P .

D-generic filters always exist if D is a countable family of dense sub-
sets of P . Thus Martin’s Axiom is implied by the continuum hypoth-
esis. Solovay and Tennenbaum showed that MA is consistent with the
negation of the continuum hypothesis. MA has been a quite successful
tool used to solve problems in other areas of mathematics, specially in
analysis and topology (see, for example, Fremlin (1984)).

MAℵ1 is the statement: For every ccc partial order and every family
D of ℵ1 dense sets, there is a D-generic filter. It has many interest-
ing consequences, for example, it implies that every Σ1

2 set of reals is
Lebesgue measurable and has the Baire property.

Stronger principles can be obtained extending the class of partial
orders considered. The principle known as Martin’s Maximum (MM)
was introduced in Foreman, Magidor & Shelah (1988). Its statement
requires some previous definitions. A subset A of ℵ1 is unbounded if for
every ordinal α < ℵ1 there is β ∈ A such that α < β; and we say that
A is closed if every countable subset of A has its supremum in A. A
set S ⊆ ℵ1 is stationary if it meets every closed and unbounded subset
of ℵ1. A partial order (P,<) is stationary preserving if any stationary
subset of ℵ1 remains stationary in any generic extension obtained using
(P,<).

Martin’s Maximum (MM)is the following statement:
If (P,<) is a stationary preserving partial order and D is a family

of ℵ1 dense subsets of P , then there is a D-generic filter on P .
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Foreman, Magidor and Shelah showed that if there is a supercom-
pact cardinal, then there is a model of ZFC satisfying MM .

Martin’s Maximum implies that c = ℵ2.

9. WOODIN’S APPROACH

Given an infinite cardinal κ, let H(κ) be the set of all sets of car-
dinality hereditarily less than κ, that is, all sets x such that x, the
elements of x, the elements of the elements of x, etc., all have cardinal-
ity less than κ. The set H(ω) is thus the collection of all hereditarily
finite sets, and coincides with Vω. H(ω1) is the set of hereditarily
countable sets; H(ω1) ⊆ Vω1 , but the equality does not hold. If κ is an
inaccessible cardinal, then H(κ) = Vκ.

Projective sets correspond to subsets of H(ω1) which can be defined
in H(ω1) by a formula of the language of set theory which only refers to
elements of H(ω1). So, as we already know, there are questions about
H(ω1) that are unsolvable in ZFC. Projective determinacy can be
considered as the correct axiom to settle all structural questions about
the structure H(ω1).

Woodin (2001) explains his recent work in the direction of finding
an axiom for deciding the theory of H(ω2). The continuum hypothesis
can be expressed as a statement about H(ω2), and this constitutes the
main motivation of this work.

There are certain facts of the universe of sets that cannot be changed
by forcing. For example, by the absoluteness theorem of Levy, if an
existential statement which only refers to sets in H(ω1) is valid in a
generic extension, then it is also valid in the universe V .

We could consider a generalization of this to H(ω2): if an existen-
tial statement which mentions only sets in H(ω2) is valid in a generic
extension V P, then it holds in the universe V , but this is false. Nev-
ertheless, if we restrict ourselves to certain types of generic extensions
we get something interesting. If we restrict ourselves to generic exten-
sions V P obtained by ccc partial orders P, then this generalization is
equivalent to MAℵ1 . If we consider instead the partial orders which
preserve stationary sets then we obtain what is called the Bounded
Martin’s Maximum BMM . If we assume the consistency with ZFC
of the existence of supercompact cardinals, then BMM is consistent
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with ZFC. Todorcevic (2002) proved, based in work by Woodin and
Asperó, that BMM implies that the cardinality of R is ℵ2 (this result
has been very recently improved by Justin Moore, who showed that a
weaker principle known as BPFA is enough). Bagaria (1998) argues in
favor of considering ZFC +BMM as a natural extension of the theory
ZFC, which decides the cardinality of the continuum.

Woodin has proved that if there is a proper class of Woodin cardi-
nals then the theory of H(ω1) cannot be changed by forcing. He has
also formulated a statement, called Axiom (∗), which decides all the
important facts about H(ω2) and makes the theory of H(ω2) generi-
cally absolute. Thus, axiom (∗) is a candidate for playing with respect
to H(ω2) the role played by projective determinacy with respect to
H(ω1).

The facts of H(ω2) decided by (∗), are precisely determined using
a strong logic, called Ω-logic, introduced by Woodin. (∗) decides, in
Ω-logic, the theory of H(ω2). This axiom, which is equivalent to a
generalization of BMM if there is a proper class of Woodin cardinals,
also implies that the cardinality of the continuum is ℵ2. Assuming
the existence of a proper class of Woodin cardinals and that there is a
weakly inaccessible cardinal which is a limit of Woodin cardinals then
axiom (∗) is consistent with ZFC in Ω-logic.

Woodin has shown that under large cardinal hypothesis, any exten-
sion of ZFC that decides in Ω-logic all statements of the same formal
complexity as CH, must refute the continuum hypothesis. As it was
just mentioned, this is the case of the theory obtained adding to ZFC
the axiom (∗). The Ω-conjecture formulated by Woodin, if shown to be
true, would provide a characterization of validity in Ω-logic, and would
contribute to view axiom (∗) as a natural axiom of set theory.

10. FINAL REMARKS

It is interesting that Gödel conceived an argument to show that c,
the cardinality of the continuum, is ℵ2 (see Gödel (2001)). Although
the argument was not complete, it indicates the direction in which
Gödel’s intuition pointed.

Woodin asserts that even if he is not completely convinced that his
approach will lead to a solution of the continuum problem, it certainly
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provides convincing evidence that there is a solution. Even is the con-
tinuum problem is solved by understanding completely the structure
H(ω2), this will not necessarily convey information abut the structures
H(ω3), H(ω4), etc., so progress towards resolving the continuum hy-
pothesis will not necessarily help in resolving the generalized continuum
hypothesis, the assertion that for every ordinal α,

2ℵα = ℵα+1.

There are other views and other approaches. For example, Foreman
(1998) has formulated some axioms of generic large cardinals which
settle the continuum hypothesis proving it. The main question is which
axioms can be considered intuitively true.

The search for new axioms that would resolve the continuum prob-
lem has been rewarding. It has given rise to impressive developments
establishing unexpected connections between ideas previously thought
to be unrelated, and has also activated philosophical investigations on
foundational aspects of mathematics (see, for example, Feferman et al.
(2000)).

The continuum problem has, no doubt, motivated a large amount
of research, with results that have enriched our view and understanding
not only of set theory but also of foundational questions of other areas
of mathematics.
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GÖDEL, K. “Some considerations leading to the probable conclusion
that the true power of the continuum is ℵ2”. In K. Gödel Col-
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