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Abstract: A central part of Frege's logicism is his reconstruction of the 
natural numbers as equivalence classes of equinumerous concepts or 
classes.  In this paper, I examine the relationship of this reconstruction 
both to earlier views, from Mill all the way back to Plato, and to later 
formalist and structuralist views; I thus situate Frege within what may be 
called the “rise of pure mathematics” in the nineteenth century.  Doing 
so allows us to acknowledge continuities between Frege's and other 

 
* Both with respect to its general perspective and various details, this paper is 

strongly influenced by W.W. Tait (not only via publications, but also 
conversations and unpublished manuscripts). Parts of the paper were presented 
in talks at the University of California at Santa Barbara, December 2000, and at 
California Polytechnic State University San Luis Obispo, May 2002. I would like 
to thank Kevin Falvey and Francisco Flores for the respective invitations, and 
the members of the two audiences for their interest and comments. More 
recently, I have received very valuable feedback from Pierre Keller, Marco 
Ruffino, Kai Wehmeier, and especially Mike Price. As I have not followed all of 
their advice, and insisted on some of my own twists to the account, the 
remaining problems should, as usual, be attributed to me. 
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approaches, but also to understand better the motivation and the 
significance of his innovations, as well as their limits. 
 
Key-words: Arithmetic. Concept. Equivalence class. Extension.  
Logicism. Plurality. 

 

Frege made important, indeed revolutionary, contributions to 
logic, the philosophy of logic, and the philosophy of thought and 
language. But his primary concern was with the philosophy of 
mathematics, in particular the foundations of arithmetic. At the center of 
his work in this area lies a reconceptualization of the natural numbers. In 
the present paper I want to shed new light on this reconceptualization by 
doing two related things: first, by making explicit the relation of Frege’s 
conception of numbers to other such conceptions, especially earlier 
ones, from Mill all the way back to Plato; and second, by locating Frege’s 
conception within what may be called the “rise of pure mathematics”, 
during the nineteenth and the early twentieth centuries, leading up to 
contemporary formalist and structuralist views on the subject. 

In his own writings, Frege sometimes makes it appear as if his 
new conception of numbers constituted a radical break with all earlier 
conceptions. My first main goal in this paper will be to show that this 
appearance is misleading and partly wrong. Instead, one can see Frege’s 
position as a natural extension of earlier ideas and developments, at least 
in certain respects. At the same time, in other respects his position does 
indeed involve substantive, significant changes. My second goal will be to 
clarify what these changes consist in and why they are significant. As a 
third goal, I will try to determine how far Frege’s changes go, or what 
their limits are, particularly in comparison to later positions. Overall, I 
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will sketch an approach to Frege’s conception that, as far as I am aware, 
has not been explored much in the literature.1

 
* 

Frege published most of his works during the last part of the 
nineteenth century. That century was not only a time of explosive 
growth in mathematics, but also one during which deep changes took 
place with respect to how people conceived of mathematics, especially its 
conceptual foundations, and even its subject matter.2 In order to direct 
attention to what is crucial for me in this connection, I will start by 
discussing briefly the more familiar case of geometry, in particular a 
somewhat dramatic characterization of what happened in it provided by 
the historian of mathematics Hans Freudenthal. In Freudenthal’s 
memorable phrase, a main result of developments in the nineteenth 
century is that “the umbilical cord between geometry and reality has been 

                                                 
1 Much recent work on Frege’s philosophy of arithmetic is directed towards 

technical issues, i.e., the exploration of what follows formally from his basic 
principles, or from modifications of them; cf. many of the articles in 
Demopoulos, 1995. Other work concerns metaphysical aspects of his 
conception of numbers, especially its “platonist” character; cf. Reck, 1997 and 
Reck, 2000 for my own contributions to those debates. The present paper 
focuses on conceptual and historical aspects, in a way that thoroughly 
intertwines the two. For papers with a similar focus, compare Tait, 1997, partly 
also Wilson, 1992. 

2 With respect to these changes, Howard Stein has talked about a “second 
birth” of mathematics in the nineteenth century (Stein, 1988). Jeremy Gray, 
referring to the same period, has talked about a “revolution in mathematical 
ontology” (Gray, 1992).  
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cut” (Freudenthal, 1957, p. 111, my translation; to be quoted more fully 
below).3

What is the “umbilical cord” Freudenthal is talking about, and in 
which sense has it been cut? In order to answer these questions, we need 
to contrast two different conceptions of geometry that can be located, 
more or less, at the beginning and at the end of the corresponding 
developments.4 The conception at the beginning is this: Geometry (here 
in the sense of three-dimensional Euclidean geometry) was born, in 
antiquity, as the systematic study of spatial relations between various 
objects. What “spatial” refers to here is ordinary empirical or physical 
space, the space in which we compare the distance between cities, 
measure the areas of patches of land, etc. To be sure, when geometers 
study points, lines, planes, etc. in space, they conceive of them in an 
idealized way; they conceive of, say, a straight line as perfectly straight 
and as having no breadth or width, only length. This has the 
consequence that physical objects or phenomena, such as light rays, 
exemplify such straight lines always only approximately. Nevertheless, we 

                                                 
3 In the original German: “[D]amit ist die Nabelschnur zwischen Realität und 

Geometrie durchgeschnitten”. Compare also the later, shorter English version 
Freudenthal, 1962, p. 618, in which “Nabelschnur” is not translated as “umbilical 
cord”, but simply and less memorably as “bond”. 

4 I say “more or less” since some of the crucial ingredients of the conception 
of geometry I locate in the late nineteenth and the twentieth centuries can, 
arguably, already be found much earlier, e.g., in Plato’s dialogues; compare the 
discussion of mathematics as a priori reasoning from first principles in Tait, 2002. 
If so, then both of the conceptions at issue have been around for a while, at least 
in rudimentary, partly implicit forms. Having said that, the second conception, 
unlike the first, was articulated fully only in the late nineteenth century, in the 
works of Hilbert and others; and it became the dominant view only in the 
twentieth century. I take that to be Freudenthal’s main point. 
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think of the ideal points, lines, planes, etc. as located, or locatable, in 
ordinary space. From such a perspective, the axioms which, since the 
time of Euclid (ca. 300 BC), have formed the starting point of geometry 
are taken to be evident, basic truths about space, or about the properties 
and relations of idealized points, lines, planes, etc. in it. This is what I will 
call the “practical” or “applied conception” of geometry. One may also 
call it the “naïve” conception, in the sense that many people not trained 
as mathematicians or philosophers of mathematics will assume it as a 
matter of course, even today. 

With this first conception, geometry is firmly attached to physical 
reality – the umbilical cord between them is still in place. Things look 
very different when we consider the conception of geometry presented 
in David Hilbert’s Grundlagen der Geometrie (first published in 1899). Along 
Hilbert’s lines, we start again with a set of geometric axioms. But these 
axioms are no longer considered to be evident truths about ordinary 
space; rather, they are taken to form the definition or characterization of 
a certain abstract structure. Crucially, we can now think of various 
different sets of objects and relations on them as exemplifying this 
structure. To use terminology from twentieth-century logic, we can 
consider the language of geometry as a formal, uninterpreted language, 
and we can then study various models for the axioms formulated in that 
language. Moreover, we can construct such models purely 
mathematically, within set theory, thus in complete separation from 
empirical considerations. As a consequence, when we now talk about 
“points”, “lines”, “planes”, etc., we refer to objects in such models, 
typically pure sets. One advantage of this more abstract, formal, or 
logical conception is, of course, that we can treat not only the axioms of 
Euclidean geometry along such lines, but also the axioms of various non-
Euclidean geometries. The latter, too, can be seen as characterizing 
correspondingly different geometric structures. 
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Reflecting on this second conception of geometry, Hans 
Freudenthal comments (with reference to the opening lines of Hilbert’s 
Grundlagen): 

  
“We think of three different things…” – thus the umbilical cord between 
reality and geometry has been cut. Geometry has become pure 
mathematics, and the question whether and how it can be applied to 
reality is answered just as in any other branch of mathematics. The 
axioms are no longer evident truths, indeed it doesn’t even make sense 
any more to ask about their truth. (Freudenthal, 1957, p. 111, my 
translation) 

 
The crucial “cut of the umbilical cord” is to distinguish sharply between, 
on the one hand, geometry as the purely formal or logical study of what 
follows from the geometric axioms, where these axioms are considered 
to characterize an abstract structure or a certain kind of relational 
systems, and, on the other hand, the application of geometry to physical 
reality, seen as an independent activity. Thus the former, “pure 
geometry”, is taken to be part of the general, abstract study of diverse 
relational systems, with no immediate or necessary connection to 
exemplifications in physical reality. It is this new conception of geometry 
that, soon afterwards, leads philosophers such as Rudolf Carnap and 
Hans Reichenbach to distinguish between “formal” or “mathematical 
space” (or better, “spaces”), on the one hand, and “physical” or 
“empirical space”, on the other.5 The first is what we study in pure 
mathematics, the second what we study in physics. 

                                                 
5 See Carnap, 1922, chapters 1-2, and Reichenbach, 1951, chapter 8. In 

addition to “formal” and “physical space”, Carnap considers what he calls 
“intuitive space” in his early work. This is an attempt to make room for Kant’s 
views about space that he gives up later. 
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Clearly the development of geometry, especially in the nineteenth 
century, had its own dynamic and was different from that of arithmetic 
in a number of important respects. In particular, the rise of various non-
Euclidean geometries, differential geometries, and of projective geometry 
played an important role in the reconceptualization of Euclidean 
geometry just mentioned, and these developments have no obvious or 
full analogues in the case of arithmetic.6 Nevertheless, parallel steps 
towards conceiving of arithmetic in a formal or logical, thus “pure”, way 
were taken as well. These steps are what I want to consider now 
(eventually so as to locate Frege with respect to them). Doing so will 
again involve describing a practical or naïve conception, on the one 
hand, and a formal or logical conception, on the other. And once more, 
the latter will, but the former will not, involve a separation of pure 
arithmetic from its applications.  

 
* 

If geometry deals with the systematic relations between points, 
lines, planes, etc., then arithmetic deals with the natural numbers, 
relations between them (their ordering etc.), and various functions or 
operations performed on them (such as addition and multiplication). 
And if we try to think of a naïve conception of arithmetic, this may at 
first bring to mind the following simple formalist position: What are 
numbers, or what is arithmetic about? Well, simply numerals, i.e., 
concrete figures such as “1”, “2”, “3”, etc., used to count, calculate, etc. 

                                                 
6 Perhaps Hamilton’s theory of quaternions and related developments in 

algebra, Dedekind’s, Cantor’s, and others’ new treatments of the real numbers, and 
Cantor’s introduction of transfinite cardinal and ordinal numbers can be seen as 
partial analogues. (I will come back to both Dedekind’s and Cantor’s 
corresponding conceptions of the natural numbers later.) 
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Such a naïve formalist conception has certainly played a role, both in 
philosophy and in popular consciousness.7 Yet it is not what 
corresponds to the practical conception of geometry considered above, 
at least for my purposes. In order to arrive at a corresponding 
conception, we need to consider the use of numerals in practical 
applications, especially in the comparison of “numbers of things” with 
respect to their “size” (i.e., the use of natural numbers as cardinal 
numbers). 

What is meant by a “number of things” here? It is, at least initially 
and roughly, the following: a concrete group or collection of things, e.g., 
a heap of stones, a flock of sheep, or a pack of cards. Another term often 
used in connection with such groups or collections is “plurality”. A 
plurality, in this sense, is something that can be “counted” or “numbered”. 
More carefully, it can be numbered relative to a partition into parts, or 
relative to a corresponding “choice of unit”.8 Now, it seems that in 
practically all cultures and all languages there exist words or signs for 
talking about such pluralities, including for comparing them in size; in 
English we talk about “three stones”, “ten sheep”, etc. Moreover, the 
corresponding conception of “number of things” was explicitly assumed 
to be fundamental for arithmetic already in classical Greek mathematics, 
as the use of the term “arithmos” indicates. An arithmos – usually just 

                                                 
7 As to popularizations of mathematics, this conception underlies books 

such as Ifrah, 2000.  
8 The phrase “choice of unit” is clearest in the case of, say, a line segment 

that is partitioned into a number of parts relative to a “unit length”. This kind of 
example leads in the direction of “magnitudes”, thus eventually to the rational 
and real numbers. As I want to restrict myself to the natural numbers in this 
paper, I will focus on simpler, discrete kind of examples in what follows. (I will 
come back to the notion of “choice of unit” later, in connection with Frege.) 
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translated as “number” – is exactly a plurality in the sense introduced, 
i.e., a (definite, finite) number of things.9  

As an aside that will play a small role later in the paper, we can 
note right away a peculiar consequence of thinking of numbers as 
pluralities. Namely, it is natural to assume that it only makes sense to 
think of a plurality if we are dealing with several things – things in the 
plural. But if we assume that, the conclusion is that 1 is not really a 
number, much less 0 (not to speak of negative numbers etc.). This 
becomes most compelling if we conceive of numbering in terms of 
partitioning things into parts, as indicated above; since it hardly makes 
sense to partition something into one part (itself?), or to partition 
something (nothing?) into no parts at all. For this very reason, 0 and 1 
were often not considered to be numbers, from Greek mathematics 
onwards (similarly again for negative and other, more exotic numbers). 

Actually, what I just said about the use of the term “arithmos” in 
classical Greek mathematics needs to be refined. It is true that historians 
of mathematics such as Jacob Klein have claimed that the term “never 
means anything other than a definite number of definite things” in 
Greek thought (Klein, 1968, p. 7). Moreover, this may be accurate as far 
as practical applications of arithmetic in classical Greece are concerned. 
But at least if we also take into account Greek philosophers and their 
reflections, the issue starts to look more complex. For clarification, it will 
help to introduce another term often used in this connection, 
interchangeably with “plurality”, namely “multitude”. More specifically, 

                                                 
9 In my brief discussions of classical Greek thought in this paper, especially 

concerning the notions of plurality, arithmos, and their relation to nineteenth 
century developments, I am strongly influenced by W.W. Tait; see Tait, 1997 
and 2002. In addition, compare Klein, 1968, chapter 6ff, and Roche, 1998, 
chapter 1. 
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let us consider the use of the phrase “multitude of units”. This phrase 
occurs, among others, in the influential definition of numbers in Euclid’s 
Elements, Book VII, where we can read: “A number [arithmos] is a 
multitude composed of units” (Euclid, 1956, p. 277). The relevant 
question now is: what are the “units” in this connection?  

If by “multitude”, thus by “arithmos”, we mean a “definite number 
of definite things”, say a flock of ten sheep, then each of the sheep will 
presumably be considered a “unit”. However, an alternative conception 
can already be found in Plato’s works, e.g., in the following passage from 
the Philebus: 

 
The ordinary arithmetician, surely, operates with unequal units; his ‘two’ 
may be two armies or two cows or two anythings from the smallest thing 
in the world to the biggest, while the philosopher will have nothing to do 
with him, unless he consents to make every single instance of a unit 
precisely equal to every other of its infinite number of instances. (Plato, 
1989, 56d-e) 

 
It seems that, according to “the philosopher”, we have to abstract 

away from the differences between concrete units, such as individual 
sheep, so as to arrive at pure, indistinguishable units; and if we do that, 
an arithmos turns into a multitude of such abstract units. As Plato also 
puts it, depending on whether we think of “units” in a more concrete or 
a more abstract manner we are dealing with “physical numbers”, on the 
one hand, and “abstract numbers”, on the other.10 Because of such 

                                                 
10 For Plato’s more general views about arithmetic, compare also the 

passages from the Republic, Theaetetus, and other texts quoted in Klein, 1968, 
Roche, 1998, and Tait, 2002. Note that, with his more abstract understanding of 
“unit” and “multitude of units”, Plato goes beyond our practical, naïve 
conception of number, perhaps even (as suggested to me by Pierre Keller) in the 
direction of a structuralist conception. (Compare here fns. 4, 12, and 16; see also 
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distinctions, the phrase “multitude of units”, as used by Euclid and 
others, is ambiguous.11  

How exactly to understand the Platonic idea of “abstract 
numbers”, or of a “multitude of abstract units”, has been controversial 
from early on (at least since Aristotle’s works); and it is certainly in need 
of clarification.12 But let me put aside the corresponding abstract 
conception of numbers until later, and explore a bit more the concrete, 
practical conception that works with “physical numbers”. Conceiving of 
numbers as such leads naturally to a traditional view about the semantics 
of arithmetic terms and sentences. Consider the following question: 
What is it that a numeral such as “2”, or a word such as “two”, refers to? 

                                          
my remarks below about Cantor’s late nineteenth-century conception of the 
natural numbers.) 

11 Besides Euclid and Plato, one can find characterizations of the natural 
numbers as “multitudes of units” also in, e.g., Aristotle (384-322 BC), Boethius 
(ca. 480-524 AD), and John of Sacrobosco (died ca. 1244-66), so all through 
Hellenistic Greece and into the European Middle Ages; cf. again chapter 1 of 
Roche, 1998 for references. The same basic idea occurs again in modern 
philosophers such as David Hume (1711-1776), Immanuel Kant (1724-1804) (at 
least to some degree), and J.S. Mill (1806-73), as we will see soon. In each case it 
is an interesting question, I think, whether what is meant by “multitudes of 
units” is Plato’s “physical numbers”, his “abstract numbers”, or some amalgam 
of the two. 

12 One question in this connection is how to understand the notion of 
“multitude” (cf. my corresponding discussion later on in this paper). A second 
question is how to conceive of Plato’s “abstract units”: as new abstract objects, 
either of a spatio-temporal nature (comparable to dimensionless points in space, 
say) or of a non-spatio-temporal nature (cf. again below); or perhaps as familiar 
concrete objects conceived of in some abstract way. Thirdly, there is the more 
general, big question of how to relate Plato’s views about such notions to his 
theory of forms. 
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That is to say, what is it that we talk about when we use an equation like 
“2 + 3 = 5”, or a corresponding sentence in words? The traditional view 
I have in mind answers that the numerals “2”, “3”, etc. are “common 
names”.13 This means that “2”, say, is a term used to refer to all 
multitudes that consist of exactly two things. Consequently, when we 
assert that “2 + 3 = 5” we are making a general statement of the 
following form: For any multitude consisting of two things and any 
multitude consisting of three (other) things, if we combine them we 
arrive at a multitude consisting of five things. Finally, given the 
“physical” conception of multitudes we are currently assuming this leads 
to the more general conclusion: When we use arithmetic terms and 
sentences, we are always directly talking about things in the physical 
world. In other words, the umbilical cord between arithmetic and 
physical reality is still firmly in place – as much so as in the case of our 
naïve conception of geometry above. 

 
* 

As in the case of geometry, the practical view about numbers just 
considered is “naïve” in the sense that many, perhaps most people will 
find it natural and congenial, especially if they have not been trained as 
mathematicians or philosophers of mathematics.14 But even various 
philosophers, all the way into the nineteenth century, have relied on the 

                                                 
13 Aristotle, 1984, 224a3-16, is a locus classicus for this view.  
14 As far as I know (from my sister, who works as an elementary school 

teacher, and her textbooks) the way in which most people learn about the 
natural numbers in elementary school is, not unreasonably, still largely informed 
by the pluralities conception, i.e., by looking at various concrete “numbers of 
things”, comparing them in size, etc. Many people never have reason to go 
beyond such a conception later on. 
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same basic conception. A particularly clear example is John Stuart Mill. 
In his A System of Logic, Mill asserts that “ten must mean ten bodies, or 
ten seconds, or ten beatings of the heart” (Mill, 1950, p. 163 ff.). More 
generally, he talks about “aggregates”, “agglomerations”, or “parcels of 
objects” in a sense close to the concrete pluralities or multitudes 
introduced above. Finally, he states explicitly that a sentence such as “2 
+ 3 = 5” expresses a general truth, again in the way indicated above. 

 The example of Mill also allows me to make explicit an aspect of 
the conception of numbers as concrete pluralities that has remained 
largely implicit so far. Up to this point, our focus has been on the nature 
of numbers, not on the nature of the corresponding numerical 
operations, such as addition and multiplication; but clearly the latter is 
important as well. Consider addition. Above I stated, briefly and vaguely, 
that “2 + 3 = 5” involves a combination of two multitudes into a new 
multitude. What exactly is meant by “combination” here? Mill, for one, is 
explicit and straightforward on this issue. For him, such combination 
involves physical operations, especially operations of “separation and 
rearrangement” (ibid., p. 166). In other words, not only are numbers of 
things, conceived of as “aggregates” or “parcels”, concrete entities for 
him – as concrete as the things they consist of, e.g., physical bodies or 
beatings of the heart – but addition and multiplication amount to equally 
concrete operations in the physical world.15 Overall it is understandable, 
then, how Mill is led to conceiving of statements such as “2 + 3 = 5” as 
empirical statements about the physical world. 

                                                 
15 I assume that Mill takes “+” to be a general term as well, i.e., to refer to all 

relevant (?) physical operations, but I am not sure. Sometimes he seems to 
restrict himself to very particular physical movements, involving the creation of 
specific spatial configurations. 
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Mill’s very concrete and applied way of interpreting arithmetic, 
including arithmetic operations, is clearly extreme and somewhat heavy-
handed. Subtler variants of the same basic ideas can, however, be found 
in a number of other writers as well. An interesting case is provided by 
Kant’s views. How exactly Kant thinks about the nature of numbers is 
not easy to determine, partly because he says more about numerical 
operations than about numbers, partly because this leads us right into the 
intricacies of his transcendental aesthetics and analytic (his notion of 
schema etc.). But consider remarks such as the following about the 
addition of two numbers, here 5 and 7: 

 
For starting with the number 7, and for the number 5 calling in   the aid 
of the fingers of my hand as intuition, I now add one by     one to the 
number 7 the units which I previously took together to form the number 
5, and with the aid of the figure [the hand] see    the number 12 come 
into being. (Kant, 1965, B 15-16, original emphasis) 
 

As this passage shows, Kant (following Leibniz in this respect) reduces 
the operation of “+” to that of “+1”, in familiar recursive fashion. More 
importantly for our purposes, he talks about “adding units”. It is not 
immediately clear whether he is appealing to concrete or to abstract units 
in this connection, or perhaps both.16 In any case, the passage suggests 

                                                 
16 That Kant means abstract, indistinguishable units, at least also, seems to 

be suggested by passages such as this: “[T]he pure schema of magnitude 
(quantitatus), as a concept of the understanding, is number, a representation which 
comprises the successive addition of homogeneous units” (Kant, 1956, A 142/B 
182, last emphasis added). Note that, as in the case of Plato (cf. footnotes 4, 10, 
and 12 above), it may be possible to interpret Kant’s conception of numbers as 
having a structuralist aspect, in this case one closely tied to his theory of space 
and time. I cannot explore this interpretive possibility (also suggested to me by 
Pierre Keller) in the present paper, but hope to be able to do so elsewhere.  
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that built into his position is again the notion of “multitudes of units” (or 
perhaps better: the “generation” of such multitudes). Kant then combines 
it with his theory of intuition, including “pure intuition” (in terms of the 
relevant generation of multitudes in space and time). And as a result, 
arithmetic statements and knowledge turn out not to be empirical, but 
apriori, since anchored in our intuitive forms of space and time. Note 
that, in this more subtle sense, the umbilical cord between arithmetic and 
spatio-temporal reality is preserved in Kant as well. 

Let me add one more clarification about the conceptions of 
numbers considered so far. Clearly, conceiving of them as pluralities or 
multitudes of units was very widespread in the history of thought, from 
Plato all the way to Mill. Its main alternative was probably the simple 
formalist view – numbers as numerals – introduced briefly above. Now, 
it is possible to see these two conceptions as reconcilable with each 
other. To do so, consider the collection of numerals from “1” to “5”, 
say, as itself a multitude of concrete units. This multitude can then be 
used, as a “tally”, to measure other multitudes, e.g., the one consisting of 
the planets in the Solar System from Mercury to Saturn. The measuring 
or tallying here is supposed to consist of assigning one numeral to each 
planet, in such a way that all the numerals and all the planets are used up, 
i.e., in establishing a concrete bijection between the two pluralities. 
Instead of numerals we can, and often do, use collections of other items 
as tallies as well, e.g., fingers on a hand (cf. the quote from Kant above) 
or beads on an abacus. Furthermore, we can compare two multitudes in 
size directly, without the use of an intermediate tally, by means of 
concrete injections or bijections. But collections of numerals are, in 
various familiar ways, especially convenient for measuring other 
pluralities, which probably explains their widespread use. What we end 
up with are various concrete “numbers of things”, on the one hand, and 
“numbers” in the sense of numerals, on the other hand. Finally, these 
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two senses of “numbers” and their relation were already well known in 
classical Greece, e.g., by Aristotle when he writes:  

 
Number, we must note, is used in two senses – both of what is counted 
or countable and also of that with which we count. (Aristotle, 1984, 
219b5-7) 

 
“What is counted” are clearly pluralities or multitudes here, and “that 
with which we count” are numerals, I assume. 
 

* 

Kant’s and Mill’s respective views about arithmetic are landmarks 
in the history of the subject, in the sense that most nineteenth- and even 
twentieth-century philosophers of mathematics develop their own ideas 
and positions in response to them. Frege, in particular, presents his 
conception of numbers in direct opposition to both. But before turning 
to Frege’s views, I want to bring into play two additional developments 
in the nineteenth century. The first development is the gradual 
clarification of the notion of set, especially its separation from the notion 
of aggregate in something like Mill’s sense; the second is the emergence 
of higher arithmetic, including the use of sets, even infinite sets, of 
numbers to construct other mathematical objects. 

In connection with our earlier discussion of pluralities (multitudes, 
arithmoi), contemporary readers may find it tempting to translate 
“plurality” as “set”, or more narrowly as “finite set”. At the same time, 
some of our earlier observations may have given such readers pause, e.g., 
in connection with Mill’s understanding of pluralities as concrete 
aggregates, agglomerations, or parcels, which seem rather different from 
sets in the current sense. But what exactly is the difference? It will help 
to reconsider Millian aggregates with respect to two distinctive features 
they have. First and as already mentioned above, for Mill such an 
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aggregate, say a heap of ten rocks, is as concrete and physical as the 
rocks of which it consists. This means the following: the aggregate has a 
location in space and time; it can be affected causally; and it can be 
ascribed physical properties such as a weight, color, etc. Second and in 
addition, the relation of the aggregate and the individual rocks 
comprising it is best thought of as that between a whole and its parts. It 
is in that sense, then, that the heap consists of the rocks.  

In both of these respects sets, as understood in contemporary set 
theory, are rather different. Sets are supposed to be abstract objects, not 
concrete, physical ones; and that means that it doesn’t even make sense to 
ascribe a spatio-temporal location, causal influence, or physical properties 
to them. A set also doesn’t consist of its elements in the way in which a 
heap consists of the rocks in it. This latter difference becomes perhaps 
clearest if we observe several formally describable disanalogies between the 
part-whole relation and the element-set relation. Here are, briefly, four 
such disanalogies.  

First, it is true of any whole that a part of a part of the whole is also 
a part of the whole; i.e., the part-whole relation is transitive. But the 
element-set relation is not transitive; an element of an element of a set is 
often not itself an element of the set. Second, with respect to sets there is 
an important and sharp distinction between the element relation and the 
subset relation; a subset of a set is in general not also an element of the set. 
In contrast, this distinction does not exist, or is not clear, in the case of the 
part-whole relation; several parts of a whole taken together can again be 
considered to be a part of the whole. Third, consider a singleton set, i.e., a 
set containing just one element, say a particular rock. According to our 
contemporary conception, the singleton set containing the rock is clearly 
different from the rock itself; since the singleton set has an element, while 
the rock doesn’t have any elements (now apply the axiom of 
extensionality). On the other hand, it is again not clear what corresponds 
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to a singleton set on the part-whole side; or while it is formally possible to 
consider a whole consisting of just one part, e.g., the same single rock, in 
that case the whole is identical with the part, as both just consist of the 
rock. Fourth and finally, it is even harder to come up with something 
corresponding to the empty set on the part-whole side. In fact, a tendency 
to confuse sets with aggregates in the sense of wholes is what often leads 
to hesitation or suspicion about the empty set, while from a clearly 
understood set-theoretic perspective the seeming incoherence vanishes.17

Given such basic differences between the two notions – aggregate 
versus set – a question arises with respect to our earlier discussion. 
Namely, in which sense should we understand the notion of plurality 
(multitude, arithmos) as employed by thinkers before Mill, and especially 
before the nineteenth century: as a (finite) set in the contemporary sense, 
or as an aggregate in the part-whole sense? Because this involves a lot of 
different thinkers, a careful, detailed answer will probably be complicated, 
and will vary from case to case. But I assume that the following is basically 
correct in general: It is typically not clear how to understand the notion of 
plurality as employed before the nineteenth century, especially in the 
respect at issue. The way in which it is invoked tends to be ambiguous, and 
not infrequently aspects of both relevant notions are mixed together. It 

                                                 
17 As a fifth and more general difference, one could also mention the 

following: Unlike in the case of set theory, where there is essentially only one 
standard way of systematizing and axiomatizing the theory (at least its basic 
parts, i.e., putting aside large cardinal questions and other more advanced issues), 
the part-whole relation allows for several significantly different systematizations 
none of which is clearly privileged (even considering only basic aspects). At the 
same time, those aspects of the part-whole relation appealed to above in 
distinguishing it from the element-set relation are common to all 
systematizations, as far as I am aware. For more on the systematic study of parts 
and wholes, i.e. mereology, see Simons, 1987. 
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simply took a long time for the contemporary notion of set to be 
separated, clearly and sharply, from that of aggregate.18 Crucial 
clarifications in this connection were due to Bolzano, Cantor, Dedekind, 
and Frege, among others, all in the nineteenth century. But even in the 
writings of seminal thinkers such as Bolzano, Cantor, and Dedekind, one 
can find the identification of a singleton “set” with its element, as well as 
hesitations about the empty “set”, thus again muddying the waters. Also, 
sets, best thought of as abstract objects, are discussed by them as if they 
were mental objects, which also muddies the waters significantly.19

Nevertheless, by the end of the nineteenth century the element-set 
relation had been studied and elaborated in considerable detail, and 
basically distinguished from the part-whole relation. A large part of the 
motivation for these studies was the new use of sets in clarifying various 
mathematical notions, such as those of the negative, rational, and real 
numbers (Cantor, Dedekind, etc.), and for introducing notions such as 
that of an ideal in algebra (Dedekind). Some of the corresponding 
constructions, e.g., those for the real numbers and for ideals, not only 
involve finite sets, but even, crucially and unavoidably, infinite sets. Note 
that this leads beyond the notion of aggregate in, say, Mill’s sense; since it 
would surely stretch that notion beyond what he had in mind to consider 

                                                 
18 As late as 1903, in his Principles of Mathematics, Bertrand Russell still 

struggles to make the distinction clear; compare chapters 6, 16, and 17 in 
Russell, 1903. 

19 An interesting case is Dedekind; compare Reck, 2003 in which I argue 
against a corresponding psychologistic reading of his writings, despite superficial 
evidence to the contrary. 
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“infinite aggregates”, given his very concrete way of thinking about 
them.20  

A particularly important aspect of such uses of sets for our 
purposes is the following: In the constructions of the real numbers, say, 
we use infinite sets of rational numbers; and that means that the rational 
numbers are treated as individual objects, because that is what the 
elements of such sets are presumed to be. Similarly, in the construction 
of the rational numbers out of the integers we treat the integers as 
individual objects; and in the construction of the integers out of the 
natural numbers we treat the natural numbers as individual objects. Now, 
how could one reconcile this treatment of numbers, including the natural 
numbers, with our earlier conceptions? Should they be identified with 
numerals in this connection, since numerals are, or can be treated as, 
individual objects? Well, doing so puts significant pressure on the idea of 
a numeral, at least if it is understood in a concrete way, since we need an 
actual infinity of them. But if we don’t want to identify numbers with 
numerals, what alternative remains?  

The use of infinite sets of numbers as just described is part of 
higher arithmetic, the extension of elementary arithmetic that leads over 
to the study of the negative, rational, and real numbers. There are other 
aspects of higher arithmetic that lead to the treatment of the natural 
numbers as individual objects as well, although perhaps not in as clear 
and compelling a way. The general, underlying issue here is this: When 
we merely consider elementary arithmetic, especially simple numerical 
equations such as “2 + 3 = 5”, it seems natural, or is at least possible, to 
analyze them semantically in a way that does not involve treating 
                                                 

20 Having said that, it should be acknowledged that it is possible, as was 
made clear relatively recently, to develop a theory of infinite mereological wholes 
or sums; compare Lewis, 1991. 
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numbers as objects. Again, we can treat “2”, “3”, etc. as “common 
names” for corresponding pluralities. Now, we may be able to extend 
this kind of semantic analysis systematically to more complex arithmetic 
sentences such as: “for all n and m, n + m = m + n” or “for all n there is a 
p such that p > n and p is prime”. But already in these cases, we are 
dealing with complicated nested generalities as a result, explicitly or 
implicitly. And if we also allow for higher-order quantification in 
arithmetic sentences (as in the case of the full axiom of induction), it is 
not clear any more how to extend the semantics. Put briefly, the further 
we go beyond elementary arithmetic, the less an analysis in terms of 
common names will seem natural and appropriate, or even possible. 
Instead, it will suggest itself more and more to understand terms such as 
“2”, “3”, etc. as singular terms, thus as referring to particular objects. In 
fact, even within elementary arithmetic a statement such as “5 is prime” 
seems naturally analyzed as having the form P(a), i.e., as involving the 
attribution of a property (to be prime) to an object (the number five). 
Then the question arises, once more, what the object involved is: the 
numeral “5” or something else instead? 

Actually, at this point another suggestion may be made. Why not 
combine our clarified notion of set with the idea, mentioned earlier, of 
using Platonic “pure units”? If we do that, the following becomes an 
option: We can treat the number five as the set containing five such 
units; similarly for all the other natural numbers. We can even treat 
infinite numbers along the same lines, at least if we accept the existence 
of infinitely many pure units. Now, this is exactly the conception of 
numbers one can find, at the end of the nineteenth century, in the works 
of Georg Cantor.21 According to it, numbers do turn out to be individual 
                                                 

21 See the discussion of Cantor’s conception of numbers in Tait, 1997; 
compare also Fine, 1998. 
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objects, but they are not identified with numerals. Note also that with 
this conception of numbers we have moved quite far away from our 
naïve, practical views about arithmetic. Even with a simple arithmetic 
statement such as “2 + 3 = 5” we are now no longer talking about 
concrete objects in the physical world, but about abstract sets of pure 
units. Finally, this conception of numbers will only be attractive for 
someone who finds the notion of a pure, abstract unit unproblematic. 

* 

We are finally in a position to reconsider Frege’s conception of 
the natural numbers, as first presented in Die Grundlagen der Arithmetik 
(Frege, 1884) and spelled out further, as well as modified slightly, in 
Grundgesetze der Arithmetik (Frege, 1893/1903). Actually, let me start by 
introducing what is often called the “Frege-Russell conception”, before 
then turning to Frege’s particular version, or versions, of it. 

Given the ideas and developments discussed so far, the “Frege-
Russell conception” can be seen as a fairly natural and direct extension of 
earlier views. Here is the basic idea: We started out with the conception 
of numbers as pluralities of things. The numeral “2”, say, corresponds 
then to all the two-numbered pluralities, in the sense that it is used as a 
“common name” for them. Disambiguating the notion of plurality, or 
better, replacing it by the clearer notion of set, we can modify this view 
by saying that the numeral “2”, as used in arithmetic statements, 
corresponds to all two-element sets. Now we want to push the 
modification one step further, for reasons having to do with higher 
arithmetic. Namely, we want to treat the numeral “2” as referring to a 
particular object. What object could that be (putting aside sets of pure 
units, as well as the identification of numbers with numerals)? Well, this 
new object should be related to all the two-element sets in some 
intimate, uniform way. Why, then, not simply collect together all those 
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sets, i.e., why not form the set of all two-element sets? This is an infinite 
set, to be sure. But we have been using infinite sets in higher arithmetic 
already anyway, so that it appears to be a legitimate object. Moreover, it 
is closely related to all two-element sets in a uniform way, by containing 
them as elements. Finally, we can use the same procedure for all the 
other natural numbers as well, indeed even beyond them. 

A classic presentation of this conception of the natural numbers 
can be found in Bertrand Russell’s Introduction to Mathematical Philosophy 
(Russell, 1919). Using the terminology of “class”, “collection”, and 
“bundle”, instead of “set”, he writes: 

 
[N]umber is a way of bringing together certain collections, namely, those 
that have a given number of terms. We can suppose all couples in one 
bundle, all trios in another, and so on. In this way we obtain various 
bundles of collections, each bundle consisting of all the collections that 
have a certain number of terms. (Russell, 1919, p. 14) 

 
It is interesting, after our earlier aside, that Russell starts with the number 
2 here, not with 0 or 1. A few pages later, however, he makes clear that 
the same approach can be used in the case of those two numbers as well: 

 
We [also] want to make one bundle containing the class that has no 
members: this will be for the number 0. Then we want a bundle of all the 
classes that have one member: this will be for the number 1. (ibid., p. 17) 

 
In Russell’s writings, this conception is presented for the first time 

in “The Logic of Relations” (Russell, 1901), then also in Principles of 
Mathematics (Russell, 1903, p. 115ff.). However, Russell was neither the 
only nor the first thinker to introduce it. Even putting aside Frege’s 
works for the moment, the same basic idea occurs in the works of other 
thinkers as well, and as early as the 1880s. For instance, in an 1888 letter 
to Richard Dedekind (published posthumously) the mathematician 
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Heinrich Weber proposes, independently of Frege and Russell, the use 
of equivalence-classes of classes to define the natural numbers.22 Such a 
view was simply in the air at the time, it seems.23

Nevertheless, this conception of numbers is most well known 
from Russell’s writings, and it is usually also attributed to Frege; thus the 
name “Frege-Russell conception”. Frege did, indeed, hold corresponding 
views, at least in Grundgesetze der Arithmetik. I now want to reexamine 
certain aspects of these views, including his criticisms of other 
conceptions of numbers. 

 
* 

The text in which Frege discusses rival conceptions of the natural 
numbers most explicitly is Die Grundlagen der Arithmetik (Frege, 1884). His 
discussion of them is almost exclusively critical and polemical. Among 
the main targets of Frege’s criticisms are: simple formalist views; Mill’s 
empiricist and physicalist position; and the conception of numbers as 
sets of pure units.24 Without going into the details of all of his 
arguments, let me say enough about them to establish the connection to 
                                                 

22 Dedekind’s response to this letter, which contains a brief description of 
Weber’s proposal, is published in Dedekind, 1932, p. 488-90; compare the 
discussion in Reck, 2003, section 6.  

23 Mark Wilson has connected Frege’s use of equivalence-classes of classes 
for defining numbers to related constructions in nineteenth-century geometry, 
especially projective geometry; see Wilson, 1992. I am inclined to believe that 
Frege was influenced along those lines. But if the account proposed in the 
present paper is correct, he needn’t have started from geometry to be led in this 
direction. 

24 See chapters I-III of Frege, 1884. I leave aside Frege’s criticisms of 
psychologistic views, since they are less relevant for present purposes; compare 
Reck, 1997 for a corresponding discussion. 
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our earlier discussion. Among Frege’s main objections to simple 
formalist views, especially views that identify numbers with numerals, is 
the following: It is not the numerals qua physical objects that are of 
interest to us in arithmetic; for example, their physical properties (shape, 
color, etc.) do not matter as far as arithmetic truth is concerned. Rather, 
what matters is our specific use of the numerals, or better of the cor-
responding numbers, both in arithmetic itself and in its applications. More 
particularly, what matters is their use in measuring “numbers of things”, 
i.e., in determining the size of pluralities.  

With respect to earlier treatment of such pluralities, Frege 
formulates two basic, related criticisms. Consider Mill and his appeal to 
concrete, physical “aggregates”, as well as to corresponding operations of 
“separation and rearrangement”. Such appeals are to be rejected, 
according to Frege, both because they misrepresent the wide range of 
applicability of arithmetic and because they make arithmetic dependent 
on empirical considerations in a problematic way. As to the former, note 
that numbers cannot merely be applied to physical aggregates of things; 
we can also number, say, historical events, mental images, and even non-
spatio-temporal objects such as abstract proofs of a theorem. As to the 
latter, the truth of an arithmetic statement such as “2 + 3 = 5” does not 
depend on our ability, much less on the actual performance, of physical 
operations. According to Frege, what needs to be done to avoid both 
kinds of mistakes is to replace the notions of aggregate and arrangement, 
as understood by Mill and others, by corresponding logical notions.  

This is, of course, exactly what we did above by introducing sets 
and set-theoretic operations (union, intersection, etc.). Frege does not 
appeal to sets, however, at least not directly. There are two main reasons 
why he does not do so. First, in his critical survey of earlier views he 
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does not find any clear notion of set; all he finds are ambiguity and 
confusion. A particular symptom of the confusion is the way in which 
the numbers 0 and 1 are treated, or rather excluded from treatment. 
Frege’s general assessment in this connection is the following: 

 
Some writers define the number as a set or multitude or plurality. All of 
these views suffer from the drawback that the concept will not then 
cover the numbers 0 and 1. Moreover, these terms are utterly vague: 
sometimes they approximate in meaning to “heap” or “group” or 
“aggregate”, referring to a juxtaposition in space, sometimes they are so 
used as to be practically equivalent to “number”, only vaguer. (Frege, 
1884, p. 38) 

 
As a result of such “utter vagueness”, ambiguity, and related problems, 
the very term “set” is suspicious to him.25 From the 1890s on, Frege 
himself starts to appeal to the notion of “class”. However, he does so 
only in terms of a reconstructed and derivative version of that notion. 
This leads us to his second main concern. Namely, for Frege the 
fundamental notion is not that of a set or class, even in its clarified form, 
but the notion of a concept. A set or class – in his preferred terminology, 
an “extension” – is always something determined by a concept; it is always 
the “extension of a concept”. In other words, Frege works with what we 
now call the “logical” notion of set or class.  

One immediate benefit of making concepts central, as opposed to 
relying on the earlier, ambiguous notion of plurality or multitude, is that 
Frege can provide a significant clarification of the notion of (concrete) 

                                                 
25 In Tait, 1997 it has been argued (against Dummett) that Frege’s discussion 

of earlier views is often uncharitable and tends to be unfair. I think this is true to 
some degree in the present connection, but it is also true that a large number of 
earlier writers really do exhibit confusion, or at least vagueness and ambiguity, in 
their use of “multitude”, “plurality”, “aggregate”, “collection”, or “set”. 
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unit. We noted above that, strictly speaking, a plurality or multitude can 
only be numbered – can only be considered a “number of things” – 
relative to a “partition” or “choice of unit”. It was left unclear, however, 
what the latter involves. Frege proposes the following analysis: In 
numbering, we rely on a “choice of unit” in the sense that we consider 
items as falling under a certain concept.26 For example, in a pack of cards 
each card can be counted as one, and be seen as equal to every other 
card in that respect, insofar as it falls under the concept “card in the 
pack”. This is what underlies assigning a corresponding number to the 
pack of cards. Note that, if we switch to the concept “complete deck of 
cards in the pack”, what counts as one changes, thus the number to be 
assigned changes, even if we are still looking at the same pack of cards. 
For Frege, this observation leads to an additional criticism of positions 
such as Mill’s that rely on mere groups (aggregates, parcels, heaps, etc.) 
of things as the basis for the concept of number. But it also leads to the 
more positive claim, central to Frege’s logicism, that a statement of 
number is always a statement about a concept. A second immediate 
benefit of Frege’s focus on concepts is this: It is not hard to come up 
with concepts under which exactly one object falls; similarly for concepts 
under which no object at all falls. As a result, Frege has no problems 
acknowledging 0 and 1 as numbers, on a par with 2, 3, 4, etc. 

                                                 
26 Actually, the term “unit” is ambiguous here. On the one hand, there is the 

“unit of measurement”, i.e., the thing that provides the relevant individuation, 
identified by Frege as the concept. On the other hand, there are the individual 
items to be numbered, or to be counted as “units” in the sense of “ones”. 
Frege’s emphasis is usually on the concept as constituting the “unit” in the first 
sense, since this is the ingredient missing in views such as Mill’s; cf. Frege, 1884, 
§54. (I owe this clarification to Marco Ruffino.) 
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 Interestingly, Frege not only considers the notion of a multitude 
of concrete units in his criticisms of earlier views, but also that of a 
multitude of abstract units. As noted above, the corresponding 
conception of numbers was introduced already in Plato’s dialogues, and 
it was reintroduced, in an updated form, in Cantor’s writings from the 
late nineteenth century. With respect to the pre-Cantorian version of this 
view, a first criticism raised in Frege’s Grundlagen involves, once more, the 
problem that the notion of multitude needs to be clarified and logicized. 
But even if we move over to Cantor’s version, as based on the notion of 
set, a second problem remains from Frege’s point of view. Namely, it is 
not clear how to make sense of the idea of several numerically distinct, but 
otherwise indistinguishable units. In Frege’s own words: 

 
If we try to produce the number by putting together different distinct 
objects, the result is an agglomeration in which the objects contained 
remain still in possession of precisely those properties which serve to 
distinguish them from one another; and that is not the number. But if we 
try to do it in the other way, by putting together identicals, the result runs 
perpetually together into one and we never reach a plurality. (Ibid., p. 50) 

 
In other words, if the units are really and totally indistinguishable, as the 
view at issue has it, they all coincide, don’t they (by Leibniz’s law of the 
identity of indiscernibles)? But then there seems to be only one unit left, 
so that the idea of a plurality evaporates. 

My goal in this essay is not to assess the stringency of Frege’s 
criticisms, but to illuminate the relation of his conception of numbers to 
other such conceptions, especially earlier ones.27 What we have found so 

                                                 
27 For a critical discussion of Frege’s arguments against, among others, the 

Cantorian conception of numbers, see again Tait, 1997. For another recent 
defense of Cantor’s position, see Fine, 1998. 
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far, in connection with the criticisms, is that Frege replaces the notion of 
plurality or multitude not by the notion of set, but by his alternative 
notion of concept and, derivatively, by the notion of extension of a 
concept. This leads him to the thesis that a statement of number 
amounts to a statement about a concept. Two further steps have to be 
added now to arrive at Frege’s own conception of numbers: first, his 
appeal to certain logical relations between such concepts, in particular 
the relation of equinumerosity; second, his move from equinumerous 
concepts to corresponding logical objects. 

* 

As noted earlier, the notion of equinumerosity was already 
invoked long before Frege; or better, a concrete, non-logicized version 
of this notion was used, in connection with the corresponding concrete 
notions of plurality or multitude of units. In Die Grundlagen der Arithmetik, 
Frege himself points to this earlier usage when he refers to Hume’s 
definition of numerical equality:  

 
Hume long ago mentioned: “When two numbers are so combined as 
that the one has always a unit answering to every unit of the other, we 
pronounce them equal.”  (Frege, 1884, p. 73)28

 
This passage is the source of what has come to be called “Hume’s 
Principle” in recent neo-Fregean investigations. From the point of view 
developed in the present paper, however, the following two limitations 
of Hume’s proposal should be clear now: First, it is based on the notion 
of a unit, or of a multitude of units, as understood in the ambiguous pre-
nineteenth-century sense. Second, the relation referred to by the phrase 
“a unit answering every unit of the other” is not analyzed further, 
                                                 

28 See Hume, 1988, Bk. I, Part iii. Section 1, for the original source. 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 427-470, jul.-dez. 2003. 



ERICH H. RECK 456 

especially not in Fregean logicist or related set-theoretic terms. There is 
then a question of how to conceive of this relation: in concrete Millian 
terms or in some more abstract way?29 Such ambiguities are completely 
resolved in Frege’s works. In particular, equinumerosity now amounts to 
the existence, in his logical system, of a bijective function between two 
concepts. Similarly, an ordering relation between concepts in terms of 
their cardinality can be introduced, in terms of the existence of 
corresponding injective functions, etc.  

We have still not made the step, along Fregean lines, to conceive 
of numbers as particular objects. Actually, there is another step, also 
indicated by Frege, that leads in a somewhat different direction and is 
relevant as well. Namely, we can introduce “numerical concepts”, in the 
sense of second-order concepts usable for assessing the size of first-
order concepts (at least in the finite case). For instance, there is the 
concept of “two-ness”, definable logically thus: ∃x∃y(Fx & Fy & x ≠ y & 
∀z(Fz → (x = z ∨ y = z))); similarly for “three-ness”, “four-ness”, etc., 
and even for “one-ness” and “zero-ness”. These notions have the 
following immediate connection to equinumerosity: two (finite) first-
order concepts fall under the same second-order numerical concept if 
and only if they are equinumerous. What that means is that for each 
equivalence class of (finite and) equinumerous concepts we get a 
corresponding numerical concept. Note, furthermore, that the numerical 
concepts of “two-ness”, “three-ness”, etc. corresponds relatively closely 
to the uses of “two”, “three”, etc. as common names, in the sense 
discussed above. In other words, Frege’s system has the resources to 
provide us with updated, logicized analogues of such common names. 
                                                 

29 A third, related limitation of Hume’s position is that he, unlike Frege and 
especially Cantor, only considers finite “numbers”; cf. again Tait, 1997 in this 
connection. 
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At this point, it may be tempting to identify the natural numbers 
with numerical concepts, especially if one has logicist leanings.30 This is 
not what Frege does, however, in spite of having the latter at his 
disposal. The problem is that these are concepts, not objects; and he 
insists that numbers are, or have to be identified as, objects. The explicit 
reasons Frege gives for this insistence, especially in Die Grundlagen der 
Arithmetik, are grammatical. He argues, in particular, that the primary use 
of numerals and number words, in ordinary and in mathematical 
discourse, is as object names, not as concept names. Beyond that, our 
earlier discussion has revealed another (not unrelated) motivation he may 
have had as well: in higher arithmetic numbers are treated as objects in 
certain crucial constructions. Finally, in Frege’s own reconstruction, as 
spelled out further in Grundgesetze der Arithmetik, it is important to treat 
numbers as objects at certain crucial junctures, e.g., in the proof that 
each number has a unique successor. 

Whatever the main motivation for this step, Frege goes on to 
introduce numbers as equivalence classes with respect to the equivalence 
relation of equinumerosity, both in Grundlagen and in Grundgesetze. As such, 
numbers are explicitly identified as a certain kind of logical objects. 
Actually, the relevant definitions in these two works are not identical, as 
one may assume at first. In Grundgesetze, numbers are introduced as 
equivalence classes of concepts. More specifically, the number 0 is defined 
as the equivalence class of all concepts equinumerous to the concept x≠x 
(a concept under which no object falls); the number 1 is defined as the 
equivalence class of all concepts equinumerous to the concept x=0 (a 
concept under which exactly one object falls); the number 2 is defined as 

                                                 
30 Compare the corresponding discussion of “numerical quantifiers” in 

Bostock, 1974 and Hodes, 1984. 
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the equivalence class of all concepts equinumerous to the concept x=0 ∨ 
x=1, etc.31 Note that 0 is then exactly the extension of the second-order 
concept “zero-ness”, 1 the extension of “one-ness”, 2 the extension of 
“two-ness”, etc. More generally, the number belonging to a concept F is 
the extension of the concept “equinumerous to F “. 

What we are presented with in Grundlagen is, thus, not exactly the 
“Frege-Russell conception of numbers”; since what is contained in the 
relevant equivalence classes are concepts, not sets or classes. It is only in 
Grundgesetze that Frege moves over to the use of equivalence classes of 
classes.32 And even then, it remains crucial for him to think of the 
corresponding classes as extensions of concepts; likewise for his 
continued treatment of equinumerosity as a relation between concepts, 
not between extensions, etc. To be more explicit about the change in 
Grundgesetze: The number 0 is now defined as the equivalence class of all 
classes whose corresponding concepts are equinumerous to x≠x; thus 0 
is the extension of a first-level concept corresponding to “zero-ness”, 
but not the extension of “zero-ness” itself. Similarly for 1, 2, 3, etc. More 
generally again, the number belonging to the concept F is now the 

                                                 
31 Officially Frege defines 0 as indicated, but then 1 as the successor of 0, 2 

as the successor of 1, etc. (after introducing a corresponding successor function); 
see part IV of Grundlagen, especially §§74-77. The overall result is the same, 
though. 

32 I think it is an interesting question why Frege made this change. Probably 
part of the motivation is technical: It simplifies the logical system in Grundgesetze; 
in particular, the notion of extension has to be introduced only for first-level 
concepts, not also for higher-level concepts. (Here, and in related remarks 
below, I am indebted to Kai Wehmeier.) In addition, compare the discussion of 
the central role played by extensions of concepts in Frege’s logicism, as 
motivated by philosophical reasons, in Ruffino, 2003.  
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extension of the concept under which fall those extensions of concepts 
equinumerous with F.33

My main goal so far has been to establish connections between 
Frege’s logicist conception, or conceptions, of numbers and the earlier 
non-logicist notions of plurality, equinumerosity, etc. I have tried to 
show, more particularly, how Frege’s conception can be seen to grow 
naturally and relatively directly out of earlier ideas and developments. At 
the same time, I do not mean to deny that significant changes have taken 
place in Frege’s work. Besides the replacement of the notion of plurality 
or multitude by that of concept or class and besides the related logicist 
modifications of the notions of equinumerosity etc., it is especially the 
use of (infinite) equivalence classes in connection with the natural 
numbers that constitutes a crucial change. It should also be emphasized 
that, while Frege was not the only mathematician at the time to make use 
of the technique of forming equivalence classes, he was one of the first, 
perhaps even the first, to be aware that this technique stands in need of 
further analysis and defense. In fact, one can see the development of 
crucial parts of Frege’s new logic, especially of the theory of extensions 
contained in it, as an attempt to provide a systematic foundation for it. 
Finally, Russell’s antinomy confirms that something substantive, and 
problematic, is going on here. 

 
* 

Frege’s conception of the natural numbers is connected to the 
earlier notion of plurality or multitude especially in the following respect: 

                                                 
33 See Grundgesetze der Arithmetik, §40 etc. This account of the relation 

between the conceptions of numbers in Frege’s Grundlagen and Grundgesetze 
agrees with, and is partly is influenced by, that in Blanchette, 1994; compare 
especially her footnotes 29 and 49. 
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logicized variants of such pluralities, namely corresponding concepts or 
classes, are built right into his main definitions. I emphasized above that, 
if one conceives of numbers as pluralities, especially as concrete 
pluralities, the umbilical cord between arithmetic and physical reality is 
firmly in place. What should we say about Frege’s conception in this 
connection? In one respect his replacement of pluralities with concepts 
or classes does affect, and perhaps loosen, the umbilical cord. Namely, 
for him a numerical statement is no longer directly about physical things, 
but about abstract concepts. However, insofar as we apply numbers to 
the world via these concepts, the application of arithmetic is still built 
into Frege’s definitions. Perhaps we should say, then, that the original 
umbilical cord has been transformed into, or replaced by, a more abstract 
bond. Crucially, there still is a bond – arithmetic and its applications have 
not been cut apart completely. In other words, Frege’s conception does 
not go all the distance towards “pure arithmetic”, compared to the way 
in which Hilbert’s conception of geometry goes all the distance towards 
“pure geometry”.  

Looked at from another angle, what is at issue here is the 
following: Frege is well aware that his definitions and constructions 
provide, or are meant to provide, a particular natural number sequence, 
i.e., a particular “simple infinity” (Dedekind), “progression” (Russell), or 
“ω-sequence” (Zermelo). In modern terminology, they specify a particular 
model of the Dedekind-Peano Axioms. Now, for purely inner-
mathematical purposes all that matters about such models, or about the 
elements in them, is their relational or structural properties, those that 
can be derived simply from the axioms; any further, intrinsic properties 
such elements may have, e.g., that each number except for 0 contains 
infinitely many concepts or classes, are irrelevant. On the other hand, it is 
exactly by means of these latter properties that the application of 
arithmetic is built into Frege’s conception. As this shows, Frege’s natural 
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numbers combine two different, separable aspects or ingredients within 
themselves. One ingredient concerns what is needed for pure arithmetic, 
the other what is needed for its applications. 

The step to separate these two ingredients, completely and cleanly, 
was first taken by a contemporary of Frege’s: Richard Dedekind. In 
Dedekind’s classic essay “Was sind und was sollen die Zahlen?” (Dedekind, 
1888), the goal is to distill out what is crucial for inner-mathematical 
purposes alone, i.e. for pure arithmetic, and to leave everything else 
aside. To do so Dedekind first defines, within an informal background 
theory of sets and functions, the (higher-order) concept of a “simple 
infinity”. Then he constructs, parallel to Frege, a particular simple infinity, 
or a particular natural number sequence. In a third step, he “abstracts 
away” from the intrinsic nature of the elements in that sequence. The 
result of this three-step procedure is an abstract structure, specifically that 
of the natural numbers. Dedekind conceives of this structure as a 
distinctive natural number sequence, one whose elements no longer have 
properties that are “foreign” to pure arithmetic, as Frege’s equivalence 
classes do.34 It is only at a later, secondary stage that Dedekind adds an 
account of how one can recover the application of the natural numbers as 
cardinal numbers within his system. He does so by showing how to use 
initial segments of his number sequence as “tallies”, where the relevant 
tallying is to be understood in set-theoretic terms. 

As just described, Dedekind’s conception of the natural numbers 
is a structuralist conception. It is, however, not the only possible 
structuralist position. Indeed, it is not the most well-known and 
widespread one today. A more common alternative is what has been 
                                                 

34 Such an interpretation of Dedekind’s position in Dedekind, 1888 is not 
uncontroversial, in general and with respect to this particular aspect. A detailed 
defense of it is presented in Reck, 2003. 
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called “set-theoretic structuralism”. Here one starts by constructing, 
within Zermelo-Fraenkel set theory, the finite von Neumann ordinals ω, 
starting with ∅ and continuing with the successor function f: 
x → x ∪ {x}; and then one treats these sets as “the natural numbers”, at 
least pragmatically. This becomes a structuralist position if two further 
claims are added: first, that there are various other set-theoretic natural 
number sequences one could use instead, e.g., the finite Zermelo ordinals 
(based on the alternative successor function g: x → {x}); second, that all 
that matters, in the end, is that the sequence used forms a model of the 
Dedekind-Peano Axioms.35 A related, but more radical alternative, also 
quite widespread these days, is to insist that what really matters is simply 
the axioms and what follows from them, where the latter is to be 
understood in some sophisticated formalist or “if-then-ist” sense.36  

For present purposes, the crucial point is the following: Along all 
such structuralist and sophisticated formalist lines, whatever the further 
details, we have separated pure arithmetic completely from its application 
to physical reality. The result can be described by paraphrasing 
Freudenthal’s remark about geometry: 

 
The umbilical cord between reality and arithmetic has been cut. 
Arithmetic has become pure mathematics, and the question whether and 
how it can be applied to reality is answered just as in any other branch of 
mathematics. The axioms are no longer evident truths, indeed it doesn’t 
even make sense any more to ask about their truth. 

 

                                                 
35 See Reck & Price, 2000 for a discussion of this variant of structuralism 

(among others).  
36 See Rheinwald, 1984 for a systematic discussion of corresponding 

positions.  
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It seems fair to say that this general result is accepted widely among 
mathematicians today, explicitly or implicitly, especially those working 
within a set-theoretic framework. One consequence is, as in the case of 
geometry, that it brings arithmetic in line with other parts of pure 
mathematics. More particularly, arithmetic, like geometry earlier, 
becomes part of the general study of structures or relational systems.  

Frege, to emphasize it again, does not go that far. For him 
arithmetic is not just concerned with an abstract structure or with purely 
formal facts, neither in the sense of Dedekind or other structuralists, nor 
along sophisticated formalist lines. Rather, the subject matter of 
arithmetic is a system of particular abstract objects, objects that have it 
built into their very nature how arithmetic is applied. Moreover, from 
this point of view the attempt to separate pure arithmetic completely 
from its applications, even if possible, is not a virtue but a vice – it makes 
us miss something about the concept of number, an aspect that is 
distinctive about it. I do not want to decide here whether such a Fregean 
claim can be defended or not. But one thing should be clear by now: any 
of the structuralist or formalist positions just mentioned is much farther 
away from our naïve, practical conception of numbers than Frege’s 
position is. 

* 

Frege’s attempt to keep arithmetic and reality together – to 
preserve the umbilical cord between them, even if in a more abstract or 
logical form than before – is certainly ingenious, in a number of ways. As 
I have tried to make evident, it is a subtle attempt to combine what is 
right about an old, naïve conception of numbers with new, nineteenth 
century clarifications and transformations in arithmetic, logic, and set 
theory. Alas, it is also inconsistent, as Russell’s antinomy shows. Most 
discussions of Frege’s conception subsequent to Russell’s discovery have 
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focused on questions about consistency and inconsistency. My focus has 
been different. I have tried to situate Frege’s conception between earlier 
practical conceptions and later pure ones. One benefit of doing so is that 
its motivation, its core ideas, and their significance appear in a new light. 
More negatively, Frege’s conception of the natural numbers has revealed 
itself as not entirely in line with much of contemporary mathematics, at 
least insofar as the latter tends, in practice, to be informed by structuralist 
or formalist views.  

At this point it may seem that Frege’s conception of the natural 
numbers is, in the end, mostly a failure: not only is it inconsistent, it also 
doesn’t quite break through to a pure, completely structural or formal, 
perspective on arithmetic. Why, then, should we still concern ourselves 
with it? I think it is worth doing so, for at least three reasons. The first 
reason has to do with a central theme of this paper. Frege’s conception 
constitutes an interesting link between the earlier conception of numbers 
as pluralities or multitudes and currently prevalent structuralist and 
formalist conceptions. Note here that, insofar as the pluralities 
conception still shapes how a lot of people, especially people who are 
not mathematicians or philosophers of mathematics, think about 
numbers, current structuralist or formalist conceptions of numbers can 
seem unmotivated and strange. If we bring in Frege’s conception for 
comparison, or perhaps for a kind of triangulation, it allows us to 
understand their relationship better. 

Second, Frege’s position is, as we have seen, built around a subtle, 
detailed analysis of the application of arithmetic, especially of the use of 
numbers as cardinal numbers. In contrast, from contemporary 
structuralist or formalist points of view the application of arithmetic is 
separated from arithmetic itself – and then the focus is almost exclusively 
on the latter. This new, exclusive focus on  pure arithmetic has, no 
doubt, led to many results that are important, both mathematically and 
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philosophically, such as Gödel’s Theorems. But it has the disadvantage 
that potentially also interesting questions about the application of 
arithmetic tend to be ignored, or swept under the carpet. This leads to 
the question: Is it really the case that there are no important 
philosophical problems on the application side?37 More basically, how 
exactly are we to think about the application of arithmetic along 
structuralist or formalist lines?38 A reflection back on Frege’s conception 
of numbers may urge such questions on us. 

A third and final reason for still concerning ourselves with Frege’s 
conception of numbers has to do with current debates in the philosophy 
of mathematics. Recently there have been serious attempts to modify 
and revive Frege’s conception, in such a way as to avoid Russell’s 
antinomy but preserve many of its seemingly attractive features. I am 
referring to the neo-Fregean approaches based on “abstraction 

                                                 
37 In the recent literature, see Steiner, 1998 for an extended argument that we 

should reconsider the application of mathematics philosophically; see also 
Tetens, 1994 for a contemporary exploration of related Kantian ideas. In 
Wittgenstein, 1978 similar issues are addressed, among others, as both Steiner 
and Tetens acknowledge. (I owe my emphasis on issues concerning application 
to Mike Price.) 

38 Both in Dedekind’s and in set-theoretic structuralist texts there are usually 
hints at how to think about applications. But typically they are not expounded 
further, in particular not with respect to philosophical aspects. Compare in this 
connection my own hint at Dedekind’s technique of using initial segments of his 
natural numbers as “tallies”. Doing so is, for him, to be reconstructed within an 
informal theory of sets and functions. An interesting question might be, then, 
how this account, if spelled out in more detail, compares to Frege’s views about 
applications. Note that Dedekind’s is not exactly the contemporary set-theoretic 
position, among others because he does not reduce functions to sets. Indeed, for 
Dedekind, as for Frege, to think in terms of functions is basic for human 
thought; see the Preface to Dedekind, 1888. 
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principles”, especially “Hume’s Principle”, developed in the works of 
Crispin Wright, Bob Hale, George Boolos, Richard Heck, and others. 
Crucially, these approaches share with Frege’s the feature of trying to 
preserve the umbilical cord between arithmetic and reality.39 From the 
point of view developed in the present paper, one then wants to ask not 
only how exactly such neo-Fregean approaches compare to Frege’s 
original one, but also how they relate to earlier practical and later 
structuralist and formalist conceptions. Both seem to me to be 
interesting questions that have not found much attention in the literature 
yet. But after having raised them, I will have to leave exploring these 
questions for another occasion. 
 

REFERENCES 

ARISTOTLE. The Complete Works of Aristotle. J. Barnes (ed.). Princeton 
University Press, 1984. 

BLANCHETTE, P. “Frege’s Reduction”. History and Philosophy of Logic, 15, 
pp. 85-103, 1994. 

BOSTOCK, D. Logic and Arithmetic, Vol. 1: Natural Numbers. Oxford: 
Clarendon Press, 1974. 

CARNAP, R. Der Raum. Ein Beitrag zur Wissenschaftslehre, Kant-Studien, 
Ergänzungshefte, Nr. 56, H. Vaihinger (ed.). Frischeisen-Köhler 
& Liebert, 1922. 

                                                 
39 The fact that applications are built right into the corresponding 

conceptions of numbers, via Hume’s Principle etc., is often presented as a 
philosophical advantage by their proponents; see, e.g., the introduction to Hale 
& Wright, 2001. Compare also the corresponding papers in Demopoulos, 1995. 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 427-470, jul.-dez. 2003. 



FREGE, NATURAL NUMBERS, AND ARITHMETIC’S UMBILICAL CORD 467 

DEDEKIND, R. Was sind und was sollen die Zahlen?. Braunschweig: 
Friedrich Vieweg, 1888. English trans. The Nature and Meaning of 
Numbers. In: Essays on the Theory of Numbers. New York: Dover, 
1963, pp. 31-115.  

———. Gesammelte Mathematische Werke. R. Fricke et al. (eds.). Vieweg, 
Braunschweig, 1932, v.3. 

DEMOPOULOS, W. Frege’s Philosophy of Mathematics. Cambridge, MA: 
Harvard University Press, 1995. 

EUCLID. The Elements. Edited and trans. T. Heath. New York: Dover, 
1956. 

FINE, K. “Cantorian Abstraction: A Reconstruction and Defense”. The 
Journal of Philosophy, 95, pp. 599-634, 1998. 

FREGE, G. Die Grundlagen der Arithmetik. Breaslau: Verlag von Wilhelm 
Kobner, 1884. English trans. The Foundations of Arithmetic. Edited 
and trans. by J.L. Austin. Chicago: Northwestern University Press, 
1980. 

———. Grundgesetze der Arithmetik. Vols. I and II. Jena: Pohle Verlag, 
1893/1903. Reprinted Hildesheim: Olms, 1998. 

FREUDENTHAL, H. “Zur Geschichte der Grundlagen der Geometrie. 
Zugleich eine Besprechung der 8. Auflage von Hilbert’s 
‘Grundlagen der Geometrie’”. Nieuw Archief voor Wiskunde, 4, pp. 
105-42, 1957. 

———. “The Main Trends in the Foundations of Geometry in the 19th 
Century”. In: E. Nagel, P. Suppes, and A. Tarski (eds.). Logic, 
Methodology, and Philosophy of Science. Stanford University Press, pp. 
613-21, 1962. 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 427-470, jul.-dez. 2003. 



ERICH H. RECK 468 

GRAY, J. “The Nineteenth-Century Revolution in Mathematical 
Ontology”. In: D. Gillies (ed.). Revolutions in Mathematics. Oxford: 
Oxford University Press, pp. 226-47, 1992. 

HALE, B. & WRIGHT, C. The Reason’s Proper Study. Essays towards a Neo-
Fregean Philosophy of Mathematics. Oxford University Press, 2001. 

HODES, H. “Logicism and the Ontological Commitments of 
Arithmetic”. The Journal of Philosophy, 81, pp. 123-49, 1984. 

HUME, D. A Treatise on Human Nature. L.A. Selby-Bigge (ed.). Oxford: 
Clarendon Press, 1988. 

IFRAH, G. The Universal History of Numbers: From Prehistory to the Invention 
of the Computer. New York: John Wiley & Sons, 2000. 

KANT, I. Critique of Pure Reason. Edited and trans. by N.K. Smith. St. 
Martin’s Press, 1965.  

KLEIN, J. Greek Mathematical Thought and the Origins of Algebra. New York: 
Dover, 1968. 

LEWIS, D. Parts of Classes. Oxford: Basil Blackwell, 1991. 

MILL, J.S. A System of Logic, reprinted (excerpts). In: E. Nagel (ed.). 
Philosophy of Scientific Method. New York: Hafner Publishing 
Company, 1950; (1843). 

PLATO. Philebus. In: E. Hamilton and H. Cairns (eds.). The Collected 
Dialogues of Plato. Princeton: Princeton University Press, pp. 1086-
50, 1989. 

RECK, E.H. “Frege’s Influence on Wittgenstein: Reversing Metaphysics 
via the Context Principle”. In: W.W. Tait (ed.). Early Analytic 
Philosophy: Frege, Russell, Wittgenstein. Chicago: Open Court, pp. 123-
85, 1997. 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 427-470, jul.-dez. 2003. 



FREGE, NATURAL NUMBERS, AND ARITHMETIC’S UMBILICAL CORD 469 

———. “Freges Platonismus im Kontext”. In: G. Gabriel & U. Dathe 
(eds.). Gottlob Frege: Werk und Wirkung. Paderborn: Mentis, pp. 71-
89, 2000. 

———. “Dedekind’s Structuralism: An Interpretation and Partial 
Defense”. Synthese, 137, pp. 369-419, 2003. 

RECK, E. and PRICE, M. “Structures and Structuralism in 
Contemporary Philosophy of Mathematics”. Synthese, 125, pp. 
341-83, 2000. 

REICHENBACH, H. The Rise of Scientific Philosophy. Berkeley and Los 
Angeles: University of California Press, 1951. 

RHEINWALD, R. Der Formalismus und seine Grenzen. Königstein: Hain, 
1984. 

ROCHE, J.J. The Mathematics of Measurement. New York: Springer, 1998. 

RUFFINO, M. “Why Frege would not be a neo-Fregean”. Mind, 112, 
pp. 51-78, 2003. 

RUSSELL, B. “The Logic of Relations”. Rivista di Matematica, vol. VII, 
pp. 115-48, 1901. Reprinted in R.C. Marsh (ed.). Logic and 
Knowledge. Essays 1901-1950. London: Routledge, 1956.  

———. Principles of Mathematics. London: Allen and Unwin, 1903. 
Reprinted New York: Norton, 1953. 

———. Introduction to Mathematical Philosophy. London: Allen and Unwin, 
1919. Reprinted London: Routledge, 1993.  

SIMONS, P. Parts. A Study in Ontology. Oxford: Clarendon Press, 1987. 

STEIN, H. “Logos, Logic, Logistiké: Some Philosophical Remarks on 
Nineteenth-Century Transformations of Mathematics”. In: W. 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 427-470, jul.-dez. 2003. 



ERICH H. RECK 470 

Aspray and P. Kitcher (eds.). History and Philosophy of Modern 
Mathematics. Minneapolis: University of Minnesota Press, pp. 238-
59, 1988. 

STEINER, M. The Applicability of Mathematics as a Philosophical Problem. 
Cambridge, MA: Harvard University Press, 1998. 

TAIT, W.W. “Frege versus Cantor and Dedekind: On the Concept of 
Number”. In: M. Schirn (ed.). Frege: Importance and Legacy. Berlin: 
de Gruyter, pp. 70-113, 1997. 

———. “Noesis: Plato on Exact Science”. In: D. Malament (ed.). 
Reading Natural Philosophy: Essays in the History and Philosophy of 
Science and Mathematics. Chicago: Open Court, pp. 11-31, 2002. 

TETENS, H. “Arithmetik: ein Apriori der Erfahrung?” In: B. 
Falkenburg (ed.). Naturalismus in der Philosophie der Mathematik? 
Hamburg: Meiner, pp. 125-46, 1994. 

WILSON, M. “Frege: The Royal Road from Geometry”. Nous, 26, pp. 
149-80, 1992. 

WITTGENSTEIN, L. Remarks on the Foundations of Mathematics. In: G.H. 
v. Wright, R. Rhees & E. Anscombe, (eds.). Oxford: Basil 
Blackwell, 1978, 3rd edition. 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 427-470, jul.-dez. 2003. 


	REFERENCES

