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1. OPENING  

What is the epistemological status of our knowledge of the truths 
of arithmetic? Are they analytic,the products of pure reason, as Leibniz 
held? Or are they highlevel empirical truths that we know only a posteriori, 
as some empiricists, particularly Mill, have held? Or was Kant right to say 

 
* This paper was originally published in French as “Introduction au 

théorème de Frege”, tr. by L. Perrin, in M. Marion and A. Voizard (eds.), Frege: 
Logique et philosophie, Montreal: Harmattan, 1998, pp. 33-61. The English 
version appeared in The Harvard Review of Philosophy 7, 1999, pp. 56-73. 
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that, although our knowledge that ‘5+7=12’ depends essentially upon 
intuition, it is nonetheless a priori? It was with this problem that Gottlob 
Frege was chiefly concerned thoughout his philosophical career. His goal 
was to establish a version of Leibniz’s view (and so to demonstrate the 
independece of arithmetical and geometrical reasoning), to show that the 
truths of arithmetic follow logically from premises which are themselves 
truths of logic. It is this view that we now call Logicism.  

Frege’s approach to this problem had a number of strands, but it 
is simplest to divide it into two: a negative part and a positive part. The 
negative part consists of criticisms of the views of Mill and Kant, and 
others who share them. These criticisms, although they are found in a 
variety of places, mostly occur in the first three chapters of Die 
Grundlagen der Arithmetik.1 The positive part consists of an attempt to 
show (not just that but) how arithmetical truths can be established by 
pure reason, by actually giving proofs of them from premises which are 
(or are supposed to be) truths of pure logic. There is thus a purely 
mathematical aspect of Frege’s project: it is this on which I intend to 
focus here.  

Frege was not the first to attempt to show how arithmetical truths 
can be proven from more fundamental assumptions. His approach, 
however, was more rigorous and encompassing, by far, than anything 
that had come before. Leibniz, for example, had attempted to prove 
such arithmetical truths as ‘2+2=4’. His proofs, however, like those of 
Euclid before him, rest upon assumptions that he does not make explicit: 
for example, Leibniz make free appeal to the associative law of addition, 
which says that (a+b)+c = a+(b+c), i.e., allows himself freely to ‘rearrange’ 
parentheses. But it is essential to any attempt to determine the 

                                                 
1 Frege, 1980. Further references are in the text, marked ‘Gl ’, with a section 

number.  
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epistemological status of the laws of arithmetic that we be able precisely 
to determine upon what assumptions the proofs of such laws depend. 
That is to say, it is essential that the proofs be presented in such a way 
that, once the premises on which they are to depend have been stated, 
no additional assumptions can sneak in unnoticed. Frege’s idea was to give 
the proofs within a ‘formal system’ of logic, in which the permissible 
inferential steps are explicitly specified, by purely syntactic criteria, so 
that it becomes no more complicated to determine what assumptions are 
employed in the proofs than it is, say, to check calculations by long 
division.  

Existing systems of logic, deriving from the work of George 
Boole (and, ultimately from Aristotle), were, however, inadequate for this 
task, for two reasons: first, the systems were illsuited to the presentation 
of proofs; and, secondly, they were inadequate even to represent the 
sentences which were contained in those proofs. In particular, it is 
impossible, in Boole’s system, to express sentences containing multiple 
expressions of generality, such as ‘Every horse’s head is an animal’s head’ 
or, more to the point, ‘Every number has a successor’. In a sense, these 
sentences can be represented within Boole’s logic, but not in such a way 
that one can see, on the basis of that representation, why the former 
follows from, but does not imply, ‘Every horse is an animal’ – and so, 
not in such a way that proofs even of such simple facts can be carried 
out within it.  

It was for this reason that Frege was forced to develop a new 
system of formal logic, which he first presented in Begriffsschrift.2 His 
system is, as he frequently points out, adequate for the representation of 
sentences like those mentioned above; its rules of inference, though 
limited in number, allow us to carry out the sorts of proofs that could 

                                                 
2 Frege, 1967, p. 582.  
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not be formalized in Boole’s system. And once a system adequate to the 
representation of actual mathematical argumentation has been 
developed, the question of the epistemological status of arithmetic is 
transformed. It would be too strong to say that it reduces to the question 
from what assumptions the laws of arithmetic can in fact be proven – 
for, once such assumptions have been identified, we will be left with the 
question what the epistemological status of those assumptions is. But 
nonetheless, the philosophical question takes on a purely mathematical 
aspect, and mathematical techniques can be brought to bear on it.  

It would, I think, be impossible to overemphasize the importance 
of the contribution implicit in Frege’s approach here. Frege’s idea that, 
through formal logic, the resources of mathematics can be brought to 
bear upon philosophical problems pervades contemporary analytic 
philosophy, having come down to us through the work of Russell, 
Wittgenstein, Carnap, and others. But its influence is not limited to 
philosophy. Mathematical logic, as we now have it, is obsessed with the 
question what can or can not be proven from particular assumptions, 
and it is only against the background of Frege’s system of formal logic – 
or, at least, a system of formal logic that meets the conditions his was the 
first to meet – that this question can even be stated in a way that makes it 
mathematically tractable.  

It is in that sense, then, that Frege’s approach was more rigorous 
than existing ones. There is also a sense in which it was more general. 
When Leibniz attempts to prove the laws of arithmetic, he focuses on 
such claims as that 2+2=4. Frege, however, is interested in more 
fundamental arithmetical truths, and for good reason. If it is to be shown 
that all truths of arithmetic are provable from logical laws, then, since 
there are infinitely many of these, this can not be established by literally 
proving all of them. Rather, some basic arithmetical truths need to be 
identified, from which all others plausibly follow, and then these basic 
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truths need to be proven. That is to say, arithmetic needs to be 
axiomatized, just as Euclid had axiomatized geometry, and then proofs 
need to be given of the axioms. Frege was not the first to publish such 
axioms: that honor is typically accorded to Giuseppe Peano, though the 
historical record makes it clear that Richard Dedekind was actually the 
first to formulate them.3 Nonetheless, Frege does state axioms for 
arithmetic (which are interestingly different from Dedekind’s) and his 
proofs are directed, in the first instance at these. He also proves, as 
Dedekind does, that the axioms are sufficient to characterize the 
abstract, mathematical structure of the natural numbers (up to 
isomorphism, as it is said, this being a standard test of the sufficiency of 
an axiomatization).4  

Of course, one can not, in the strictest sense, prove the axioms of 
arithmetic within a system of pure logic: none of the expressions in the 
language in which the system is formulated even purport to refer to 
numbers, so the axioms of arithmetic can not even be written down in 
such a system. What are required are definitions of the basic notions of 
arithmetic in terms of logical notions; proofs of the axioms of arithmetic 
will then become proofs of their definitional translations into the formal, 
logical system. The mathematical project is thus, in contemporary 
terminology, to ‘interpret’ arithmetic in a system of formal logic: to 
interpret one theory – call it the target theory – in another – call it the 
base theory – is to show that definitions can be given of the primitive 
vocabulary of the target theory (in this case, arithmetic) in terms of the 
primtives of the base theory (in this case, some formal theory of logic), 
so that definitional transcriptions of the axioms of the target theory 

                                                 
3 See Dedekind, 1963.  
4 For discussion of Frege’s axioms and his proof of this theorem, see Heck, 

1995.  
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become theorems of the base theory.5 At the very least, such a result 
shows that the target theory is consistent, if the base theory is: for, if there 
were a proof of a contradiction to be had within the target theory, that 
proof could be replicated within the base theory, by proving the needed 
axioms of the target theory within the base theory, and then appending 
the derivation of a contradiction, in the target theory, to them. Hence, if 
there is no proof of a contradiction to be had within the base theory, 
there will be none to be had within the target theory, either.  

Such interpretability results were wellknown to geometers 
working in Frege’s time – and, indeed, Frege was a geometer by training. 
Such techniques were among the most frequent used to establish the 
consistency of various sorts of nonEuclidean geometries – geometries 
which reject the parallel postulate. Proofs of the consistency of such 
geometries usually amounted to proofs that they could be interpreted 
within other sorts of theories, whose consistency was not in doubt (e.g., 
within Euclidean geometry itself).  

It is worth emphasizing, however, that interpreting arithmetic 
within a system of formal logic will not necessarily help us to discover 
the epistemological status of arithmetic – even if we are agreed that the 
‘system of formal logic’ really is a system of logic, i.e., that all of its 
theorems are analytic truths. The problem can be illustrated as follows. It 
was Frege’s view that, not just arithmetic, but also analysis (that is, the 
theory of real numbers), is analytic. If so, given a definition of ordered 
pairs, the theory of Euclidean geometry can be interpreted in analysis, by 
means of Cartesian coordinates. Does it then follow that, on Frege’s 
view, Euclidean geometry must be analytic? That would be unforunate, 
for Frege explicitly agreed with Kant that the laws of Euclidean geometry 

                                                 
5 Interpretations can take a more complicated form, but we need not 

consider such matters here.  
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are synthetic a priori. But, in fact, there is no inconsistency in Frege’s view 
here. What the interpretability result establishes is just that what look like 
the axioms of Euclidean geometry can be proven within analysis. The 
question is whether what looks like the parallel postulate really does mean 
what the parallel postulate means. That is, the question just begs to be 
asked whether the ‘definitions’ of fundamental geometrical notions in 
fact capture the meanings of those notions, as we ordinarly understand 
them – for example, whether ‘a point is an ordered triple of real 
numbers’ is a good definition of the word ‘point’, as it is used in 
geometry. If it is not, it has not been shown that the truths of Euclidean 
geometry can be proven in analysis: not if we identify ‘truths of 
Euclidean geometry’ by what they mean and not just by their 
orthographic or syntactic structure.  

A corresponding question will arise in connection with Frege’s 
definitions of fundamental arithmetical notions. It will, that is to say, be 
open to a Kantian to question whether the definitions Frege gives do in 
fact capture the meanings of arithmetical notions as we ordinarily 
understand them. If they do not, then Frege will not have shown that the 
truths of arithmetic can be proven within logic, but only that sentences 
syntactically indistinguishable from the truths of arithmetic can be so 
proven. And that is not sufficient. So another large part of Frege’s 
project has to be, and is, to argue that the fundamental notions of 
arithmetic are logical notions, that his definitions of them in logical terms 
are good definitions, in this sense.  

Let me summarize the discussion to this point. Frege’s 
philosophical project, to show that the laws of arithmetic are analytic, 
that they can be known on the basis of reason alone, has a mathematical 
aspect. The primary goal is to define the fundamental arithmetical 
notions in terms of notions of pure logic, and then, within a formal 
system of logic, to prove axioms for arithmetic. That is how Frege will 
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identify ‘the basic laws of arithmetic’, i.e., the fundamental assumptions 
on which arithmetical reasoning is founded. As important as this part of 
the project is, however, it does not answer the epistemological question 
on its own, for two sorts of questions remain open. First, there is space 
for the question whether Frege’s definitions of the basic arithmetical 
notions really do capture their meaning – and so whether we have really 
succeeded in proving the axioms of arithmetic and so in identifying its 
basic laws. And second, even if that question is answered affirmatively, 
we will have to ask what the epistemological status of the basic laws is: 
only if they are themselves truths of logic, analytic truths, will the proof 
show that the axioms of arithmetic are analytic truths. As we shall see, 
both questions have been prominent in the literature generated by 
Frege’s project.  
 
2. FREGE’S SYSTEM OF FORMAL LOGIC  

The formal logical system which Frege develops in Begriffsschrift is, 
in essence, what we now know as full, impredicative second-order logic: 
it allows for quantification over ‘concepts’ – the extra-linguistic 
references of predicates – and relations, as well as over objects. The 
system as it is presented in Begriffsschrift does not, however, meet the 
demands of rigor Frege imposes. In particular, one of its most important 
rules of inference is never explicitly stated, the rule in question being a 
rule of substitution. One might think that Frege’s omission here is 
inconsequential: isn’t it just obvious that, if one has a proof of some 
formula, then the result of substituting various other expressions for the 
variables which occur in that theorem should also be a theorem? Maybe 
so, but the claim that substitution is a valid form of inference is, in the 
context of second-order logic, an extremely powerful one.  
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In Frege’s system, the rule of substitution plays the role played in 
more modern formulations by the so-called axioms of comprehension: 
the comprehension axioms characterize the concepts and relations over 
which the variables of the theory are supposed to range; that is, each of 
them asserts that a particular concept or relation exists. In full second-
order logic, one has such a comprehension axiom for every formula of 
the theory, and the comprehension axioms then jointly assert that every 
formula A(x) defines a concept, namely, that true of the objects of which 
the formula is true; that every formula B(x,y) defines a two-place relation; 
and so forth. And without comprehension axioms, second-order logic is 
very weak. Indeed, even if we allow ourselves so-called predicative 
comprehension axioms – that is, even if we assume that formulae which 
do not themselves contain second-order quantifiers (which do not quantify 
over all concepts and relations) define concepts and relations – the 
resulting logic is still weak, in a well-defined technical sense.  

Many philosophers have worried that appeal to impredicative   
axioms of comprehension introduces a kind of circularity into the     
characterization of the concepts and relations over which the variables of 
the theory range. The worry, as it appears in Russell, for example, is that 
it must be circular to characterize the concepts the theory talks about by 
quantifying over the concepts the theory talks about. Although Frege 
never discussed this problem, his response, I think, would have been to 
say that he does not propose to say what concepts lie within the domain 
of the theory by means of the comprehension axioms: the domain is to 
contain all concepts, and the question how any one of them might be 
defined should not be allowed to determine whether it exists; the 
comprehension axioms simply assert that every formula defines a 
concept.6 But let me not pursue the matter further here.  

                                                 
6 See Frege, 1966, vol. I, section 66.  
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Frege’s failure to state a rule of substitution in Begriffsschrift  is, 
thus, an important omission. But it is one he remedies in his later 
presentation of his formal theory in Grundgesetze der Arithmetik. In fact, 
his presentation of the system there is as rigorous as any before Gödel 
mathematized syntax in the early 1930s.  

The axioms of arithmetic can not, however, be proven within full 
second-order logic alone. It can easily be shown that even the claim that 
there are two distinct objects is not a theorem of second-order logic; but 
arithmetic posits the existence, not just of two, but of infinitely many 
natural numbers. It is this claim that is the central obstacle to any Logicist 
development of arithmetic. Indeed, it is hard to see that there is any 
more difficult problem facing one who would answer the 
epistemological question with which we are concerned than to explain 
the genesis of our knowledge that there are infinitely many numbers, 
whatever sort of answer she might ultimately want to give.  
 
3. THREE LESSONS AND A PROBLEM  

As said above, Frege argues, in the first three chapters of Die 
Grundlagen, that Kantian and empiricist philosophies of arithmetic will 
not do. He comes away with three lessons on which he proposes to base 
his own view, and with one very large problem. The first lesson is that 
the natural numbers are to be characterized, as Leibniz suggested, by 
defining ‘zero’ and ‘increase by one’. This is clear enough, and we shall 
see below how Frege intends to define these notions. The second lesson 
is harder to understand: Frege puts the point by saying that ‘the content 
of a statement of number is an assertion about a concept’ (Gl §55). What 
he means is that that to which number is ascribed is not, strictly 
speaking, objects. Suppose I were to say, pointing to a pile of playing 
cards, ‘How many?’ You might answer by counting the cards and telling 
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me that there are 104. But then again, you might answer 2. It all depends 
upon how you take my question, which contains an ambiguity that can 
be resolved by asking: How many what? How many cards? Or how many 
complete packs? But then, it would seem, the number 104 is ascribed not 
to the pile of cards, their aggregate (or ‘fusion’), that somewhat scattered 
object whose parts are all and only the parts of the cards: for the number 
2 can as justly be ascribed to that aggregate (for the packs have the same 
parts the cards do). One might conclude from this that ascriptions of 
number are subjective, that they essentially depend upon our way of 
regarding the aggregate to which number is assigned. But there is an 
alternative: to say, with Frege, that number is ascribed to a concept, in this 
case, either to card on the table or to complete pack of cards on the table.  

That having been said, it is overwhelmingly natural to suppose 
that numbers are a kind of higher order property, that they are properties of 
concepts.7 For example, 0 would be the property a concept has if nothing 
falls under it (so the concept disco album in my collection has the property 
zero, since I do not own any disco albums). A concept will have the 
property 1 if there is an object which falls under it, and every object 
which does fall under it is identical with that one (so the concept object 
identical with George Clinton would have the property 1, since George 
Clinton falls under it, and every object which does is identical with him). 
And a concept will have the property n+1 if there is an object, x, which 
falls under it and the concept object which falls under the original concept, other 
than x, has the property n. Thus, the concept object that is identical with either 
George Clinton or James Brown will have the property 1+1 (i.e., 2), for there 
is an object falling under it, namely, the Godfather of Soul, such that the 
concept object that is identical with either George Clinton or James Brown, other 

                                                 
7 For a detailed discussion of this proposal, see Heck, 1997.  
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than the Godfather of Soul, has the property 1, for this is just the same 
concept as object identical with George Clinton, described in other words.  

Frege discusses this sort of proposal in §§55-61 of Die Grundlagen. 
It is not entirely clear why he rejects it, but it seems plausible that his 
reason, ultimately, is that such an account will not enable us to prove the 
axioms of arithmetic – not, that is, without some further assumptions. 
Suppose that there were exactly two objects in the world, call them 
George and James. Then there will be a concept which has the property 
0; there will be others which have the property 1; and there will be one 
which has the property 1+1. But there will be no concept which has the 
property 1+1+1: for there to be such a concept, there would have to be 
one under which three objects fell and, by hypothesis, there are only two 
objects in existence. Nor would any concept have the property 1+1+1+1, 
for the same reason. Just how one wants to describe the situation here is 
a delicate question: one can either say that there is no number 1+1+1 or 
one can say that 1+1+1 and 1+1+1+1 turn out, in this case, to be the 
same. Either way, though, there will be only finitely many numbers, and 
the laws of arithmetic can not be proven. (For example, depending upon 
how we choose to describe the siutation, either 2+2 will not exist at all, 
or it will be the same as 2+1.)  

Of course, there are not just two objects in existence: but a similar 
problem will arise if there are only finitely many. The situation can be 
remedied if we simply assume, as an axiom, that there are infinitely many 
objects: this is the course Russell and Whitehead take in Principia 
Mathematica. Frege would not have had any interest in this sort of 
‘solution’, though. As said, the really hard problem facing the 
epistemologist of arithmetic is to account for our knowledge that there 
are infinitely many numbers. It is hard to see how assuming that we 
know that there are infinitely many other sorts of things is supposed to 
help. Proving the laws of arithmetic from such an assumption simply 
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leaves us with the question of its epistemological status, and that is no 
advance, since the epistemological status of just this assumption was the 
hard problem with which we started. Moreover, if the objects we assume 
to exist are supposed to be physical objects like George Clinton, it seems 
unlikely that the claim that there are infinitely many of these is one logic 
could establish: indeed, one might well wonder whether it is even true.  

The third lesson, then, is supposed to be that, despite the fact that 
an ascription of number makes an assertion about a concept, numbers 
themselves are not properties of concepts: they are objects. To put the 
point grammatically, number-words are not predicates of predicates, but 
proper names. (It should, all along, have seemed strange to speak of zero as 
being a property of a concept, to say such things as that the concept disco 
album in my collection has the property zero!) One might wonder how these 
two doctrines can be jointly held: the answer is that we need only insist 
that the most fundamental sort of expression that names a number is 
one of the form ‘the number belonging to the concept F’, and that this is 
a proper name. Ascriptions of number, such as ‘There are 102 cards on 
the table’, then get recast as identity-statements, e.g.: the number 
belonging to the concept card on the table is identical with 102. This does, 
as it were, contain an assertion about a concept, but the number 102 does 
not appear as a property of a concept.  

This, however, leaves Frege with a problem. He has denied that 
arithmetic is either synthetic a priori or a posteriori, partly on the ground 
that numbers are not given to us either in perception or in intuition. 
How then are they given to us? What, so to speak, is the mode of our 
cognitive access to the objects of arithmetic? Frege’s way of answering 
this question is subtly to change it, writing:  

 
Only in the context of a proposition does a word mean something. It 
will therefore suffice to explain the sense of a proposition in which a 
number-word occurs… In our present case, we have to define the sense 
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of the proposition ‘the number which belongs to the concept F is the 
same as that which belongs to the concept G’; that is to say, we must 
reproduce the content of this proposition in other terms, avoiding the use 
of the expression ‘the number which belongs to the concept F ’. (Gl §62)  

 
It is here that Frege makes ‘the linguistic turn’. It is not, of course, that 
no philosopher before him had ever been concerned with language; 
Locke, for example, was obsessed with it and argued, repeatedly, that 
various sorts of philosophical problems were the results of illusions 
fostered by misunderstandings of language. (Perhaps Locke was the first 
logical positivist.) What is original about Frege’s approach is that the 
epistemological problem with which he begins is transformed into a 
problem in the philosophy of language, not so that it can be discarded, but so 
that it can be solved.  

The answer to the epistemological question that is implicit in 
Frege’s treatment of it is that our cognitive access to numbers may be 
explained in terms of our capacity to refer to them, in terms of a capacity 
to denote them by means of expressions we understand. Of course, if 
the capacity to refer to an object by means of a proper name itself 
depended upon our having, or at least being able to have, perceptions or 
intuitions of it (or of other objects of its kind), no actual benefit would 
accrue from reconceiving the problem in this way. But it is precisely to 
deny that the explanation must proceed in such terms that Frege invokes 
the ‘context principle’, the claim that the meaning of an expression can 
be explained by explaining the meanings of complete propositions in 
which it occurs. The goal, in this case, will be to give the definition of 
‘the number which belongs to the concept F is the same as that which 
belongs to the concept G’ in terms of concepts which themselves belong 
to pure logic. If that should be possible, it will follow that there is, so to 
speak, a purely logical route to an understanding of expressions which 
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refer to numbers, that is, to a capacity to refer to them – and so to a 
capacity for cognitive access to them.  

Frege notes, quoting from Hume, that a criterion for sameness of 
number is ready to hand. Suppose, for example, that I want to establish 
that the number of plates is the same as the number of glasses. One way, 
of course, would be to count them, to assign numbers to the concepts 
plate on the table and glass on the table and then to see whether these 
numbers are the same. But there is another way: I can pair off the plates 
and the glasses, say, by putting one and only one glass on each plate, and 
then see whether each plate ends up with a glass on it and whether there 
are any glasses left over. That is to say, I can attempt to establish a ‘one-
one correlation’ between the plates and the glasses: if there is a one-one 
correlation to be had, the number of plates is the same as the number of 
glasses; otherwise not.  

Indeed, as Frege is fond of pointing out, the process of counting 
itself relies upon the establishment of one-one correlations.8 To count 
the plates just is to establish a one-one correlation between the plates and 
an initial segment of the natural numbers, beginning with 1; the last 
number used is then assigned to the concept plate on the table as its 
number. Why, indeed, does the fact that the same number is assigned by 
this process to the concepts plate on the table and glass on the table show that 
the number of plates is the same as the number of glasses? Because, says 
Frege, if there is a one-one correlation between the plates and the 
numbers from 1 to n, and another between the glasses and the numbers 
from 1 to m, then there will be a one-one correlation between the plates 
and the glasses if, and only if, n is m.  

The notion of one-one correlation can itself be explained in 
logical terms (assuming, that is, that we accept Frege’s claim that the 

                                                 
8 See Grundgesetze, vol. I, section 108. 
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general theory of concepts and relations, as developed in second-order 
logic, does indeed count as logic). For a relation R to be a one-one 
correlation between the Fs and the Gs is for the following two conditions 
to hold:  

1. The relation is one-one, that is, no object bears R to more than 
one object, and no object is borne R by more than one object  

2. Every F bears R to some G and every G is borne R by  some F  

In contemporary symbolism:  

∀x∀y∀z∀w [Rxy & Rzw → (x=z ≡ y=w)] & 
∀x[Fx → ∃y(Rxy & Gy)] & ∀y[Gy → ∃x(Rxy & Fx)]  

And we can now say that there is a one-one correspondence between the 
Fs and the Gs if there is a relation R which satisfies these conditions. Say 
that the Fs and Gs are ‘equinumerous’ if so. The definition on which 
Frege settles is then:  
 

the number of Fs is the same as the number of Gs if, and only if, the Fs and the 
Gs are equinumerous.  

 
This has come to be called Hume’s Principle, since, as said, Frege 
introduces it with a quotation from Hume (not because anyone thinks 
Hume really had this in mind).  
 

4. THE CAESAR PROBLEM AND FREGE’S ‘SOLUTION’  

The status of this explanation of ‘the number of Fs’ is one of the 
major open problems with which Frege’s philosophy of arithmetic leaves 
us. It is worth emphasizing, however, that the problem is more general 
than whether it provides us with a purely logical route to an apprehension 
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of numbers. Frege’s idea is that a capacity for reference to abstract 
objects can, in general, be explained in these sorts of terms. Thus, he 
thinks, our capacity to refer to directions can be explained in terms of our 
understanding of names of directions, these in turn explained by means 
of a principle analogous to Hume’s Principle, namely:  

 
the direction of the line a is the same as the direction of the line b if, and 
only if, a is parallel to b . 

 
This does not promise a purely logical route to an apprehension of 
directions, on Frege’s view, since lines are given to us only in intuition. 
But that does not matter: the directions of lines are not given in intuition 
(or so he claims), and so there is a corresponding problem about how 
they are given to us, a problem to which he offers a corresponding 
solution (see Gl §§64-5). This sort of answer to the question how we are 
to explain our capacity to refer to abstract objects thus generalizes in a 
natural way, and the exploration of its strengths and weaknesses has 
occupied a number of philosophers in recent years.9

Oddly enough, however, Frege ultimately rejects the claim that 
Hume’s Principle does suffice to explain names of numbers. The stated 
reason is that the definition ‘will not decide for us whether [Julius Caesar] 
is the same as the [number of Roman emperors] – if I may be forgiven 
an example which looks nonsensical’.10 Hume’s Principle tells us what 
statements of the form ‘the number of Fs is the same as the number of 
Gs’ mean; but it utterly fails to tell us what statements of the form ‘q is the 
number of Gs’ mean, except when ‘q’ is of the form ‘the number of Gs’ 

                                                 
9 See Wright, 1983; Hale, 1988.  
10 Frege is actually discussing the definition of directions here, but it is clear 

that it is meant to apply, mutatis mutandis, to the case of numbers and Hume’s 
Principle.  
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(see Gl §66). It is far from obvious, though, why this is supposed to be a 
problem. I myself have come to the conclusion that it is not one 
problem, but many. First of all, as Frege notes, we do not seem to be in 
any doubt about Caesar: whatever numbers might be, he’s not one of 
them; a fortiori he’s not the number of Roman emperors. And it’s hard to 
see what the basis of this knowledge could be, if it was not somehow 
contained in our understanding of names of numbers. (It isn’t an empirical 
fact that Caesar isn’t a number!) But if it is, then the offered explanation 
of names of numbers must, at least, be incomplete, since it does not 
capture this element of our understanding of them.  

The second worry can be seen as arising out of this one. When I 
said above that Caesar is not a number, I used the concept of number: if 
we understood the concept of number, it would be easy to answer the 
question whether some object, call it a, is the number of Fs. For either a 
is a number or it is not. If it is not, it certainly isn’t the number of Fs; 
and, if it is, then it’s the number of Gs, for some G, so Hume’s Principle 
will tell us if it is the number of Fs. Moreover, it seems clear that what 
Frege needs to explain is not just our capacity to refer to individual 
numbers, but our understanding of the concept of number itself. Given 
Hume’s Principle, the natural way to try to do so is to say that something 
is a number if there is a concept whose number it is. But if we spell that 
out, we find that what we have said is that a is a number if, and only if, 
there is a concept F such that a is the number of Fs. And as said, Hume’s 
Principle simply fails to explain what ‘a is the number of Fs’ is supposed 
to mean: so, unless there is some other way to define the concept of 
number, we will be without any understanding even of what it means to 
say that Caesar is not a number.  

All of this having been said, I think we can now begin to see what 
the problem with Hume’s Principle – considered as a definition or 
explanation of names of numbers – is supposed to be. The object, recall, 
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was to explain our cognitive access to numbers by explaining our 
capacity to refer to them; and to do that by defining, or explaining, 
names of numbers in purely logical terms. But now consider Hume’s 
Principle again 

the number of Fs is the same as the number of Gs if, and only if, the Fs 
and the Gs are equinumerous 

and focus especially on its lefthand side. This looks like an identity-
statement: but what reason have we to think it really is one? Why think 
that ‘the number of Fs’, as it occurs here, is a proper name at all? that is, 
that the sentence has the semantic, as opposed simply to orthographic, 
structure of an identity-statement? Why not say instead that ‘the number 
of Fs is the same as the number of Gs’ is just an incredibly misleading 
way of writing ‘the Fs and the Gs are equinumerous’? If, in fact, the 
sentence did have the semantic structure of an identity-statement, it 
would have to be legitimate to replace ‘the number of Fs’ with names of 
other kinds, for example, ‘Caesar’, and so to consider such sentences as 
‘Caesar is the number of Gs’. Or again, it must be permissible to replace 
‘the number of Fs’ with a variable and so to consider such ‘open’ 
sentences as ‘x is the number of Gs’, and to ask whether they are true or 
false when the variable takes various objects, e.g. Caesar, as its value. But 
what the above observations show is that Hume’s Principle, on its own, 
simply does not explain what sentences like this are supposed to mean. 
And that calls into doubt whether it really does explain identity-statements 
containing names of numbers.  

This problem is of particular importance within Frege’s 
philosophy. I mentioned earlier that one of his central goals is to explain 
the genesis of our knowledge that there are infinitely many numbers, that 
one of his central reasons for insisting that numbers are objects is that 
only then can this claim be proven. Frege’s strategy for proving it is to 
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argue thus: let 0 be the number belonging to the concept object which is not 
the same as itself; it is clear enough that 0 is indeed that number. Let 1 be 
the number belonging to the concept object identical with 0; 2, the number 
belonging to the concept object identical with either 0 or 1; and so forth. 
Again, it is clear enough that 1 and 2 are indeed these numbers; and only 
if we treat numbers as objects can we speak of such concepts as these. 
But, when we formalize Frege’s argument within second-order logic, the 
expression ‘the number belonging to the concept F’ will be cashed as: 
the number of x such that x is an F. And thus, the definitions of 0, 1, and 
2 become:  

0 is the number of x such that x≠x  
1 is the number of x such that x=0  
2 is the number of x such that x=0 or x=1  

And so forth. And when we replace ‘0’ with its definition in the second 
line, we get:  

1 is the number of x such that: 
x = the number of y such that y≠y 

So Frege’s definition of 1 contains an open sentence of the form ‘x is the 
number of Fs’ – precisely the sort of sentence Hume’s Principle is 
impotent to explain.  

It is a nice question – a question which has been the focus of 
much research in recent years – whether there is a way around this 
problem. For present purposes, however, let me just record it. For, 
whatever its ultimate resolution, Frege himself declared it insoluble and 
so abandoned the attempt to use Hume’s Principle as an explanation of 
names of numbers. In its place, he installs an explicit definition of names 
of numbers: 
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the number belonging to the concept F is:  
the extension of the concept concept equinumerous with the concept F.  

 
Extensions here can be thought of as sets: the number of Fs is thus the 
set of all concepts which are equinumerous with the concept F. So 0 will 
turn out to be the set of all concepts under which nothing falls; 1, the set 
of all ‘singly instantiated’ concepts; 2, the set of all ‘doubly instantiated’ 
concepts; and so on and so forth.  

This move, however, turned out to be disastrous. In order to give 
this definition within his formal system of logic, Frege requires some 
axioms which tell us what we need to know about the extensions of 
concepts. And, if Logicism is to be established, the axioms need, at least 
plausibly, to be logical truths. There is an eminently natural axiom to 
hand. Talk of the ‘extensions’ of concepts is governed by a principle of 
extensionality, that the concepts F and G will have the same extension 
only if every F is a G and every G is an F – if, that is to say, the Fs just 
are the Gs. And surely, one might say, every concept must have an 
extension. So the necessary axiom can be taken to be the following:  
 

the extension of the concept F is the same as the extension of the concept G iff 
every F is a G and every G is an F. 

 
Taken as a definition or explanation of names of extensions, this principle 
would suffer from problems similar to those afflicting Hume’s Principle. 
Frege therefore does not so take it, but regards it as an axiom, saying in 
Die Grundlagen, simply that he ‘assume[s] it known what the extension of 
a concept is’ (Gl §68 note).  

Unfortunately, however, this axiom, which in Grundgesetze 
becomes Frege’s Axiom V, suffers from far greater problems of its own: 
in the context of full second-order logic, it is inconsistent since, as Russell 

Manuscrito – Rev. Int. Fil., Campinas, v. 26, n. 2, pp. 471-503, jul.-dez. 2003.  



RICHARD HECK 492 

showed, paradox arises when we consider the concept object which does not 
fall under any concept whose extension it is and ask whether its extension falls 
under it. If it does, it doesn’t; and if it doesn’t, it does. Whoops.  

 
5. FREGE’S THEOREM  

Before 1983, the story would have ended here. Frege does show 
that, given Axiom V and the definition of numbers as extensions of 
certain concepts, the axioms of arithmetic can all be proven. But this fact 
is uninteresting, since anything can be proven in an inconsistent theory. 
The axioms of arithmetic can be proven, but then so can their negations! 
A closer look at the structure of Frege’s proofs reveals something 
interesting, however. Although Frege abandons Hume’s Principle as a 
definition of names of numbers, he does not abandon it entirely – he 
continues to assign it a central role within his philosophy (see Gl §107). 
Frege is not entirely explicit about why, but the reason seems, to me 
anyway, to be that he did not regard Hume’s Principle as wrong, but as 
incomplete. The concept of number really is, according to Frege, 
intimately bound up with the notion of one-one correlation; but one can 
not use this observation to define names of numbers via Hume’s Principle. 
Still, any acceptable definition must be compatible with Hume’s 
Principle, must yield it as a relatively immediate consequence. 
Completing the definition then takes the form of providing an explicit 
definition from which Hume’s Principle can be recovered. And, indeed, 
the very first thing Frege proves, once his explicit definition has been 
given, is that Hume’s Principle follows from it.  

It was Charles Parsons who first observed, in his paper ‘‘Frege’s 
Theory of Number’’,11 that, once Frege has proven Hume’s Principle, the 

                                                 
11 Parsons, 1995. 
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explicit definition quietly drops out of sight – and, with it, all further 
references to extensions in Frege’s proof. That is to say, the proof 
proceeds in two quite separate stages: first, there is a proof of Hume’s 
Principle from Axiom V and the definition of names of numbers in 
terms of extensions; and then, there is a proof of the axioms of 
arithmetic from Hume’s Principle within pure second-order logic. The 
observation did not cause much of a stir, however, for no special interest 
would attach to it unless Hume’s Principle were, unlike Axiom V, 
consistent with second-order logic, and Parsons did not so much as raise 
the question whether it is.  

Almost twenty years later, Crispin Wright re-discovered what 
Parsons had observed and showed in detail how the axioms of arithmetic 
can be derived from Hume’s Principle in second order logic.12 He also 
showed that an attempt to replicate Russell’s paradox within the new 
system fails – and he conjectured that the new theory was in fact 
consistent. Once formulated, the conjecture was quickly proved.13 Call 
the second-order theory whose sole ‘non-logical’ axiom is Hume’s 
Principle Frege Arithmetic. Then it can be shown that Frege Arithmetic is 
consistent, if second-order arithmetic is; that is, if Frege Arithmetic is 
inconsistent, so is second-order arithmetic. But if second-order 
arithmetic were ever shown to be inconsistent, that would precipitate a 
crisis in the foundations of mathematics that would make the discovery 
of Russell’s paradox look trivial by comparison. So Frege Arithmetic is 
(almost certainly) consistent. And second-order arithmetic can be interpreted 
within it: given appropriate definitions, one really can prove the axioms of 
arithmetic from Hume’s Principle, in second-order logic. Let me say that 
again: All truths of arithmetic follow logically from the principle – seemingly 

                                                 
12 In Wright, 1983. 
13 For a proof, see the second Appendix to Boolos and Heck, 1997.  
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obvious, once one understands it – that the number of Fs is the same as 
the number of Gs if and only if the Fs are in one-one correspondence 
with the Gs. It is this surprising and beautiful theorem that is now called 
Frege’s Theorem. And study of the detailed, formal proof Frege gives of 
the axioms of arithmetic in Grundgesetze has shown that, charitably read, it 
does indeed amount to a proof of Frege’s Theorem.14

How is Frege’s Theorem proven? It would be inappropriate to 
give a complete proof of it here, but it is worth giving the reader some 
sense of how the proof goes. Let us write ‘#x:Fx’ to mean ‘the number 
of x such that x is an F’; let ‘Eqx(Fx, Gx)’ abbreviate the formula which 
defines ‘the Fs are equinumerous with the Gs’. Then Hume’s Principle 
can be written:  
 

#x:Fx = #x:Gx iff Eqx(Fx, Gx) 
 
Frege then defines zero as the number of the concept non-self-identical:  

 
0 =df #x:x≠x . 

 
We also need to define ‘increase by one’. What Frege actually defines is a 
relation between numbers which we may call the relation of predecession: 
intuitively, a number m is one less than a number n if, so to speak, a 
concept has the number m whenever it is one object short of being a 
concept which has the number n. That is, m (immediately) precedes n just 
in case there is a concept F and an object y such that: the number of Fs is 
n; y is an F; and the number of Fs, other than y, is m. (Compare the 
definition of ‘n+1’ considered in section 3.) Formally, Frege defines:  

                                                 
14 See Heck, 1993; and also, the same paper, with a postscript, in 

Demopoulos (ed.), 1995.  
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Pmn ≡df ∃F ∃y[n = #x:Fx & Fy & m = #x:(Fx & x≠y)] 
 
Now, among the axioms of arithmetic will be the following three claims: 
that zero has no predecessor; that no number has more than one 
predecessor; and that no number has more than one successor. All of 
these are now easily proven.  

Consider the first, for example. Suppose that zero did have a 
predecessor, that is, that, for some m, we had Pm0. Then, by definition, 
there would be a concept F and an object y such that:  

0 = #x:Fx & Fy & m = #x:(Fx & x≠y) 

That is to say, 0 is the number of Fs, y is an F, and m is the number of Fs, 
other than y. A fortiori, there is a concept F, whose number is 0, under 
which some object falls. But that is impossible. For 0 is the number of the 
concept non-self-identical and so, if 0 is the number of Fs, the number of Fs 
is the same as the number of non-self-identical things; and so, by 
Hume’s Principle, there must be a way of correlating the non-self-
identical things one-to-one with the Fs. But that there can not be, if 
something, say y, is an F: which non-self-identical thing is y supposed to 
be correlated with? So nothing precedes zero. The proofs of the other 
two axioms mentioned are a little harder, but not much.  

There are two more axioms which need to be proven; these 
axioms make crucial reference to the notion of a natural (or finite) number, 
and that has not yet been defined. One of the two axioms is the principle 
of mathematical induction. Induction is a method for proving that all 
natural numbers have some particular property: the method is to show (i) 
that 0 has the property, and then to show (ii) that, if a given number n 
has it, then, its successor, n+1 must also have it. Why, intuitively, does 
the method work? Well, suppose that both (i) and (ii) hold. Then, 
certainly, 0 has the property. And so, by (ii), 0+1, i.e, 1, must also have it; 
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hence, by (ii) again, 1+1, i.e., 2 has it; so 3 has it; and so on. So, all natural 
numbers have it, because all natural numbers can be ‘reached’ from 0 by adding 
one.  

Frege’s definition of natural number in effect transforms the 
italicized clause into a definition. Here is something we know about the 
concept natural number: (i’) 0 falls under it; and, (ii’) whenever an object 
falls under it, so does the successor of that object (if it has one). Now, 
there are lots of concepts which satisfy conditions (i’) and (ii’): for example, 
the concept is self-identical satisfies them, since every object falls under it. But 
not every concept satisfies the conditions: the concept is identical with zero 
does not, since 1 is the successor of 0 and does not fall under the concept, 
whence it fails to satisfy (ii’). So some concepts satisfy (i’) and (ii’) and 
some do not: call a concept inductive if it does. What can we say about the 
inductive concepts? Well, if a concept is inductive, surely every natural 
number must fall under it: 0 will, by (i’); so 1 will, by (ii’); and so on. Or, to 
put the point differently, if there is an inductive concept under which a 
does not fall, a is not a natural number. Conversely, if a is not a natural 
number, then there is an inductive concept under which it does not fall: 
namely, the concept natural number itself. So a is not a natural number if, 
and only if, there is an inductive concept under which it does not fall. Or, 
negating both sides of this claim:  

 
a is a natural number if, and only if, it falls under every inductive concept. 

 
And that, now, can be taken as a definition. Note that it will just  fall out of 
the definition that proof by induction if valid: for             if the 
hypotheses of the induction, (i) and (ii), are satisfied, then    the property 
in question is inductive; so every natural number will have it.  

One might worry that there is some kind of circularity in the last 
paragraph. It is important to realize, however, that any circularity there 
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might be here does not lie in Frege’s definition. We can say what an 
inductive concept is without appealing to the concept of natural number. 
Formally, we have:  

 
Nat(a) ≡df ∀F[F0 & ∀x∀y(Fx & Pxy → Fy) → Fa] 

 
Whatever circularity there might be lies, rather, in the argument used to 
motivate the definition, that is, in the argument given for the claim that it 
properly defines the concept natural number – and that sort of objection, as I 
said earlier, is in order here, since Frege does need for his definitions to 
capture the meanings of the primitive arithmetical notions. This sort of 
objection was originally pressed by Henri Poincare, but has in recent 
years been developed by Charles Parsons.15 Let me not discuss it further, 
however, except to say that it is bound up with the concerns about 
impredicativity mentioned earlier in connection with the comprehension 
axioms for second-order logic.  

The only axiom for arithmetic which we have not discussed is the 
most important: that every natural number has a successor. The axioms 
so far established do not, on their own, imply that there are infinitely 
many numbers; in fact, they are consistent with there being only one 
number, namely, zero. In their presence, however, the claim that every 
number has a successor implies that there are infinitely many numbers: 
for then, 0 will have a successor, call it 1, from which it must be distinct; 
if 0 were 1, then 0 would precede itself, so 0 would have a predecessor, 
which it does not. But then 1 has a successor, call it 2; and 2 must be 
distinct from 0 (if not, 0 would again have a predecessor, namely, 1) and 
from 1 (otherwise 1 would precede itself and 0 would also precede it, 
contradicting the fact that no number has more than one predecessor). 

                                                 
15 See, for example, Parsons, 1995. 
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And then 2 will have a successor, call it 3, which will be distinct from 0, 
1, and 2; and so on. 

How, then, are we to prove that every number does have a 
successor? Frege’s argument is far too complex for me to explain it in 
detail here, but the basic idea behind it has been mentioned above. 
Basically, we are to take the successor of 0, 1, to be #x:x=0; the successor 
of 1, 2, to be #x:(x=0 ∨ x=1); and so forth. So, in general, the successor 
of a number n will be the number of x such that x is either 0 or 1 or ... or 
n. The argument can be made rigorous, and it can be shown to work.  
 
6. CLOSING: THE PHILOSOPHICAL SIGNIFICANCE OF FREGE’S 

THEOREM  

So, Frege’s Theorem shows that the axioms of arithmetic can be 
proven, in second-order logic, from Hume’s Principle. What are we to 
make of this fact, philosophically? Does it show that Logicism is true? 
Not, presumably, if Logicism is the claim that the truths of arithmetic are 
truths of logic, for there is no good reason to suppose that Hume’s 
Principle is itself a truth of logic. Indeed, given how the notion of logical 
truth tends to be understood in contemporary philosophy, so that a truth 
of logic is something true in all interpretations, Hume’s Principle has just 
been proven not to be a truth of logic, since it is not true in any 
interpretation whose domain is finite.  

Still, though, one might think that Hume’s Principle is, even if not 
a truth of logic, at least of a similar epistemological status. Wright 
suggests, for example, that it can, and should, be understood, as 
embodying an explanation of names of numbers – or, to put the point less 
technically, that we can come to know that it is true simply by reflecting 
upon what number-words mean. If, in that sense, it is analytic of the 
concept of number, then the axioms of arithmetic turn out to follow 
from a Principle which is analytic, in an extended sense, and that would 
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seem enough to satisfy Frege’s epistemological ambitions. And if that is 
not Logicism, surely it is rightful heir to the name.  

This view has been the subject of a great deal of discussion over 
the last several years or so. The problems it faces may be divided into 
two groups: the Caesar problem and the ‘bad company’ objection. 
Enough has already been said about the former above: the Caesar 
objection, as was said, purports to show that Hume’s Principle can not be 
taken as an explanation of names of numbers. But let me not discuss it 
further here.  

The ‘bad company’ objection is so-called because it has the 
following form. Even though Hume’s Principle is not itself inconsistent, it 
is of a form which can give rise to inconsistency. For example, Axiom V 
is, as was said earlier, inconsistent, and the two principles are both of the 
form:  

 
the blah of F is the same as the blah of G iff 
the Fs so-and-so the Gs 

 
where ‘so-and-so’ stands for some relation between concepts which is, in 
technical parlance, an equivalence relation (that is, which has the formal 
properties necessary to guarantee that the definition will not contradict 
the laws of identity). Now, one might well say, what’s the problem? To 
quote Michael Jackson, ‘‘One bad apple don’t spoil the whole bunch of 
girls’’.– But still, if there are problems that affect claims formally similar 
to a given one, then, even if they do not themselves affect the given 
claim, it is natural to suspect that those problems will, upon closer 
examination, be seen to be manifestations of deeper problems that do 
affect the given one.  

One way to develop this objection is as follows. The claim that 
Hume’s Principle is true is one that commits us, minimally, to its 
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consistency; it is hard to see how we can claim to know it to be true 
unless we are also prepared to claim that we know it to be consistent. Not 
that we do not know this: we do, as surely as we know much else we 
claim to know in mathematics. But the proof that it is consistent is one 
that can be formalized only within an exceptionally strong mathematical 
theory, one (by Gödel’s theorem) essentially stronger than Frege 
Arithmetic (or second-order arithmetic) itself. And it seems to be asking 
us to swallow a lot to suppose that we can come to know anything like 
that simply by reflecting upon the concept of number.  

This objection, however, is difficult to evaluate. For one thing, 
anyone attracted to the claim that arithmetic is analytic is already asking 
us to swallow a lot. The argument would seem to show, at best, that 
Wright ought to claim not just that we know Hume’s Principle to be 
true, but that we know it to be consistent, which is more. And what’s a 
little more? Moreover, there are worries about the form of argument that 
was deployed in the last paragraph: it appears to be of a sort that drives 
many kinds of sceptical arguments. Compare: if I know that there is a 
computer on my desk, then I must also know that there is an external 
world. Is it supposed to follow that my claim to know that there is a 
computer on my desk, as it were, depends upon my knowing antecedently 
that there is an external world? If so, we’re in trouble, because it is hard 
to see how, if I suspend belief in all my particular items of knowledge 
about the world – i.e., subject that knowledge to Cartesian doubt – I 
could ever recover my senses. And it is a now familiar move in 
epistemology to deny that, just because some claim A implies some 
other claim B, a claim to know A must be supported by a claim to know B: 
we may well know that B because we know that A, and not conversely. 
But then a similar move would appear to be available in this case: to 
grant that, if we know that Hume’s Principle is true, we know it is 
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consistent, but to deny that our claim to know that it is true need rest 
upon independent knowledge of its consistency.  

However good this response might be, though, there are other 
worries. If the view is supposed to be that every consistent principle of the 
general form mentioned above is ‘analytic’, it is refutable. Principles of 
that form are a dime a dozen. And some of the consistent ones are 
inconsistent with each other. Thus, for example, it is possible to write down 
such principles which, though consistent, imply that there are only 
finitely many objects. Since Hume’s Principle implies that there are 
infinitely many objects, it is inconsistent with these ones. Worse, choose 
any proposition you like: it is possible to write down a principle of the 
form mentioned above which implies it; and, by the same token, it is 
possible to write down another which implies its negation.16 So not all 
consistent such principles can even be true, let alone analytically true. 
What is needed, then, is some way of distinguishing the ‘good’ principles 
from the ‘bad’ ones. But this problem has only begun to be studied, and 
it is not yet clear whether success is to be had. Even if it is, the question 
will remain whether there is any ground on which to claim that the good 
ones are all analytic.17  

It is worth saying, however, that one should not over-emphasize 
the importance of this question. Let it be granted that Hume’s Principle 
is not analytic. It might nonetheless be that it has a role to play in a story 
about the genesis, or foundation, of our knowledge of the truths of 
arithmetic. The Principle does, after all, have powerful intuitive appeal, 
and the claim that it is, in some deep sense, integral to our understanding 
of the concept of number that concepts have the same number if, and 

                                                 
16 See Heck, 1992.  
17 See Wright, 1997; Boolos, 1997.  
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only if, they are equinumerous could be true, even if it is not true that 
Hume’s Principle is analytic, in any sense that will rescue Frege.  
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