
Manuscrito, 2002. Published by the Center for Logic, Epistemology and History of 
Science, (CLE/UNICAMP), State University of Campinas, P.O. Box 6133, 13081-970 
Campinas, SP, Brazil. 

CDD: 160 

 
ON A LOGIC FOR ‘ALMOST ALL’ AND ‘GENERIC’ 

REASONING1 
 
PAULO A. S. VELOSO2 
 
Progr. Eng. Sistemas e Computação, COPPE  
Instituto de Matemática, UFRJ 
RIO DE JANEIRO, RJ 
BRASIL 

veloso@cos.ufrj.br 
 

 
Abstract: Some arguments use ‘generic’, or ‘typical’, objects. An explanation for 
(some aspects of) this idea in terms of ‘almost all’ is suggested. The intuition of 
‘almost all’ as ‘but for a few exceptions’ is rendered precise by means of ultrafilters. 
A logical system, with generalized quantifiers for ‘almost all’, is proposed as a basis 
for generic reasoning. This logic is monotonic, has a simple sound and complete 
deductive calculus, and is a conservative extension of classical first-order logic, with 
which it shares several properties. For generic reasoning, generic individuals are 
introduced and internalized as generic constants, thereby producing conservative 
extensions where one can reason about generic objects as intended. A many-sorted 
version of this logic is introduced to handle distinct notions of ‘large’ subsets. Other 
possible applications for this logic are indicated. 
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1 INTRODUCTION 

The work examines a logical system with a generalized 
quantifier, whose intended interpretation is ‘almost all’. The primary 
motivation is a qualitative approach to notions such as ‘all but a few’ 
and ‘very few’. The intuition of ‘almost all’ as ‘but for a few exceptions’ 
is rendered precise by means of ultrafilters. 

This ultrafilter logic is monotonic, has a simple sound and 
complete deductive system, and is a conservative extension of classical 
first-order logic, with which it shares several properties. For generic 
reasoning, generic individuals are introduced and internalized as 
generic constants, thereby producing conservative extensions where 
one can reason about generic objects as intended. A sorted version of 
this logic is introduced to handle distinct notions of ‘large’ subsets. 
Other possible applications for this logic are indicated. 

The familiar “Tweety example” (Reiter (1980)) may be used to 
convey the main ideas underlying our approach. Consider the 
assertions 

(1) “Birds ‘generally’ fly”; 
(2) “Tweety is a ‘typical’ bird”. 
We wish to express such assertions and reason about them in a 

formal manner. For the moment, let us concentrate on the first 
assertion. 

One usually understands “Birds ‘generally’ fly” as “All birds, but 
for ‘a few’ exceptions, fly”. The paraphrase of the former by “Almost 
all birds fly” and of the latter by “Very few birds do not fly” suggests 
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explicating ‘almost all’ in terms of ‘very few’ or having a ‘negligible’ set 
of exceptions. 

Considering a unary predicate F on a universe B of birds, we can 
express “All birds fly” [by  x F(x)] or “Some birds fly” [by  x F(x)] 
with the apparatus of classical first-order logic. To express such ‘most’ 
assertions formally, we introduce the new operator , to express 
“Almost all birds fly” by  x F(x). 

To give a precise meaning to ‘almost all’ assertions such as             
x F(x), we extend the usual notions by providing a family U of ‘large’ 
sets and stipulate that x F(x) means that the set {bB : F(b)} is in the 
family U as a rigorous counterpart for “the set of flying birds is large”. 

To reason about such ‘most’ assertions in a formal manner, we 
will set up a deductive system, extending the classical first-order 
predicate calculus. 

As for the second assertion, we shall later suggest how to 
express being ‘typical’. The idea is using ‘almost all’ to explain ‘typical’ 
and ‘generic’. The desideratum is then being able to conclude the 
following assertion 

(3) “Tweety does fly”. 
Ultrafilter logic is related to default logic (Reiter (1980)) and its 

variants (Antoniou (1997); Besnard (1989); Brewka (1991); Lukaziewicz 
(1990); Marek and Truszczynski (1993)) (as well as to belief revision 
(Gärdenfors (1988); Makinson and Gärdenfors (1991))). Indeed, they 
do have a large intersection in terms of applications, as indicated by 
benchmark examples, which was one of its motivations (Carnielli and 
Sette (1994); Schlechta (1995)). But, they are quite different logical 
systems, both technically and in terms of intended interpretation 
(Carnielli and Veloso (1997)). 

Concerning technical aspects, ultrafilter logic is, as we shall see, 
monotonic and a conservative extension of classical first-order logic, in 
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sharp contrast with the nonmonotonic nature of the approaches via 
defaults.  

As for intended interpretation, one can perhaps phrase the 
difference in terms of positive and negative views (Sette, Carnielli and 
Veloso (1999)). Our approach favors a positive view, in the sense that 
we wish to express assertions such as (1) and (2). The default approach 
takes a negative view in the sense of interpreting such assertions as ‘in 
the absence of information to the contrary’. 

As a logic with generalized quantifiers, ultrafilter logic is 
connected to such extensions of first-order logic (Barwise and 
Feferman (1985); Keisler (1970)). It is also related to the tradition of 
analysis and formalization of language (Frege (1879); Tarski (1936); 
Church (1956)). 

In the sequel, we first indicate some plausible motivation for the 
idea of giving precise counterparts for ‘almost all’ and ‘almost none’ in 
terms of (very) large and (very) small sets, respectively. This will 
provide the basis for interpreting our generalized quantifier. We then 
set up, both semantically and axiomatically, a logical system based on 
this idea. This system, shown to be sound and complete, proves to be a 
conservative extension of classical first-order logic. We then introduce 
the ideas of ‘typical’ and ‘generic’, examine some of its properties, and 
show how one can reason correctly about them within our formalism. 
We also indicate the desirability of having several notions of ‘large’ and 
how this can be simply formulated in a many-sorted version of our 
ultrafilter logic. We finally comment on some perspectives and 
directions for further work, specifically some interesting connections 
with fuzzy logic and inductive and empirical reasoning, which suggest 
the possibility of other applications for our ultrafilter logic. 
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2 ON ‘ALMOST ALL’ AND ‘VERY FEW’ 

We will now motivate and outline our approach to making 
precise the notion of ‘almost all’. Towards this goal, we will introduce 
some precise counterparts for ‘almost all’ and ‘almost none’ in terms of 
(very) large and (very) small sets, respectively, indicating their 
plausibility. 

Returning to our initial example, recall that we propose to 
explicate “Birds ‘generally’ fly” as “The set F = {bB : F(b)} of flying 
birds is (very) large”. For this purpose, we need a precise account of 
the notion of ‘(very) large’. 

But, the complement Fc = {bB : ¬ F(b)} is the set of non-
flying birds, which may be regarded as the set of exceptions. This idea 
suggests the basic intuition: F  B is ‘(very) large’ exactly when the set 
Fc of exceptions is ‘(very) small’. We thus require a rigorous notion of 
‘(very) small’ or ‘tiny’. 

We view a ‘tiny’ set X as one that is ‘negligible’ with respect to 
the universe, in the sense of being practically empty: X. We wish a 
precise and qualitative account of this notion. 

Some – reasonable – criteria for subsets of a universe S to be 
considered tiny, or negligible with respect to S, are as follows: 

() the empty set  is tiny {}; 

() X is tiny, if XY and Y is tiny {X if XY and Y}; 

() XY is tiny, if both X and Y are tiny {XY if XY}. 

A family I of subsets of S satisfying these three properties 
forms what is called an ideal over S (Halmos (1972)). Some examples 
are the family (S) of the finite subsets of a universe S and families 
of unlikely subsets as those with measure (or probability) 0.  



PAULO A. S. VELOSO 

Manuscrito, 2002.                                                              XXV(1), pp. 191-271, April. 

196 

S

∅

I

 
Figure 2.1. Ideal of  ‘(very) small’ subsets of universe S 

These criteria suggest that a family of tiny subsets of a universe 
forms an ideal over the universe. Now, we do not wish to add features 
that may unduly restrict applicability. So, in the absence of other 
reasonable criteria on (very) small subsets and for the purpose of 
generality, we also adopt the converse view: any ideal is such a family, 
providing a notion of tiny subsets of a universe. As a net result, we 
propose taking the mathematical concept of ideal over a set as precise 
counterpart for the intuitive, and somewhat vague, idea of “(very) small 
subsets of a universe”. 

The dual idea is that of a ‘(very) large’, or simply ‘huge’, set as 
one almost as large as the universe.  

Complementation gives reasonable criteria for subsets of a 
universe S to be considered (very) large or huge. 

 
(S) the universe S is huge {SS}; 

 
() X is huge, if XY and Y is huge {XS if XY and YS}; 

 
() XY is huge, if both X and Y are huge {XYS if XSY}. 
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An intuitive way of understanding these criteria is by viewing a 
huge subset as one that has all the ‘typical’ elements of the universe 3. 

As a family F of subsets of S with these three properties is a 
filter over S (Halmos (1972)), these criteria suggest that a notion of 
(very) large subsets of a universe is provided by a filter over the 
universe. 

 

S

∅

F

 
Figure 2.2: Filter of ‘(very) large’ subsets of universe S 

 

To summarize, over a given universe S, a notion of (very) large 
subsets can be provided by means of a filter F giving the huge subsets 
(with XS) or by an ideal T giving the tiny subsets (with   Y  ). In 
such case, we can use either the set F = {b ε B : F(b)} of flying birds 
or the set Fc = {b ε B: F(b)} of non-flying birds, to interpret “Birds 
‘generally’ fly” as 

 

                                                 
3 This intuitive interpretation was suggested by Hans Kamp during the 

discussion following the presentation at IMLLAI'98, Fortaleza, July 1998. 
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(F) The set of flying birds is (very) large {FS, i. e. FεF}, 
 

(I ) The set of non-flying birds is (very) small {Fc, i. e. FcεI }. 
Finally, we wish to have a decisive criterion for ‘large’ subsets. 

For this purpose, we will also require: 
 
( c ) X is ‘large’ or Xc is ‘large’ {XS or XcS}. 
 
The net result is that a notion of ‘large’ subsets of a universe S is 

provided by a family U of subsets of S with the following properties: 
 

(S) the universe S is large {SU}; 
 

() X is large, if XY and Y is large {XεU if XY and YU}; 
 

() XY is large, if both X and Y are large {XYU if X, YU}; 
 

( c ) Xc is large or Xc is large’ {XcU if XU}. 
 
In other words, a family of large subsets of a universe S is a 

proper ultrafilter over S, which we shall generally call simply an ultrafilter.  
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 S 

∅

U 

 
Figure 2.3: Ultrafilter of ‘large’ subsets of universe S 

 
In general, there are many distinct (proper) ultrafilters over a 

given universe, each one providing a distinct notion of large. 
We recall that an ultrafilter U is a filter that is maximal with 

respect to inclusion (U =F for any filter U  F ) (Bell and Slomson 
(1971); Chang and Keisler (1973)). A proper ultrafilter is one with 
U(S). Also, A principal filter is one that F is generated by some 
element Xε(S) (F = {YS :XY}). So, a non-principal ultrafilter 
has no singleton. 

A collection F(S) is said to have fip (short for finite intersection 
property) when X1…Xn   for any finite family {X1,…,Xn} F. A 
collection F(S) has fip iff it can be extended to some (proper) 
ultrafilter over S. 

As examples of (non-principal) ultrafilters we mention the so-
called Fréchet ultrafilters, which have no finite subset of a given (infinite) 
set. 

Ultrafilters are also connected to a notion of measure in that 
what is outside an ultrafilter has ‘measure zero’. A basic intuition 
underlying our approach is what lies outside an ultrafilter is small. 
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Returning to the example of flying birds, we understand “Birds 
‘generally’ fly” as the set F = {bεB : F(b)} of flying birds is ‘large’, 
which we formulate as FεU. Thus, the set Fc = {bεB :  F(b)} of 
non-flying birds is ‘small’ (FcU), but not necessarily empty. So, 
exceptions (non-flying birds) may very well exist, but the appearance of 
such exceptions does not force belief revision. The fact that XεU 
implies XcU but not Xc= is the main reason why nonmonotonicity 
is not forced in this positive approach. 

One should bear in mind that we are proposing properties of 
large sets that describe the notion of “family of large sets” in an 
axiomatic manner, rather than defining a specific family of ‘large’ sets. 
The situation is much as in, say, Algebra, when one axiomatizes groups 
or vector spaces. 

A more pertinent analogy is, perhaps, with probability. 
Probability theory is more concerned with obtaining some probabilities 
from others, by means of properties, than with assigning probabilities 
to particular events. 

The role of our proposed logic is more clearly understood in 
such a setting. One expresses available knowledge by some axioms, 
giving in particular some connections among large sets. From these 
axioms one concludes other properties. In other words, we deal not 
with a particular notion of large sets, but rather with a class of such 
notions as embodied in the axioms expressing the pertinent 
knowledge. 

 
3 A LOGIC FOR ALMOST ALL 

Our logic for most adds to classical first-order logic a 
generalized quantifier , with intended interpretation ‘almost all’ and 
whose behavior will be seen to be intermediate between  and . We 
now examine this logic: syntax, semantics and axiomatics. 
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We consider a fixed signature (logical type)  with a repertoire 
of symbols for predicates, functions and constants. We also consider a 
denumerably infinite set V of new symbols for variables. We let L() 
be the usual first-order language (with equality ) of signature , closed 
under the propositional connectives, as well as under the quantifiers  
and . 

 
3.1 Syntax of  

We use L(ρ) for the extension of the usual first-order language 
L(ρ) obtained by adding the new operator . 

The formulas of L() are built by the usual formation rules and 
the following new variable-binding formation rule 

() for each variable vV, if  is a formula in L() then so is       
 v . 

Other usual syntactic notions, such as sentence, (free) 
substitution, etc., can be appropriately adapted. 

We shall also employ the following notations, for a formula  in 
L
 (): 

• occ() (fr()) for the set of variables with (free) occurrences in 
, 

•  (v/t) for the result of substituting term t for all the free 
occurrences of variable v in . 

When convenient and safe we may resort to a more informal 
notation for substitution: for a formula of the form (v) we write 
simply (t) for (v/t). 

As an example illustrating the expressive power of such 
languages, consider a binary predicate L (with L(x, y) standing for x 
loves y). 
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We can express some assertions by means of purely first-order 
sentences, e. g. “Everybody loves somebody” by x y L(x, y).  

Some assertions expressed by means of the quantifier  are as 
follows. 

 
– “Almost everybody loves somebody” by x y L(x, y). 
– “Somebody loves almost everybody” by x y L(x, y). 
– “Everybody loves almost everybody” by x y L(x, y). 
– “Almost everybody loves everybody” by x y L(x, y). 
– “People generally love each other” in the sense of “Almost 

everybody loves almost everybody” by xy L(x, y). 
 

3.2 Semantics of  

The semantic interpretation for our logic of ‘almost all’ is 
provided by extending the usual first-order definition of satisfaction to 
the new quantifier . For this purpose, we resort to ultrafilter 
structures: expansions of first-order structures by ultrafilters. 

An ultrafilter structure AU = (A, U) for signature  consists of a 
first-order structure A for signature  together with an ultrafilter U 
over the universe  of A. 

We extend the usual definition of satisfaction of a formula  in a 
structure under an assignment s :V to variables (AU �  [s]) as 
follows 

(� ) for a most formula v , we define AU � v  [s] iff the set 
{aΑ : AU � ϕ [s(v:=a)]} belongs to the ultrafilter U; 

where, as usual, s(v:=a) is the assignment agreeing with s on every 
variable but v, and s(v:=a)(v)=a. 
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Other familiar semantic notions, such as reduct, model 
(AU � Γ), ultrafilter consequence (Γ �  iff AU �  whenever AU � ), 
validity, etc. are as usual. 

As usual, satisfaction of a formula depends only on the 
meanings of its symbols. In particular, for a formula  of L(ρ) 
without ∇ (so in L(ρ)), AU � ϕ [s] iff A � ϕ [s]. Also, satisfaction of 
a formula hinges only on the values assigned to its free variables. So, 
for a formula ϕ with no free occurrence of variables other than 
v1,…,vm , we can employ the usual notation AU � ϕ [a1,…,am], for 
<a1,…,am >∈A

m. Such a formula defines an m-ary relation: 
 

A
U[ϕ] := {<a1,…,am >∈A

m : AU � ϕ [a1,…,am ]}. 
 

A convenient manner of presenting some ideas related to 
satisfaction is by means of extensions of formulas: projections of the 
defined relations. The extension of a formula ϕ of L∇(ρ) in structure 
A

U = (A, U) for signature ρ under an assignment s :V→A with 
respect to a variable v ∈V is the set: 

 

 

A
U[|v](s) := {aA : AU �  [s(v:=a)]}. 

 
These concepts for a formula  with free variables x and y under an 
assignment s:VA with s(x)=a are illustrated in the figure 3.1. 
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y

x
a

A
U
[ϕ]

A [ϕ|y]( s )
U

 
Figure 3.1: Formula  (x, y): relation defined and extension 

 
Since our definition of satisfaction extends the classical one, we 

have, e. g. 
 
A

U �  v  [s] iff, for some aA, AU �  [s(v:=a)]; 
 
which can be rephrased in terms of extensions as 

 

A
U � v [s] iff AU[|v](s)  . 

 
By the same token, the satisfaction condition for a most formula 

v  can be conveniently presented as 
 

A
U � v [s] iff AU[|v](s)U. 

 
To illustrate, consider the previous signature  consisting of   

the binary predicate L. An example of ultrafilter structure for signature 
 is the expansion 

� U = (
�
,U) of the first-order structure �

 = <N,≤> by an ultrafilter U over the naturals. As formula  take 
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L(x, y), which defines the relation ≤. We then have the following 
extensions � U[|x](s) = {aN : a ≤ s(y)} 
and  � U[|y](s) = {bN : s(x)≤ b}. 

 
In particular, for an assignment s:V→N with s(x)=0=s(y), we 

have � U[ϕ|x](s) = {0} and 
� U[|y](s) = N; 

 
thus, if {0}∉U, since N ∈∈∈∈ U, we have � U �  x [s] and 

� U �  y [s]. 
 
 

 

0 
1 2 m x 

y 

1 

2 

n 

{m ∈ N   :   m ≤ n} 

 

Figure 3.2: Extensions � U[L(x, y)|x](s) = {mN : m≤s(y)} 
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0

1
m x 

y

1

n

{n∈N  :  m ≤n}

 
 

Figure 3.3: Extensions � U[L(x, y)|y](s) = {n∈N : s(x)≤ n} 

 
In fact, if U is a Fréchet ultrafilter, having no finite subset, for 

any assignment s :V→N, we can see that (see figures 3.2 and 3.3) � U[ϕ|x](s)∉U (as {a∈N : a ≤ s (y)} is finite), � U[ϕ|y](s)∈ U (as {b∈N : s(x) ≤ b} is cofinite); 
 
and thus, we also have 

 
{b∈N : 

� U �  x  [s(y:=b)]} =  
and 

{aN : 
� U �  y  [s(x:=a)]} = N, 

 
which shows that 
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� U �  x y [s]. 

 
Indeed, this is in agreement with the intuitive reading of these 

sentences: 
 
– yx L(x,y) asserts “for most nN, the interval 

{mN : m≤n} is large”, which is false (since the interval 
{m∈N : m≤n} is large for no n∈N); 

 
– ∇x∇y L(x,y) asserts “for most m∈N, the interval {n ∈ 

N : m≤n} is large”, which is true (since the interval 
{n∈N : m ≤ n} is large for every n ∈ N). 

 
Thus, the atomic L(x,y) is an example of a formula  such that  �  yx x  y . 
This behavior of the new quantifier  contrasts sharply with the 

commutativities of the classical quantifiers  and , since �  yx xy  and �  yx xy. 

More positive examples of the behavior of new the quantifier  
are the following (interderivable) transfers over the classical quantifiers 
 and : � y x x y  and �  xy    y x . 
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 y 

x 

A [ ∃ y ϕ | x ]( s ) 
U 

A U
 
[ ϕ ] 

A [ ϕ | x ]( s ) 
U 

 

Figure 3.4: Illustration of transfer of  over  

As an illustration of the former, take formula  as L(x, y) and 
consider an ultrafilter structure AU = (A, U) for signature , where 
A = <A, R> with RA2.  

Each assignment s :VA with s(y)=b gives a subset of A: 
 

Rb := AU[L(x, y)|x](s) = {aA : <a,b>R}. 
 
The transfer of ∃ over  expresses the following property of the 

family {RbA : bA} of subsets of A: 
 

if RbU, for some bA, then so is the union bA Rb in U. 
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3.3 Axiomatics of  

We will now set up a deductive system for our logic by adding 
schemata coding properties of ultrafilters to a calculus for classical 
first-order logic. 

We will construct a deductive system for our logic as follows. 
 
– Consider a sound and complete deductive calculus for classical 

first-order logic, with Modus Ponens as the sole inference 
rule (and a set () of axiom schemata, as in, e. g. (Enderton 
(1972))). 

– Extend it by adding the set () consisting of all the 
generalizations of a set () of schemata. 

 
Thus, for a set  of sentences and a formula  in L(), we will have 
 

 �   iff () �  . 
 
As a clear consequence, we will have monotonicity of 

derivability � : 
If  �   then  � . 

We will take as set of schemata the union  () := () 
() ()() of four sets of schemata. We now indicate these 
four kinds of schemata. 

We first take some formulas corresponding to properties of 
ultrafilters. Consider the following sets of formulas of  L() 

 
() := { v v : L()}; 

() := {v   v   :  L()}; 
() := {(vv )v () : ,L()}. 
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Then, the following formulas are seen to be provable 
 

() vv                                    {from ()()}; 
() v () (vv )           {from ()  ()()}; 
() v↔v                               {from () () ()}; 
() v ()↔(v v )               {from () ()}; 
(↔) v (↔) ( v↔v )         {from ()}. 
 
As a result, we have substitutivity of equivalents: 

 
if  � ↔ then  �   v ↔v. 

 
We thus see that, within equivalence, the new quantifier  

provably 
 
– commutes with negation , 

and 
– distributes over the binary propositional connectives , ,  
and ↔. 

 
The preceding three schemata code some properties of ultra-

filters. For instance, in terms of extensions, schema (∧) expresses 
 

A
U[|v](s)  U, whenever AU[|v](s)  U 

and  
A

F[|v](s)  U; 
 
which (as AU[|v](s) = AU[|v](s) AF[|v](s)) corresponds to 
the intersection of v-extensions in U is still in U. 
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But, it does not cover the intersections of v-extensions with u-
extensions. 

So, we still need some axioms related to extensionality (Veloso 
(1999)). Consider also the following set of formulas of L() 

 
() := {vu  (v/u) :  L(),uocc()}. 

 
We now have our set (  ) := () ()  () () of 

schemata, and take all the generalizations of the formulas in () to 
form the set () of ultrafilter axiom schemata. 

Among the provable formulas we have 
 

()(xy  ) z [ (x/z)  (y/z)], for z  occ()     
{from () ()}; 

()v  ↔   u  (v/u), for u  occ()           {from () ()}. 
 
We thus obtain prenex forms, i.e. every formula  of L() is provably 
equivalent to one consisting of a prefix of quantifiers (, and ) 
followed by a quantifier-free matrix : �  ↔Q1v1 …Qkvk . 

Other usual deductive notions, such as (maximal) consistent 
sets, conservative extension, witnesses, etc. can be appropriately 
adapted. 

 
4 ULTRAFILTER LOGIC 

We shall now establish some properties of ultrafilter logic, 
namely soundness and completeness of the deductive system with 
respect to ultrafilter structures. 
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4.1 Soundness 

We first examine the soundness of our deductive system with 
respect to ultrafilter structure. As usual, soundness is easily established. 

Indeed, the axioms in  () code properties of ultrafilters, so 
they hold in all ultrafilter structures. 

Clearly, the axioms in () ()() code properties of 
ultrafilters, so they hold in every ultrafilter structure. As for (), if 
variable u does not occur in , we have equal extensions 
A

U[|v](s) = AU[ (v/u)|u](s). 
We thus have soundness of our deductive system with respect 

to ultrafilter consequence, since Modus Ponens preserves satisfaction. 
 
4.2 Deductive Properties 

For the proof of completeness, we will need some properties of 
our deductive system, which can be established as in classical first-
order logic. 

• Consider a set  {} of sentences and a formula  in L(). 
 

(1) (Deduction Theorem) If  {} �   then  �  . 
(2) (Witness) If fr(v)= for constant c not occurring in  

{}: { v   (v/c)} is a conservative extension of 
, i. e.  �    iff  { v  (v/c)}  �  . 

(3) Set  is consistent iff every finite subset of   is consistent. 
(4) Set {} is consistent iff  �  . 
(5) For a maximal consistent :   �   iff  �   . 

 

We thus have the extension of consistent sets to maximal consistent 
sets with witnesses. 
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• Consider a consistent set  of sentences in L(). 

(1) (Henkin) There exists a consistent extension  of  by (at 
most |L()|) new constants, where every existential 
sentence has a witness: if fr(v  )=, then  � v  
(v/c), for some constant c. 

(2) (Lindenbaum) There exists a maximal consistent extension  
of  (over the same language). 

 
4.3 Completeness 

We now examine the completeness of our deductive system 
with respect to ultrafilter structure. Completeness is usually harder, but 
we can adapt Henkin’s well-known proof for classical first-order logic 
(Henkin (1949)), by providing an adequate ultrafilter by means of 
witnesses. 

We proceed to outline how this can be done. 
Given a consistent set  in L(), extend it to a maximal 

consistent set  in L(  C), with witnesses in set C set of new 
constants for the existential sentences of L(C). Considering the set 
T of variable-free terms of L(C), form the canonical structure U, 
for signature C as usual. It has universe H := T/ where t’t” iff 
 �  t’t”. 

Henkin’s inductive proof establishes for a sentence  of 
language L(  C) 

 
U �  iff  � . 

 
In our case, we need an extra inductive step to deal with the new 

quantifier . This can be handled as follows. 
Use the provable most sentences to form the family of large 

subsets of H 
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 := { (v|)H :  �   v  , fr(v)=}; 
 
where (v|) is the set represented within  by formula  of L(C) 
with respect to a variable vV, in the sense 
 

 (v|) := {t/H :  �   (v/t)}. 
 

 

U 

Σ 
∇ 

Σ ( v | v ≡ v ) 

Σ ( v | ¬ v ≡ v )  

Figure 4.1: Ultrafilter extension U     
 

In view of our axioms, the family   (H) is closed under 
intersection (by () and ()) and   (by ()). Thus,   has 
fip and it can be extended to some (proper) ultrafilter U  (H). We 
use this ultrafilter to expand the canonical structure U to an ultrafilter 
structure U U := (U, U). 

We can now show, by induction, that for a sentence  of       
L
(  C) 

U
 U �  iff  � . 
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The inductive steps for the propositional connectives as well as 
for the classical quantifiers  and  are as in Henkin’s proof. 

Now, the inductive step for the new quantifier , namely 
 

U
 U �   v  iff  �   v , 

 
for a sentence v , follows from the crucial property (due to ()) 

 
 (v|) iff (v|)  U. 

 
We thus have a Löwenheim-Skolem Theorem for our logical 

system. 
 

Löwenheim-Skolem Theorem for ultrafilter logic  
Each consistent set  of sentences of L() has an ultrafilter 

model MU with cardinality at most that of its language, i.e.         
|M|≤| L(ρ)|. 

Hence, we have the desired result for ultrafilter logic. 
 

Completeness of  � ∇ with respect to �  
The deductive system � ∇ is complete with respect to ultrafilter 

consequence:  � ∇   iff   �  . 
 
4.4 Metamathematical Properties 

We now examine some metamathematical properties of ultra-
filter logic. 

We have a sound and complete deductive system for ultrafilter 
logic: 

• ultrafilter derivability is sound and complete with respect to 
ultrafilter consequence:  � ∇   iff   �  . 
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As usual, such a result transfers the finitary character of 
derivability � ∇ to the compactness of the semantical consequence  � .  

Thus, our logic is a proper extension of classical first-order logic 
with compactness and Löwenheim-Skolem properties. The apparent 
conflict with Lindström’s theorems (Lindström (1966)) (see, e. g. 
(Flum (1985))) is explained because we are using a non-standard notion 
of model (due to the ultrafilters in the models). This feature may 
confer to ultrafilter logic some independent model-theoretic interest. 

Since a first-order structure can be expanded by some ultrafilter 
over its universe, we have the pleasing fact that our ultrafilter logic is a 
conservative extension of classical first-order logic. 

 

Conservativeness of ultrafilter logic over classical logic 

Ultrafilter logic is a conservative extension of classical first-order 
logic, i. e., for each set   {}of sentences of L():  �  iff  �  . 

Also, as any nonempty set can be extended to some ultrafilter, 
the ‘almost all’ consequences of a pure first-order theory are the 
universal ones. 

 
Universality of ‘almost all’ consequences of first-order theory 

Given a set  of sentences of  L(), for every formula   of  
L():  �  v   iff  �   v  . 

This result corroborates the feeling that ‘almost all’ requires 
positive information, otherwise it reduces to ‘all’. This observation will 
become clearer in the context of generic reasoning, to which we now 
turn. 
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5 TYPICAL AND GENERIC 

We now wish to argue that our logic also supports a form of 
typical and generic reasoning, as in the familiar Tweety example, 
mentioned in the introduction. Namely, from the facts 

(1) “Birds ‘generally’ fly”; and 
(2) “Tweety is a ‘typical’ bird”; 

we wish to be able to conclude 
(3) “Tweety does fly”. 

 

5.1 Basic ideas 

Our approach to typical and generic reasoning involves two 
steps: 

– formulating ‘generally’ as ; and  
– regarding ‘typical’ and ‘generic’ as versions of ‘prototypical’. 

The former – formulating “birds ‘generally’ fly” as  x F(x) – 
looks quite natural, in view of our interpretation of   as ‘holding 
almost universally’. 

The latter – regarding ‘typical’ and ‘generic’ as versions of 
‘prototypical’ – may require some explanation. How should one picture 
a ‘prototypical’ bird: with or without wings, with or without beak?  

We propose to interpret a ‘typical’ bird as “a bird that exhibits 
the properties that almost all birds posses”, and ‘generic’ bird as “a bird 
that has exactly the properties possessed by almost all birds”. 

Notice that “the properties that all birds exhibit” would be too 
strong. 
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It remains to give a rigorous formulation for these ideas of 
‘prototypical’ objects in terms of “the properties that almost all objects 
possess”. We proceed to explain how this can be done. Our approach 
can be understood as a symbolic form of typical and generic reasoning, 
in that the quantifier  can be used to capture precisely the meaning of 
‘typical’ and ‘generic’. 
 
5.2 Typical and generic objects 

We first examine typical and generic elements in an ultrafilter 
structure. 

Consider an ultrafilter structure AU = (A, U) for a given 
signature .  

First, a formula  of L() with single free variable v defines a 
property: the set AU[] of elements that satisfy it. Thus, we can 
express 

– an element aA has the property (defined by)  by aA
U

[], 
i. e. A

U

 �   [a]; 
– almost all elements of A have the property (defined by)  by 

A
U �  v  , i. e. AU[]  U. 

So, given a most sentence  v   of L(), we will call element 
aA: 

• typical for sentence  v   iff 

A
U �  v    whenever AU �  [a]; 

• generic for sentence v  iff 

A
U � v  iff AU �  [a]. 

We can regard a typical element aA as providing a local test for 
the most sentence v  , which is decisive if a is generic. 
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Also, by the equivalence between v    and v , we see 
that 

 
a is generic for v   iff a is typical for v  and v  . 
 
Now, consider a set  of formulas of L(). We shall call an 

element aA typical (or generic) for set  of formulas iff a is typical (or 
generic) for every most sentence v  in . In particular, by a typical 
(or generic) element we will mean an element aA that is typical (or 
generic) for every most sentence of L(). 

Generic elements are indiscernible among themselves, in that 
they cannot be separated by formulas. Given generic elements g’ and 
g”, for evey formula , with single free variable v  V, of L():  

 
A

U �  [g’] iff AU �  [g”]. 
 
Generic elements are somewhat reminiscent of Hilbert’s ideal 

elements, or even of Platonic forms. So, it is not surprising that some 
ultrafilter structures fail to have generic elements. 

For instance, in the naturals with zero and successor and a non-
principal ultrafilter, containing the cofinite subsets, a typical element, if 
any, must be non-standard. 

 

      

N
 →   

standard

1 2 3 ...
Z

← →  ...

typical

1 2 4 4 3 4 4 

 Figure 5.1: Typical elements and non-standard naturals 
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Indeed, consider the expansion SU = (S, U) of the first-order 
structure S = <N, S, 0> by a Fréchet ultrafilter U over the naturals.  

As formula  take v  SS0, which defines the singleton {2}. 
Much as before 

 
S

U �   [a] iff a  2; 
and 

S
U [ ] U (as N  {2} is cofinite). 

 
We thus have 
 

S
U � v   but SU �   [2], 

 
which shows that the natural 2 is not typical for formula v  SS0. 

Similarly, since each natural nN is defined by an equation v  
t, for some ground term t, we can see that no standard natural n  N 
can be typical. 

Along similar lines, we notice that, in the case of a definable 
nonempty set of generic elements the new operator  reduces to a 
relativized classical quantification. 

Interestingly enough, such generic elements have much better 
behavior in theories, where they can be regarded as generic witnesses. 

First, in view of fip, finite sets of sentences have generic 
elements. 

 
Generic element for finite sets of sentences 

A finite set  of (most) sentences of L() has a generic element 
in an ultrafilter structure AU = (A, U). 

For each sentence v   in , we have either AU[]U (if 
A

U � v) or else AU[ ]  U (if AU �  v). By fip, we have 



ON A LOGIC FOR ‘ALMOST ALL’ AND ‘GENERIC’ REASONING 

Manuscrito, 2002.                                                              XXV(1), pp. 191-271, April. 

221 

some aA such that aAU[], when AU �  v, and aAU[], 
when AU � v . So, AU �  v  iff AU � [a]. 

 
5.3 Reasoning with generic constants 

We now internalize the previous ideas in extensions by new 
constants. 

We wish to add a new constant c behaving as a crucial witness 
for most, i. e. constant c has property  iff  holds almost universally. 

Given a signature  and a new constant c not in , consider the 
expansion [c] := {c} of type  obtained by adding the new 
constant c. 

Given a sentence v  of L(), we construct the genericity 
axiom [v /c] of c for sentence v as the following sentence 
(of L( [c])) 

v↔ (v/c). 
Now, for a set  of sentences of L(), by the genericity axiom 

schema on c for a set  of sentences, we mean the following set of 
sentences of L( [c]) 

 
[/c] := { [v /c] : v   }. 

 
In particular, when  is the set of all the most sentences of 

L
(), we use [c] for the genericity axiom schema on c. 

These conditions extend conservatively theories in L() to  
L
( [c]). 
Conservative addition of new generic constant 

Consider a set  of sentences of L(). For each set  of (most) 
sentences of L(), [/c] := [/c] is a conservative extension of 
, such that, for every most sentence v  :  �  v  iff  
[/c] �   (v/c). 
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This result establishes the correctness of reasoning with a 
generic constant. In particular, the extension [c] of  by generic 
constant c is conservative and [c] � (v/c) iff  �  v  for every 
sentence v  of L(). 

An example, similar to flying birds and Tweety, may illustrate 
these ideas. 

From “Most swans are white”, one concludes “A generic swan 
is white”. 

Signature  has unary predicate W and theory , over L(), has 
v W(v) {for “Almost all swans are white”}. 

Considering a new constant s (for generic swan), generic 
extension [s] has (in L( [s]) the genericity axiom [v W(v)/s] 
 
v W(v) ↔ W(s) {“Most all swans are white iff the generic swan is white”}. 

 
Hence, in [s], we have the following sentence of L( [s]) 
 

W(s) {i. e. “A generic swan is white”}. 
 
Notice that, if b is a non-white swan, in [s]  {W(b)}, one 

has both W(b) and W(s), so bs (this non-white swan b is not a 
generic swan). So, by conservativeness, x W(x)yW(y) and 
x yxy are consequences of {y W(y)} (“Most swans are 
white, but there is a non-white swan”). 

This example illustrates the monotonic nature of our logic: we 
do not have to retract conclusions in view of new facts. Given that 
“Most swans are white”, we conclude that “a generic swan is white”, a 
conclusion which we may hold even if further evidence indicates some 
non-white swans. 

A variation of this example may serve to illustrate why we do 
not have multiple extensions. A theory asserting both “generally birds 
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fly”, as x F(x), and “generally birds do not fly”, as v F(x), would 
be inconsistent. 

The next example illustrates using several (relativized) generic 
constants. 

Assuming that “Generally humans like dogs”, one would 
conclude “A generic human likes a generic dog”. 

Consider a signature  having a binary predicate L (with L(x,y) 
standing for x likes y), as well as unary predicates H and D (standing, 
respectively, for ‘is human’ and ‘is a dog’). 

Assume that theory  has as axiom the following sentence of 
L
() 

 
x y [H(x)  D(y)→ L(x,y)] {generally humans like dogs}. 
 
Considering new constant h (for generic human), the extension 

[h] has among its the genericity axioms the following sentence of 
L
( [h]): 

 
x  y [H(x) D(y) → L(x,y)] ↔  y [H(h)  D(y) → L(h,y)]. 
 
Thus, as a consequence of  [h], we have  
 

y [H(h)  D(y) → L(h,y)] {a generic human likes most dogs}. 
 
With another new constant d (for generic dog), we form 

extension [h][d] over [h][d] := [h]  {d}, which has as genericity 
axiom for sentence y [H(h)  D(y) → L(h,y)] of L( [h] the fol-
lowing sentence of L( [h][d]): 

 
y [H(h)  D(y) → L(h,y)] ↔ [H(h)  D(d) → L(h,d)]. 

 
Hence, among the consequences of [h][d], we have 
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H(h)  D(d) → L(h, d) {a generic human likes a generic dog}. 
 
Notice that [h][d] does not commit us to the existence of 

(generic) humans or dogs; all that it asserts is that “generic humans, if 
any, like generic dogs, if any”. Assuming the existence of generic 
humans and dogs, then [h][d]∪{H(h),D(d)} L(h,d). 

The kind of reasoning in this example involves several generic 
constants, which can be introduced by iterating our construction. 

Given a signature  and a (denumerable) list c of new constants 
not in , we form the iterated expansions  n+1 := n[cn] of 0 :=  by 
new constants c0,…,cn, and set [c] := n≥0 n. Much as before, given 
sets n of sentences of L(n), we have a set [n/cn] of formulas in 
L
(n+1) expressing the genericity condition on cn for n. 

Also, each set  of sentences in L() has as conservative 
extensions: 

• [0|v0/c0] … [n/cn] in L(n+1), for each m≥0; 
 
• the union n≥0  [n/cn] in L( [c] ). 

 

6. RELATIVE MOST 

We shall now examine the idea of having a notion of most 
relative to a universe: how it arises and is formulated, as well as some 
related issues. 

We will first indicate how the proper expression of ‘relative 
most’ assertions brings about the idea of a notion of large with respect 
to each universe, leading to its natural formulation in a sorted version 
of ultrafilter logic. Then, the need for establishing some connections 
while blocking others leads to comparing such relative concepts. 
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Finally, these ideas are incorporated into a sorted framework for 
‘almost all’ and ‘generic’ reasoning. 
 
6.1 The need for ‘relative most’ 

Our generalized quantifier  may exhibit somewhat unexpected 
behavior in some cases. We shall now examine these undesirable side-
effects and propose a way to overcome this difficulty. 

The generalized quantifier  is meant to capture the idea of 
holding almost universally, i. e. for ‘almost all’ objects of the universe. 
Sometimes we wish to express the idea of holding almost universally 
over a given subset of the universe, i. e. for ‘almost all’ objects of a 
given sub-universe. 

We now examine the expression of such ‘relative most’ 
assertions. 

On a universe B of birds, we express “Generally birds have 
wings” by v W(v) {in the sense “Almost all birds have wings”}. 

How are we to express ‘relative most’ assertions, such as 
“Winged birds generally fly”, “Eagles generally fly”, or “Penguins 
generally have beaks”? 

An apparently natural suggestion, by analogy, is as follows. 
One can express the relativization of a universal assertion such 

as  
 v W(v) {for “All birds have wings”},  

 
to the sub-universe of eagles by v [E(v) → W(v)] {for “All eagles 
have wings”}. 

By analogy, one would expect to relativize a ‘most’ assertion 
such as v K(v) {for “Almost all birds have beaks”}, to the sub-
universe of penguins by means of v [P(v) → K(v)] {for “Almost all 
birds have beaks”}. 
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Is this a reasonable expression or are we misreading the last 
formula? 

For a ‘most’ formula the form v [M(v) → N(v)] the reading 
“generally M’s are N’s” is perhaps appropriate. But one must bear in 
mind that what this does assert is “for most birds b, if M(b) then N(b)”. 

For, given the meaning of the conditional, a formula 
 

v [M(v) → N(v)] 
 

– has as refutatory evidence the set M  Nc of exceptions; 
and 

– means that the set Mc N is a large set of birds. 
 
This indicates that we may have been misled by the analogy. 
Indeed, formula v W(v) means WB and asserts “Almost all 

birds have wings”, which can be read as “Generally birds have wings”. 
On the other hand, formula v [P(v) → F(v)] means PcFB 

and asserts “Almost all birds are non-penguins or fly”, which does not 
seem to convey the idea of “Penguins generally fly”. 

 
P∩F

B∩F

B

F

P

 

Figure 6.1: Flying birds and penguins 
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Another reason for seeing that v [M(v) → N(v)] is not a 
reasonable way of expressing the ‘relative most’ assertion “Almost all 
M’s are N’s” stems from some undesirable connections, as we shall 
illustrate later in 6.3. 

This question appears to be connected to the so-called 
‘Confirmation Paradox’ in Philosophy of Science (Hempel (1965)). 
Each flying eagle is considered as evidence in favor of “Eagles fly”, 
whereas a non-flying non-eagle is not felt so, even though “Eagles are 
fliers” and “Non-fliers are non-eagles” are logically equivalent. 

The classification of evidences for “Eagles fly” as confirmatory 
or refutatory reads as the truth table of the conditional. This analogy 
appears to incriminate material implication. It also suggests a possible 
way out: by means of a new (non truth-functional) connective for 
‘generally’ (from which one would expect to define a generalized 
quantifier ‘most’).  

We prefer to follow an alternative route, still within the 
ultrafilter approach, namely distinct notions of ‘large’ subsets. 

The basic idea for expressing ‘relative most’ assertions is that 
each given universe has its own ‘relative notion of large’ subsets. 

We now begin to take a closer look at the proposal of employing 
distinct notions of large subsets. We shall use variations of the 
preceding examples to introduce this idea and examine some of its 
features. 

Let us first examine the question of adequate expression. 
With ‘relative notion of large’, we can express “Generally M’s 

are N’s” 
–  more precisely as “Almost all M’s are N’s”, 
–  so as to mean that the set {aM : N(a)} is ‘almost as large as’ 

M: M  N  M. 
 
For instance, we express “Winged birds generally fly” 
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– as “Almost all winged birds fly”, meaning that 
– the set WF of flying winged birds is a large subset of the 

universe W of winged birds (WFW). 
 
In this manner, we can also distinguish, say, “Eagles generally 

fly” from “Penguins generally fly” as follows. 
 
– “Almost all eagles fly” means that the flying eagles form a 

large set of eagles (EFE), whereas 
– “Almost all penguins fly” means that the flying penguins form 

a large set of penguins (PFP). 
 
The idea of each universe having its own relative notion of large 

subsets may be formulated by giving an ultrafilter US over each given 
universe S. 

In this manner, the two preceding ‘relative most’ assertions now 
become: 

– EFUE for EFE {“Almost all eagles fly”}; 
– PFUP for PFP {“Almost all penguins fly”}. 
 
A sorted approach seems to be adequate for the idea that each 

given universe has its own relative notion of large subsets. 
 
6.2 Sorted ultrafilter logic 

A many-sorted approach seems to provide an appropriate 
framework for formulating the idea of distinct notions of large relative 
to the universes, by assigning ultrafilters corresponding to these 
notions of large.  
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We shall now examine sorted versions of ultrafilter logic. The 
basic idea is that the previous (unsorted) concepts now become 
relativized to sorts. 

We consider many-sorted signatures, where the extra-logical 
symbols, as well as variables, come classified according to sorts 
(Birkhoff and Lipson (1970); Enderton (1972)). Quantifiers are 
relativized to sorts, as expressed in the formation rules: 

 
• for each variable v over sort s, if  is a formula in L(), then 
so are ( v : s) , (v : s)  and (v : s) . 

 
An ultrafilter structure AU for S-sorted signature  is an expansion 

an S-sorted first-order structure A for signature , obtained by 
assigning for each sort s of signature  an ultrafilter U[s] over the 
universe A[s] of sort s (giving the large subsets of A[s]). 

The extension of satisfaction becomes relativized to sorts 
accordingly: 
 

( � )s for a most formula (v : s) , we define 
A

U � (v:s)  [s] iff the set {aA[s] : AU �  [s(v:=a)]} is in 
the ultrafilter U[s]. 
 
The ultrafilter axiom schemata in the union () become sorted as 

well: 
()s : (v : s)  (v : s) ; 
()s :  (v : s)  (v : s)  ; 
()s : (( v : s)   (v : s)  )  (v : s) (); 
()s : ( v : s)   (u : s)  (v/u), for each variable u : s not 
occurring in . 
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As an illustration, we examine a possible formulation for the 
assertion “People generally oppose defeaters of each team supported”. 

Consider a signature  with two sorts s (for spectators) and t 
(for teams) as well as binary predicates S, D and O (with S(x,y), D(z,y) 
and O(x,z) standing, respectively, for x supports y, z defeated y and x 
opposes z). 

Theory  has the sorted axiom the following sentence of L(): 
 

(x : s) (y : t) (z : t) [S(x,y)D(z,y)O(x,z)]. 
 
By adding a constant b of sort t (for the Brazilian team) one 

forms the expanded signature ’ := {b}, where we can express 
“Most people support the Brazilian team or a team that defeated the 
Brazilian team” as 

 
(x : s)  [S(x,b) (y: t) (D(y,b)S(x,y))]. 

 

  

b

↓

p - S - t = D

  
Figure 6.2: Signature for persons and teams 

 
Much as in classical first-order logic, the sorted and unsorted 

versions are very similar. So, soundness and completeness carry over to 
the sorted version, by relativizing to sorts the previous arguments. For 
completeness, the witnesses introduced for the existential quantifiers 
inherit the corresponding sort and we now have sorted families of 
large subsets 
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s := { (v : s|)H :  �  (v : s) ,fr((v :s) )=}. 
 
Similarly, the ideas of typical and generic elements carry over to 

this case. 
The next example illustrates the usage of several sorted generic 

constants. 
Assuming that “People generally oppose defeaters of each team 

supported”, one would conclude “A generic supporter of the Brazilian 
team opposes a generic team that defeated the Brazilian team”. 

  

b

↓

p - S - t = D

↑ ↑

p t  

Figure 6.3: Expanded signature with generic persons and teams 
 
Consider theory  and expanded signature ’ of the preceding 

example. 
With a new generic constant p of sort p, form extension [p : p] 

with genericity axioms such as 
 

(x : s) (y : t) (z : t) [S(x,y)D(z,y)O(x,z)] 
(y : t) (z : t)S(p,y)D(z, y)O(p, z)]. 

 
So, as a consequence of [p : p], we have the formula of 

L
(’[p : p]): 

(z : t) [S(p, b)D(z, b)O(p, z)] 
 
for “generic supporters of Brazil oppose most teams that defeated 
Brazil”. 
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With a further new constant t of sort t, we form the extension 
[p : p][t : t] over ’[p : p][t : t] := ’[p : p]{t : t}, which has as 
genericity axiom for sentence (z : t) [S(p, b)D(z, b)O(p, z)] of 
L
(’[p : p]) the sentence of L(’[p : p][t : t]): 

 
(z : t) [S(p, b)D(z, b)O(p, z)] [S(p, b)D(t, b)O(p, t)]. 
 
Then, as consequence of [p : p][t : t], we have the sentence of 

L (’[p : p][t : t]): 
 

S(p, b)D(t, b)O(p, t) 
 
{“generic supporters of Brazil oppose generic teams that defeated 
Brazil”}. 
 
6.3 Comparing ‘relative notions of large’ 

We shall now examine how the need for establishing some 
connections while blocking others leads to comparing relative notions 
of large sets. 

As mentioned in 6.1, another reason for seeing that 
relativization does provide an adequate way of expressing ‘relative 
most’ assertion comes from the transitive behavior of our generalized 
quantifier . 

The next example illustrates some aspects of this transitive 
behavior of . 

Consider the following expressions for facts on birds: 
 
(K) v [K(v)  F(v)] {for “Most birds with beaks fly”}; 
(W) v [W(v)  K(v)] {“All winged birds have beaks”}, 
(P) v [P(v)  K(v)] {“All penguins have beaks”}. 
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(A) From the two facts (K) and (W), we conclude v [W(v)  F(v)].  
(B) From the two facts (K) and (P), we conclude v [P(v)  F(v)].  

 
Notice that the two arguments (in A and B) share the same 

logical form 

from v [(v)  W(v)] and  v [W(v)  F(v)] infer  v [(v)  
F(v)], 

being correct, because 
 

{v [(v)(v)],v [(v)(v)] � v [(v)(v)]. 
 
Also, the three given facts, namely “Most birds with beaks fly”, 

“All winged birds have beaks” and “All penguins have beaks”, appear 
quite reasonable. On the other hand, the concluded assertion  

– in A, read as “Most winged birds fly”, looks acceptable,  
whereas 

– in B, read as “Most penguins fly”, is not expected. 
 
One can consistently hold “Most birds with beaks fly”, “All 

penguins have beaks” and “Most penguins do not fly” (or even “No 
penguin flies”). Apparently, one feels that the set of penguins, being a 
small set of birds (with beaks), does constitute a sizable set of 
exceptions to the belief that most birds (with beaks) fly (as indicated in 
figure 6.1). 

Also, notice that the assumption vP(v) (i. e. “Very few birds 
are penguins”) would yield v[P(v)  E(v)], which, if read as “Most 
penguins are eagles”, would sound somewhat puzzling. 
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It is not difficult to see that much of this confusion actually 
comes from faulty expressions and misreading. 

Now, let us consider the form with relative notion of large: 
“generally M’s are N’s” expressed as “Almost all M’s are N’s” and 
meaning the set {a  M : N(a)} is a large subset of M (MNM). 

We can see that the derivation of the undesired conclusion is 
now blocked. 

Indeed, consider the following assertions: 
 
(P’) “All penguins have beaks”: P  K. 
(K’) “Most birds with beaks fly”: KF  K ‘almost as large as’ 

K (KFK). 
(A’) “Almost all penguins fly”: PF  P is ‘almost as large as’ P 

(PFP). 
 
In the presence of the first assertion,  
 
– neither (K’) entails (A’) (since we may even have PF=, as 
we expect), 

– nor does (A’) entail (K’) (since PK may very well be a small 
set of birds with beaks, as we believe); if the notions of large 
subsets are not connected. 

 
This example illustrates the idea that we may have independent 

notions of large subsets. If the set of penguins is not a large set of birds 
with beaks (P  K not ‘almost as large as’ K), then a set XP may be a 
large set of penguins without being a large set of birds with beaks. It is this 
independence that blocks the undesired conclusion. 
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S

∅

T

U
S

U
T

 
Figure 6.4: Ultrafilters over set T and ‘small’ subset ST (SUT) 

 
The independent notions of large subsets in terms of ultrafilters 

is explained as follows. For ST, given ultrafilters US, over S, and UT, 
over T,  

 
if SUT then, for every XS: XUT (even for those X in US). 
 
As an example, take T as the naturals and S as the even naturals. 

If the set of evens is not considered a large set of naturals (SUT) 
then, no set consisting only of evens (including the large sets of evens) 
is a large set of naturals. 

We have just seen how the derivation of the undesired 
conclusion “Most penguins fly” is blocked by distinct notions of large 
subsets. By the same token, the derivation of the conclusion “Most 
winged birds fly” is also blocked. Yet, this conclusion appears to be 
expected as reasonable. 

Consider the following assertions: 
 
(W’) “All winged birds have beaks”: WK. 
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(K’) “Most birds with beaks fly”: KFK ‘almost as large as’ K 
(KFK). 

(B’) “Most winged birds fly”: WFW is ‘almost as large as’ W 
(WFW). 

 
Just as before, the first assertion (W’) establishes no connection 

between (K’) and (B’), if the notions of large subsets are not related. 
We now have distinct notions large subsets. Is a large set of 

winged birds also a large set of birds with beaks? Is a set of winged birds 
that happens to be a large set of birds with beaks a large set of winged birds 
as well? 

Yet, here we seem to feel that there may be a kind of coherence 
between these distinct notions small/large subsets enabling their 
transferal. Consider a universe T and sub-universe ST with relative 
notions of small/large subsets. In case ST happens to be ‘almost as 
large as’ T, it appears intuitively plausible that the small subsets of S are 
the subsets of T that are small subsets of T.  

 
S−X T−S

T

S

T−X

X

 
Figure 6.5: Coherent transfer in terms of exceptions 
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This coherent transfer for a subset ST is as follows. If S is a large 
subset of T (ST), then for any set XS: X is a large subset of S (XS) 
iff X is a large subset of T (XT). 

The application of this coherent transfer to the preceding 
example yields the desired conclusion. Since W  K with WK, we can 
transfer FKK to FKW, whence, as FKFW, we can 
conclude FWW, as desired. 

This coherent transfer for a subset ST is expressed in terms of 
ultrafilters as follows. For ultrafilters UT, over T, and US, over subset 
ST, 
 

if SUT (ST), then for every set XS: XUS (XS) iff XUT 
(XT). 

F∩K

K

F

W

F∩W

 
 

Figure 6.6: Flying birds with beaks and wings 
 

Explanations for these comparisons between relative notions of 
large subsets in terms of ultrafilters, which justify them, can be 
provided by means of the concept of relativized family. The 
relativization of family FP (T) of subsets of T to subset ST is the 
family F P(S) = {XS : XF} of subsets of S that are in family F. 
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Now, coherent transfer for a subset ST rests on the following 
observation about any given ultrafilter UT over set T  
if SUT then the relativized family UT  P(S) is an ultrafilter over 
ST. 

As an example, take T as the naturals and S as the even naturals. 
If the set of evens is considered a large set of naturals (SUT) then, 
the large set of naturals consisting only of evens form an ultrafilter 
over the set of even naturals. 

 

S

∅

T

U
S

U
T

 

Figure 6.7: Ultrafilter over T and relativized family to large subset ST 
 

We can see that the converse also holds, i. e.  
 
if the relativized family UT  P(S) is an ultrafilter over ST 
then SUT; 

 
explaining the need for independent notions of large subsets when 
SUT. 
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Summing up the preceding discussions, consider an ultrafilter 
UT over set T and a subset ST.  

 
– In case SUT, we have UT  P(S)=, and we must have 

independent notions of large subsets: ultrafilters US and UT 
are unrelated. 

– In case SUT, the relativized family UTP(S) is an ultrafilter 
over S, and we may decide to take US as {XS : XUT}, 
thereby enforcing coherent transfer, or prefer to provide an 
ultrafilter US over S. 

 
Notice that such questions and decisions fall outside the realm 

of our ultrafilter logic. Whether or not most birds with beaks have 
wings, most winged birds have beaks and most birds (with beaks) are 
penguins are ornithological, rather than logical, matters. 

In the sequel we shall examine these ideas in the context of our 
sorted ultrafilter logic. 

 
6.4 Sorted universes and ‘large’ subsets 

We shall now consider comparison of universes with distinct 
notions of large subsets in a sorted framework. We shall examine how 
to formulate some ideas related to sub-universes as well as coherent 
transfer in a many-sorted approach. As before, we shall use variations 
of the preceding examples to introduce the ideas and some of their 
features. 

We shall examine two kinds of comparison between universes: 
– when a universe happens to be a subset of another one;  
– how the notions of large subsets relative to each universe are 
related. 
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Let us first consider the former, the need for which appears as a 
side-effect of the sorted approach. We shall examine how to formulate 
the ideas of sub-universes and their intersections in a many-sorted 
approach. 

In our sorted framework, sorts are unrelated: we have equality 
only over a sort, rather than between distinct sorts. Nevertheless, we 
can express some relationships among sorts by means of appropriate 
injections. The idea is that an injection from s to t establishes a 
bijection from its domain s onto its image i(s), the latter being a real 
subset of t. 

Thus, we can express that a sort is a subsort of sort t as follows 
(Meré and Veloso (1992), (1995)): we use a unary function i from s to t 
together with an axiom asserting its injectivity. Thus, we express that 
sort s as a subsort of sort t (st) by a function i : st and the 
following injectivity axiom 
 
(i : )(x,x’ : s) [i(x)i(x’)xx’] {injective i : st (for “all s’s are t’s)}. 
 
 

S T
i

i(S)

 
 

Figure 6.8: Subsort and injective function 

 



ON A LOGIC FOR ‘ALMOST ALL’ AND ‘GENERIC’ REASONING 

Manuscrito, 2002.                                                              XXV(1), pp. 191-271, April. 

241 

As an illustration of subsorts, we examine a possible 
formulation for the assertions “Eagles and penguins are birds”, 
“Eagles generally fly”, and “Penguins generally do not fly”. 

 

i

j

e

p

b F

 

Figure 6.9: Signature for subsorts eagles and penguins of birds 

 
Consider a signature with three sorts b (for birds), e (for eagles ) 

and p (for penguins), as well as a unary predicate F over sort b (for 
flying birds). 

We form a theory with sorted axioms as follows. 
We express subsort information by injective functions     i : e  

b and j : p  b 
 
(i : ) (x, x’ : e) [i(x)i(x’)xx’] {injective i : q  b (all eagles 

are birds)}, 
(j : ) (y,y’ : p) [j(y)j(y’)yy’] {injective j : p b (all pen-

guins are birds)}. 
 

We now express most information relative to sorts as follows: 
(eF) (x : e) F(i(x)) {almost all eagles fly}; 

(pF) (y : p)F(j(y)) {almost all penguins do not fly}. 
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The extension by new generic constants e : e and p : p has 
genericity axioms 

 
(x : e) F(i(x)) F(i(e)) and (y : p) F(j(y))  F(j(p)). 
 
Thus, the consequences of this generic extension include 
 

(e) F(i(e)) {generic eagles, if any, do fly}; 
(p) F(j(p)) {generic penguins, if any, do not fly}. 

 
We also have transitivity of subsorts. As “Eagles are winged 

birds” and “Winged birds are birds” are expressed by injections, their 
composite gives an injection from the sort of eagles to that of birds, 
expressing “Eagles are birds”. 

 

  

e
i

 →  w
j

 →  b

|| ||

e
j  °  i

 →   b

 
 

Figure 6.10: Transitivity of subsorts by composition 

 
We can also use the device of expressing subsort information by 

injections for introducing intersection of subsorts of a common sort. 
The idea is based on the so-called pullback representation for the 
intersection subsets of a common universe (MacLane (1971); Goldblatt 
(1979)). 

The next example illustrates this construction of intersection of 
subsorts of a common sort. 

Given subsets Q (of Quakers) and R (of Republicans) of the set 
H (of humans), we wish to form the intersection Q∩R (for              
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the Republican Quakers), assumed nonempty. We may proceed as 
follows. 

Consider a signature ν with three sorts h (for humans), q (for 
Quakers) and r (for Republicans) as well as functions i:q→h and j:r→h. 

 
We express subsort information by injectivity axioms for i and j 
 

(i : ) (y,y : q) [i(y)i(y)yy] {all Quakers are humans}, 
(j : ) (z,z : r) [j(z) j(z)zz] {all Republicans are humans)}. 

 
Sorts q (of Quakers) and r (of Republicans) are not directly 

connected, but we can resort to their copies within sort h (of humans). 
Indeed, within sort h of humans, we have: 

 
– the image i(q) as a copy of the sort q of Quakers, and 
– the image j(r) as a copy of the sort r of Republicans. 
 
So, their intersection i(q)j(r), consisting of the humans that are 

both Quakers and Republicans, can be defined by the formula (v) as 
follows: 

 
 (v): ( y : q) ( z : r) [i(y)v  vj(z)] {humans that come from 

q and from r}. 
 
Now, we wish to introduce a sort n (for the intersection QR), 

i. e. a new sort n such that 
 
– sort n is a common subsort of sorts q and r; 
– sort n behaves as QR i. e. as i(q)j(r). 
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Clearly, the assumption “Some Quaker (human) is a Republican 
(human)”: 
 
() (y : q) (z : r) i(y)j(z) {some Quaker and Republican coincide in h}, 
 
is equivalent to having a nonempty intersection (i(q)j(r) ) 
(v : h)(v) {some human is both Quaker and Republican}. 

Indeed, the intersection QR is in one-to-one correspondence 
with the following set of pairs (the pullback of functions i:q  h and  
j:r  h) 

 
N:={<q,r>qr : i(q)=j(r)}{Quakers and Republicans coinciding as 

humans}; 
 
and we shall use this set Nqr to represent the intersection QR. 

Now, the assignment <q,r> � q defines an injective function k 
from Nqr. Similarly, we have an injection l:Nr given by <q,r> � r. 
Also, for every n=<q,r>N, we have i(k(n))=i( q)=j(r)=j(l(n)). 

We can then introduce a new sort n (for N representing QR), 
via () injections k:nq and l:nr {n is a common subsort of q     
and r}. 

We know that we have the commutativity ik=jl: () 
(x : n) i(k(x))  j(l(x)){same image as humans}. 

By (), this common image is included in the intersection    
i(q)j(r): 

 
(x : n) (i(k(x))) {every human coming from  n is Quaker and 

Republican}. 
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Now, to make sort n a copy of Nqr we require cover by joint 
subjectivity 
 
(c) (y : q) (z : r) [i(y)j(z)(x : n)(yk(x)zl(x))] {any nN 
comes from a n}  
 

But, given (), () and (c) are jointly equivalent to the 
intersection axiom 
 
() (y : q) (z : r) [i(y)j(z)(x : n)(yk(x)zl(x))] {n in bijection 
with N}; 
 
so we use () and () to characterize sort  n as the intersection of q 
and r. 

k

l

i

j

n

q

r

h

j°l

i°k

 

Figure 6.11: Intersection of subsorts of a common sort 

Thus, we can circumvent some side-effects of the sorted 
approach. 

Let us now turn to the other comparison, namely how the 
notions of large subsets relative to each universe are related. Recall that 
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we have introduced distinct notions of large subsets to capture the idea 
of a set ‘almost as large as’ its universe. 

We can also use the idea of expressing subsort information by 
an injective function to formulate a sorted version of coherent transfer 
as follows. 

An injection i from s to t, establishes a bijection between each 
subset Xs and its image i(X)t, and between the families (s) and 
{i(X)t : Xs}. This suggests regarding as plausible the equivalence 
between the assertions 

 
– X is a large subset of s (Xs) 

and 
– i(X) is a large subset of t (i(X)t), 

 
for a subset Xs. In particular, it indicates a sorted version of subsort 
s is ‘almost as large as’ t (st), namely i(s)t, i. e. i(s)Ut.  

This leads to the following version of sorted coherent transfer 
 

if i(s)Ut (i(s)t), then for any subset Xs: XUs (Xs) iff i(X)Ut 
(i(X)t). 

 
Another formulation is suggested by the observation that if  

i(s)t (image i(s) ‘almost covers’ t), then the non-image ti(s) is a small 
subset of t, and so a subset Yt is ‘about as large as’ its pre-image il 

(Y)s: Yil (Y). 
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i (Y)
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Figure 6.12: Subsort and coherent transfer by injection 

 
So, we formulate coherent transfer under injection i : st as follows 

 
if i(s)Ut, then for any subset Yt: i

l (Y)Us (i
l(Y)s)iff YUt 

(Yt). 
 
As before, explanation and justification can be provided by 

adapting the concept of relativized family. The pre-image of family 
F(t) of subsets of t under function: st is the family                    
il (F) := {il(Y)s : YF} of subsets of s. 

Now, coherent transfer under injection i : st reflects the 
following observation about any given ultrafilter Ut over sort t 
if i(s)Ut then the pre-image family il(Ut) is an ultrafilter over sort s. 

 
We now wish to express this coherent transfer under injection 

within our sorted ultrafilter logic. For this purpose, we may proceed as 
follows. 

Consider an injection i:st (expressing that s is a subsort of t). 
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First, we see that i(s)Ut (i(s)t) asserts that image i(s)        
almost covers sort t, which we can express by the following formula of 
L
()  

 
( : i) ( y : t)( x : s) yi(x) {Almost every object of t comes from s via i}. 

 
Similarly, we can express that the pre-image of those objects of t 

with property (y) almost covers sort s by replacing variable y : t by a new 
variable x over sort s not occurring in (y) as follows 

( x : s) (i(x)) [where variable x : s does not occur in (y)]. 

Then, we can express most transfer of formula ( y : t)  of L(), 
asserting “Almost every object of t has property (y) iff almost every 
object of s has property (i(x))”, by the formula of L() 

(y |  : i) ( y : t)   ( x : s) (y/(i(x)) [where xocc()]. 

Now, we formulate sorted coherent transfer for formula ( y : t) 
 of L() by forming the coherence axiom (i : y | ) of formula  as 
( : i)(y |  : i), i.e.  
 

(i : y | )( y : t)( x : s) yi(x)[( y : t) ( x : s) (y/(i(x))) 
 
[where occ()]. 
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Thus, we formulate sorted coherent transfer for a set  of most 
formulas of L() by means of the following coherence axiom schema for  

 
(i : ) := {( : i)(y |  : i) : ( y : t)   }. 

 
In particular, when  is the set of all the most formulas of L(), we 
have the coherence axiom schema for injection I  
 

(i : ) := {(i : y | ) : ( y : t)   L()}. 
For instance, in our example of flying eagles and birds in 6.4, we 

have the following coherence axiom (i : z | F(z)) of formula 
( z : b) F(z) 

 
( z : b)( x : e) yi(x)  [( z : b) F(z)  ( x : e) F(i(x))], 

 
expressing the assertion “If almost all birds are eagles then most birds 
fly iff most eagles fly”. 

As mentioned, we can see that this formulation is compatible 
with the idea of independent notions of large subsets in case subsort s 
of t is not ‘almost as large as’ t. For, if we do not know the antecedent 
( : i) {i(s)t}, the usage of the coherence axioms (i : ) becomes 
blocked. 
 
6.5 Sorted framework for ‘almost all’ and ‘generic’ 

We now examine many-sorted ultrafilter logic with coherence 
transfers as a sorted framework for ‘almost all’ and ‘generic’ reasoning. 
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First, let us examine sorted formulations for variants of our 
preceding examples on flying and non-flying birds seen in 6.1 and 6.3. 

Consider a signature  with three sorts p (for penguins), w (for 
winged birds) and k (for birds with beaks) as well as a unary predicate 
F over sort k (for flying birds with beaks). 

We express subsort information by injective functions i : w k 
and j : p  k 

 
(i : ) (x, x’ : w) [i(x) i(x’)  xx’] {all winged birds have beaks}. 
(j : ) (y,y’ : e) [j(yj(y’)  yy’] {all penguins are birds with beaks}; 
 
as well as the coherence axiom schemata for injections i : w  k and 
j : p  k 
 

(i : ) := {( : i)  (z |  : i): xocc(),(  z : k) L()}, 
(j : ) := {( : j) (z | : j): xocc(),(  z : k)   L()}. 

 

i

j

w

p

k

F

 
 

Figure 6.13: Signature for penguins, winged birds and birds with beaks 
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We first illustrate how desired conclusions can be derived when 
we know “Most birds with beaks have wings”. 

We express most information relative to sorts w and k as almost 
coverage 

 
( : i) ( z : k)( x : w) zi(x) {almost all birds with beaks have wings}. 

 
Then, from the instance (with ( z : k) F(z) for ( z : k) ) 

 
( z : k)( x : w) zi(x)[( z : k) F(z)( x : w) F(i(x))] 

 
of schema (i : ), we can conclude the equivalence between 

 
(kF) ( z : k) F(z) {almost all birds with beaks fly}, 

and 
(wF) ( x : w) F(i(x)) {almost all winged birds fly}. 

 
Thus, in the presence of ( : i): “Most birds with beaks have 

wings”, from (kF) “Most birds with beaks fly” we can conclude 
(wF) “Most winged birds fly”. 

We now illustrate how unexpected conclusions can be blocked 
when we do not know “Most birds with beaks are penguins”. 

Assume the absence of information on almost coverage of sort 
k by p 

( : j) ( z : k)( y : w) zj(y) {almost all birds with beaks are 

penguins}. 

Then, the usage of instances of the axiom schema (j : ) is 
blocked. 
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In fact, assume we also know the following most information 
about sort p: 

(p F) ( y : p) F(j(y)) {almost all penguins do not fly}. 

 
Then, the instance of the axiom schema (j:) with F(z) for , i.e. 

( z : k)( y : w) zj(y)  [( z : k) F(z)  ( y : p) F(j(y))]. 

yields the conclusion 

(kp)(z:k)(y:p) zj(y) {almost all birds with beaks are not penguins}. 
 
Thus, the fact (kF): “Most birds with beaks fly” does not force 

the conclusion (pF): “Most penguins fly” in the absence of (j : ): 
“Most birds with beaks are penguins”, forcing instead (k p): “Most 
birds with beaks are not penguins” in the presence of (p  F): “Most 
penguins do not fly”. 

This example illustrates how the coherence axiom schema for an 
injection provides uniform control based on the relative sizes of the 
sorts. In addition, finer control can be achieved by selecting a particular 
set of formulas to be coherently transferred. 
In general, the framework is as follows. We consider a sorted theory 
consisting of the following sets of axioms: 
 

– a set  of axioms expressing (basically syntactical) subsort 
information, 

– a set  of axioms expressing coherent transfers between some 
subsorts,  

– a set  of axioms expressing the remaining available 
knowledge. 
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Since set  specifies a many-sorted ultrafilter theory, we 
have 

 �  iff  � . 
 
We now consider some sorted variations on the so-called 

“Nixon example”. 
The situation is as follows. Assuming that “Quakers generally 

are pacifist”, “Republicans generally are not pacifist” and “Nixon is a 
Republican Quaker”, what can one conclude Nixon’s attitude regarding 
pacifism? 

Even assuming that Nixon is a typical/generic Republican 
Quaker, one appears to be left with the question “Does Nixon behave 
generally as a Republican or as a Quaker”? 

 
 

i

j

q

r

h

P

 
 

Figure 6.14: Basic signature for “Nixon example” 

 
Consider the expansion ’ :=  {P : h} of signature  in 6.4 by 

a unary predicate P over sort h (for pacifist human). 
We express most information on pacifism for sorts q and r as 

follows 
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(qP) ( y : q) P(i(y)) {almost all Quakers are pacifist}, 
 

(rP) (z : r) P(j(z)) {almost all Republicans are not pacifist}. 
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Figure 6.15: Signature for “Nixon example” with (generic) constants 

 
Clearly, by adding new generic constants q : q and r : r, we will 

have 
 
– P(i(q)) {any generic Quaker is pacifist}, 
– P(j(r)) {any generic Republican is not pacifist}. 
 
We may also add the coherence axiom schemata for injections i 

and j 
 

(i : ’) := {( : i)  (v |  : i): y  occ(),(  v : k)   L(’)}, 
 

(j :’) := {( : j)  (v |  : j): z  occ(),( v : k) L(’)}. 
 
Consider adding a new constant h : h for some (maybe generic) 

human. 
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Even if we know that such human is a Quaker, i. e. 
(y : q) i(y)h, we cannot conclude anything about h’s pacifist attitude: 
neither P(h) nor P(h). 

Now, assume that such human represents most Quakers, in the 
strong sense ( y : q) i(y)h. We will then have P(h). 

But, this assumption is indeed very strong. For, if h : h is 
generic, it yields (hP) ( v : h) P(v) {almost all humans are pacifist}. 

Also, it is equivalent to almost coverage of humans by Quakers 
( : i) ( v : h)( y : q) vi(y) {almost all humans are Quakers}, 
(in view of transfer of  over  and coherence axiom schema (i : ’)). 

On the other hand, if we had assumed other relative sizes of 
universes 

 
( : j) ( v : h)( z : r) vj(z) {almost all humans are Republicans}, 

 
we would conclude  
 

(hP) ( v : q) P(v) {almost all humans are not pacifist}. 
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Figure 6.16: “Nixon example” with generic Republican Quaker 
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Now, let us examine the impact of the, apparently strong, 
assumption “Nixon is a generic Republican Quaker”. 

We now know that there is a Republican Quaker. So, we may 
expand the above signature ’ to * by introducing a new sort n (for 
Republican Quakers) with injections k:nq and l:n  r, as in 6.4, as 
well as a new generic constant n : n. 

We may also add the coherence axiom schemata for injections k 
and l 

 
(k : *) := {( : k)  (y |  : k): xocc(),(  y : q) )  L(*)}, 

 
(l : *) := {( : l)  (z |  : l): xocc(),( z : r) )  L(*)}. 

 
In the absence of information about relative sizes, we cannot 

conclude anything about the pacifist attitude of such a Republican 
Quaker. 

Assume that we know “Most Quakers are Republican Quakers” 
(QRQ), which expresses the almost coverage of q by n, i. e.  
 

( : k) ( y : q)( x : n) yk(x) {almost all Quakers are 
Republican Quakers}. 
 
Then, the coherence axiom ( : k)  (y | P(i(y)) : k) for 

injection k:n  q yields (nP) ( x : n) P(i(k(x))) {almost all 
Republican Quakers are pacifist}. 

Hence, as n is a generic constant for sort n, we can conclude 
 

– P(i(k(n))) {any generic Republican Quaker is pacifist}. 
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Now, if we knew instead “Most Republicans are Republican 
Quakers” (QRR), i. e. “Almost all Republicans are Republican 
Quakers”, as 

 
( : l) ( y : r)( x : n) yl(x) {almost all Quakers are Republican 
Quakers}. 
 
(r q) ( z : r)( y : q) i(y)j(z) {almost coverage of r by n}; 

 
we would have  

 
(nP) ( x : n) P(j(l(x))) {almost all Republican Quakers are 
not pacifist}, 

 
whence, by genericity 
 

– P(j(l(x))) {any generic Republican Quaker is not pacifist}. 
Finally, if we assume both pieces of information 
 

– “Most Quakers are Republican Quakers” (QRQ); 
– “Most Republicans are Republican Quakers” (QRR), and 

we will have (since, as expected, QQRR) conflicting conclusions 
 

– “Almost all Republican Quakers are pacifist” (nP), and 
– “Almost all Republican Quakers are not pacifist” (nP); 

 
from which, the commutativity i(k(n))j(l(n)) will yield the 
contradiction 
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“A generic Republican Quaker is pacifist and not pacifist”. 
 
Notice that the conclusions agree with what is intuitively 

expected. 
 

– Suspended judgement, in the absence of further information. 
– Republican Quakers generally behave as Quakers, if one 

knows QRQ. 
– Republican Quakers generally behave as Republicans, if one 

has QRR. 
– Contradictory behavior as Quakers and Republicans, in case 

both QRQ and QRR. 
 
This example illustrates once more the importance of 

knowledge concerning relative sizes in establishing deductive 
connections. 

It may also serve to clarify another point about relative most 
information. 

Consider the assertion “Most Quakers are Republicans”.  
Does it assert that there are many Republicans among Quakers? 
Our more precise reading of it is “Almost all Quakers are 

Republicans”, which implies “Almost all Quakers are Republican 
Quakers” (QRQ). 

An explanation comes from an analysis of the role of the copies 
of subsorts in expressing relative most assertions. 

Recall that, within sort h of humans, we have: 
 
– the image i(q) as a copy of the sort q of Quakers, and 
– the image j(r) as a copy of the sort r of Republicans. 
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(In particular, the intersection sort n of Republican Quakers has 
three copies, within sorts: q of Quakers, r of Republicans and h of 
humans.) 

Now, consider the assertion “Almost all Quakers are 
Republicans”.  

We will argue that it can, and should, be understood as “Almost 
all Quakers are humans that are Republican (humans)”. 

The former is supposed to mean that the set of Republicans 
form a large set of Quakers. Since sorts q (of Quakers) and r (of 
Republicans) are not directly connected, we resort to their copies 
within sort h (of humans). 

This suggests understanding “The set of Republicans form a 
large set of Quakers” as “The set of Quakers that, as humans, are 
Republican humans form a large set of Quakers”, which is the meaning 
of “Almost all Quakers are humans that are Republican (humans)”. 

We now examine this situation in our sorted framework. 
Recall that we have the intersection axiom 
 

() (y : q) (z : r) [i(y)j(z)  (x : n)(yk(x)zl(x))] {n 
behaves as QR}. 
 
This intersection axiom asserts the equivalence between 
 
(q r) ( y : q)( z : r) i(y)j(z) {almost all Quakers are 
Republican humans}, 
( : k) ( y : q)( x : n) yk(x) {almost all Quakers are 
Republican Quakers}. 
 
The behavior of sort n as the intersection QR yields the 

equivalence of 
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– almost all Quakers are Republican humans (q r), and 
– the almost coverage of q by n ( : k).  
Thus, we can conclude “Almost all Quakers are Republican 

Quakers” (QRQ) from the paraphrase “Almost all Quakers are 
humans that are Republican humans” of “Almost all Quakers are 
Republicans”. 

Similarly, “Almost all Republicans are Quakers”, paraphrased as 
“Almost all Republicans are humans that are Quakers” yields the 
almost coverage “Almost all Republicans are Republican Quakers” 
(QRR). 
 

7 SOME PROSPECTS 

We finally comment on some perspectives and directions for 
further work, specifically some interesting connections with fuzzy logic 
and inductive and empirical reasoning, which suggest the possibility of 
other applications for our ultrafilter logic. 

The basic idea is exploiting the expressive power of ultrafilter 
logic and perhaps extend it by some extra generalized quantifiers such 
as . 

A first possible application is to the realm of imprecise 
reasoning, in the spirit of fuzzy logic (Turner (1984)). Some common 
ground is indicated by the basic intuitions of ‘large’, ‘almost all’, ‘very 
few’ and ‘about as large as’. 

For instance, a fuzzy concept, such as ‘very tall’ might be 
explicated as: a ‘very tall’ person is a person that is taller than ‘almost’ 
everybody (else).  

Thus, we may consider extracting (fuzzy) concepts from a binary 
predicate L, by definitions such as: 

 
– property H(y) as xL(x,y) {for “y is very high (or tall)”}; 
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– property S(y) as H(y) {for “x is very short (or low)”}; 
– relation D(x,y)asz[L(x,z)L(z,y)]{for “y is much higher than 

x”}; 
– relation F(x,y) as D(x,y)∨D(y,x) {for “x is far from y” (in height}; 
– relation E(x,y) as F(x,y) {for “x is about as high as y”}. 

 
As an illustration, consider an expansion MU = (M, U) of a 

non-standard first-order structure M = <NZ,< for the naturals by a 
Fréchet ultrafilter. 

–  the standard naturals nN are very short: MU � xL(x,y) [n]; 
–  the non-standard numbers zZ are very high: MU � xL(x,y)[z]; 
– a non-standard number zZ is much higher than a standard 

natural nN: MU � v[L(x,v)L(v,y)] [n,z]; 
–  numbers in the same copy are about as high, i.e. for  a,bN or  
 a,bZ: MU � v[L(x,v)L(z,v)] [a,b]. 
 

      

N
 →   

S

1 2 3 
Z

← →  

H

1 2 3 
-

N Z

n →→→→ ←←←← z

D

1 2 4 4 4 3 4 4 4 
→→→→

N

- m - n

E

1 2 4 3 4 
→→→→

Z

←←←← z - w

E

1 2 4 3 4 
→→→→  

 

Figure 7.1: Standard and non-standard numbers 
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Such approach may provide alternative qualitative foundations 
for (versions of) fuzzy logic. 

Another possible application could be to the area of inductive 
reasoning, as in empirical experiments and tests. This arises from the 
observation that, whereas laws of pure mathematics may be of the 
form “All M’s are N’s”, one can argue that laws of natural sciences are 
really assertions of the – more cautious – form “Most M’s are N’s”, or 
at least should be regarded in this manner. Here, the expressive power 
of  may be helpful. 

    

∇ v δ1 ...∨... ∇ v δk

∇ v κ1 ...∧... ∇ v κn

b6 7 4 4 4 4 4 8 4 4 4 4 4 

1 2 4 3 4 
...∨... ∇ v δp

∇ v µ

b6 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

 

 
Figure 7.2: Conditions for establishing empirical law  v  

 
For instance, consider such an empirical law  of the form 

v , with v being a short hand for the most prefix v1 …vm. Let 
us assume that  is quantifier-free – a reasonable assumption in the 
context of experiments. Then,  can be put into disjunctive normal 
form. Thus  is equivalent to a disjunction 1…p, so v  will be 
established iff some disjunct v k can be established. Such a disjunct 
k is in turn equivalent to a conjunction 1…n. Thus, establishing 
 is reduced to establishing v 1,…,v n, which are independent 
tasks, each one involving a literal (an atomic formula, perhaps negated). 

Now, consider an inductive jump: having established (v) for a 
(small) set of objects (v [(v)   (v)]), one wishes v (v). The 
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latter would follow from v (v), but this involves large experimental 
evidence. The case of program testing may be illustrative: one tests the 
behavior of a program for a (small) set of data and then argues that the 
program will exhibit this behavior in general. Here, the rationale is that 
the set of test data is ‘representative’ in that it covers the possible 
execution paths. 

This idea suggests the following strategy: “experimental eviden-
ce that is ‘almost’ dense for a similarity enables the inductive jump”.  

Establishing 
 
(): uv [S(u,v)  ((u)   (v))] {similarity ‘almost’ 
transfers property}, 
 
(): vu [(u)S(u,v)] {experiments ‘almost’ dense for 
similarity}; 

 
is sufficient for concluding v (v) from v [(v)  (v)]. 

 
For small experimental evidence (v (v)), it is wise to take: 
 
– u v [(u)S(u,v) (v)] {economic representative set}. 
 
The applications outlined above suggest two other interesting 

avenues. 
The first avenue concerns the weakening of some mathematical 

concepts. 
The idea of ‘almost’ dense is close to that of ‘almost’ coverage, 

which has been found useful in expressing connections between sorts. 
Along similar lines, concepts such as ‘almost’ equal or ‘almost’ disjoint 
might be useful. 
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The basic idea is weakening some universal quantifiers to . For 
instance, one might consider the concept of ‘almost equivalence’, 
obtained by weakening symmetry and transitivity and replacing 
reflexivity by y x R(x,y). Analogously, an ‘almost partition’ would 
amount to a set of blocks ‘almost’ covering the universe where 
intersecting blocks would have ‘almost’ the same elements. Similar 
weakening of some mathematical concepts might be of interest. (Note 
that we are not proposing a program; one can expect that only some 
such weakenings – typically with qualitative flavor – will be of interest.) 

 
 
 

 
 

Figure 7.3: ‘Almost equivalence’ relation 
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_
Bk

{

_

Bi
i∈I
U

1 2 4 4 4 3 4 4 4 

S6 7 4 4 4 8 4 4 4 

 

Figure 7.4: ‘Almost partition’ 

 
The other avenue comes from the idea that we generally wish a 

fairly small set of experiments. This suggests considering an extension 
of our logic to deal with finiteness. The idea is considering another 
quantifier � , the intended interpretation of � v  (v) being “ (v) holds 
only for fairly few elements”. The semantic interpretation involves 
expanding an ultrafilter structure AU = (A, U) by a family N of fairly 
small subsets of the universe A. Taking this family N as the ideal 
(A) of the finite subsets of A might be of interest in case A is 
infinite. In general, we may wish to have less stringent conditions on 
such a family N of fairly small subsets. 

 
8 CONCLUSIONS 

We have examined a logical system with generalized quantifiers 
over ultrafilters, which serves as a rigorous basis for qualitative 
reasoning with notions such as ‘all but a few’ and ‘very few’, as well as 
‘typical’ and ‘generic’. This monotonic logical system is a conservative 
extension of classical first-order logic, with which it shares several 
properties. 
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For expressing ‘most’ assertions a generalized quantifier  has 
been introduced with the intended interpretation “holding ‘almost’ 
universally” and the intuition of ‘almost all’ as ‘but for a few 
exceptions’ has been rendered precise by means of ultrafilters.  

This approach leads to an extension of classical first-order logic 
by the addition of a generalized quantifier for ‘almost universally’. Its 
semantics is given by adding an ultrafilter to a first-order structure. By 
formulating the characteristic properties of ultrafilters, we obtain an 
axiomatics, which is shown to be sound and complete with respect to 
this semantics. As a result, this ultrafilter logic turns out to be a 
conservative extension of classical first-order logic. 

For generic reasoning, we have explicated the ideas of ‘typical’ 
and ‘generic’ individuals in terms of “possessing the properties that 
almost all individuals have”. The addition of generic constants 
produces a conservative extension, where one can correctly reason 
about generic objects as intended. 

The expression of almost all by means of a generalized 
quantifier over an ultrafilter captures the idea of holding ‘almost 
universally’ in a ‘a given universe. Unfortunately, simple relativization 
fails to express adequately ‘relative most’ assertions. To circumvent this 
problem, relative notions of large have been introduced by means of an 
ultrafilter over each given universe, leading naturally to a many-sorted 
version of ultrafilter logic. To control deductive connections, 
comparisons among sub-universes with relative notions of large, given 
by corresponding ultrafilters, have been introduced. Sorted ultrafilter 
theories with axioms expressing such connections have been shown to 
handle correctly relative notions of large subsets and inheritances, 
thereby providing a sorted framework for ‘almost all’ and ‘generic’ 
reasoning. 
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We have also commented on some perspectives for further 
work. Some interesting connections with fuzzy logic and inductive and 
empirical reasoning suggest the possibility of other applications for our 
logic (Grácio (1999); Veloso and Carnielli (2001)). Ultrafilter logic 
extends conservatively classical first-order logic, but still sharing several 
properties, such as compactness and Löwenheim-Skolem. It appears to 
merit further investigation (Rentería, Haeusler and Veloso (2002)). 

 
Resumo: Certos argumentos empregam objetos ‘genéricos’ ou ‘típicos’. Sugere-se uma 
explicação para (alguns aspectos desta) idéia em termos de ‘quase todos’. A intuição 
de ‘quase todos’ como ‘todos exceto por algumas exceções’ é tornada precisa através 
de ultrafiltros. Propõe-se um sistema lógico, com quantificadores generalizados para 
‘quase todos’, como uma base para raciocínio genérico. Esta lógica é monotônica, 
tem um cálculo dedutivo simples, que é correto e completo, e é uma extensão 
conservativa da lógica clássica de primeira ordem, com a qual compartilha várias 
propriedades. Para raciocínio genérico, introduz-se a idéia de indivíduos genéricos, 
que são internalizados como constantes genéricas, originando extensões conservativas 
onde se pode raciocinar sobre objetos genéricos conforme almejado. Considera-se 
também uma versão poli-sortida dessa lógica a fim de tratar distintas noções de 
subconjuntos ‘grandes’. Além disso, indicam-se outras possíveis aplicações para tal 
lógica. 
 
Palavras chave: Lógica de ultrafiltros, ‘quase todos’, semântica, axiomatização, 
corretude, completude, objetos ‘típicos’, constantes genéricas, noção relativa de ‘quase 
todos’, lógica de ultrafiltros sortida, raciocínio com ‘quase todos’ e ‘genérico’ sortidos. 
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