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1. INTRODUCTION

A natural extension of Natural Deduction (N.D.) was intro-
duced by Schroeder-Heister (Schroeder (1984)) where not only
formulae but also rules could be used as hypotheses. This fact
immediately allowed for the possibility of rules of arbitrary level
that could discharge not only assumption-formulae but also as-
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sumption-rules. This extension of N.D. was used in the definition
of abstract introduction and elimination schemes for which the
set of intuitionistic sentential operators {L,—, A,V} was shown
to be complete, i.e., for any sentential operator @, if the in-
troduction and elimination rules for ® are instances of the ab-
stract schemes then, there is an intuitionistic formula F con-
structed out of the intuitionistic sentential operators and the
sentential variables occurring in ®(Ay,..., A,) such that F74¢
®(Aq,...,A,) + F. This idea made it possible to define an
arbitrary level (absiract) Natural Deduction and, under certain
conditions, to obtain an abstract version of normalization and
strong normalization results.

The aim of the present paper is to define a typed A-Calculus
which has types of arbitrary levels (formula-as-types and rule-as-
types) and to provide it with a categorical denotational seman-
tics. It can also be shown that this typed A-Calculus is Curry-
Howard isomorphic to Schroeder-Heister’s abstract N.D., from
now on denoted by HC.

The System Apg is defined in the traditional way, that is,
through rules for Type construction, Term construction and re-
duction rules.

2. TYPES

e Ay, By, Cy, ..., An, Bn, C,, ... are types of level 0.

o If Xy, ..., X, are types of level 0 and ® is a type construc-
tor, then ®(Xy,...,X,) is a type of level 0.

e If Ty,...,T, are types, B is a type of level 0, and % is the
greatest level among T74,...,T,, then (TIT, ..., T1/B) is a
type of level k 4+ 1. Here T denotes the string obtained
from 7" by replacing all the occurences of / and — by —
and / respectively.
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Examples :
e (A/B) is a type of level 1.
e ((A— B),D/C) is a type of level 2.

e (((A/B),D — C)/E) is a type of level 3.

We need some auxiliary concepts and definitions before pre-
senting the rules for term contruction. The funtions p; and ps
are defined as:

o p1(B) =0, if B is of level 0.

e po(B) = {B}, if B is of level 0.

o p1(T],...,T}/B) = pa(T1) U...U pa(T3)
o po(T},...,TI/B) = {B}

A contest is a sequence (sometimes viewed as a set) of the
form :
wy s T s Tagen i@y t Iy

We will use capital Greek letters A, © and I' to denote contexts.
A pattern is simply a variable z associated to a type expres-
sion T. The level of a pattern is the level of its type. Patterns
of level 0 correspond to formula assumptions in traditional N.D.
Patterns, in general, will correspond to assumption rules.
Before we define the class of terms, let us consider the follow-
ing example of a deduction scheme in N.D. style:

[H), ..., [H]] [HY), ..., [Hi]

| |
G1 Gn
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We can relate each hypothesis H}” either to a term  : H?[z:
H?] or to a pattern of the corresponding type. Thus, the term
related to the deduction of the corresponding G, has free oc-
curences of z. The term corresponding to the deduction of the
whole type must then have z as a bound variable, since the type
corresponding to z is discharged by the rule. Well, we may think
of a more computational kind of rule where the discharging mech-
anism is applied only to the deduction of the appropriate premiss.
Thus our A-Calculus should take into account that the binding of
a variable in a term representing a rule, or better, an application
of it, is only related to the term representing the deduction of the
corresponding premiss. This selective way of binding variables is
then represented by a list (of lists) of variables where each mem-
ber of the list is related, in the correspondent ordering, to the
term where these variables are bound. This is considered in the
second item of the following definition.

e z: X[z : X]is a term for any type X of level 0 and any
variable z. Notice that a pattern is a distinguished kind of
term.

o If t1 : Ty[O1],...,tn : Tn[O,] are terms and z is a pattern
of type Tlf, ...,T1/X, then

By | oo | Ba] <2ty by > X[z TH, . T/ X, 01—

[Z1], .-+, On — [Z0]]

is a term where, T; is a list of variables whose respective
types are in py(73).

We can represent the introduction and elimination rules for
an arbitrary constant ® in our A-Calculus as following. Let @
be a constant which has n introduction schemes, each of them
similar to the rule shown at the beginning of this subsection.

© Manuscrito, 1999. XXI1(2), pp. 149-163, October.
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[ts n schemes are, each of them, represented by the following
abstraction terms Ag, 1 =1,...,n.

Let :z:_; 1:; and t; (m_é) G’;[Fé] for 0 < 7 < p;s. Then
ALk, o (8 th) f @(Fry ey F) [T, s T

is a term.
Related to these n introduction schemes we have the following

elimination scheme:

Let
o 7. = [yt : (Til)f,...,( f,ml)T/G”i,'”,y;i - (T;‘hl)if,...,
(s /G

o v; : A[A]]
o v:®(T),...,THIA]
then,
Appa[Ui, -2 Yn] <V, V1,00 Un >t A[A,A; — ;] is a term.

Fact 1 [t is worth noticing that from the way we construct our
terms for representing introduction and elimination rules, we
have the following:

For each variable (either free or bounded) of type rule
R occurring in a term of the form Ail,[x_i,...,mii]
(8, ) O(Fy, ..., F)l t,...,T] and for any
term t that is formed by an application of ®-Elimina-
tion, there is a subterm of t of type p2(R) with vari-
ables occurrences with types from the set p1(R), among
others.

© Manuscrito, 1999. XXII(2), pp- 149-163, October.
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This fact plays a major role in the reduction rules shown
below. Whenever there is no risk of confusion we will omit the

index (i) of A%.
3. OPERATIONAL SEMANTICS

A term is called a redez if it has one of the following forms:
Appa[ii, .-, ¥n) < Agzt, ..., aﬂp](t‘l, " .,tii), V1, ..., 0 >0 A[T]
or

Appq)[A] < App\ll[@] <lryeenylpe 2,010, > A[F]

The former is called an operational redex, while the latter is
called a structural redex and plays the réle of permutative reduc-
tions in N.D.(cf. (Prawitz (1965))).

Before we define reduction rules for these redexes, we will
take a brief look at what happens in an N.D. framework. For
the sake of simplicity, we will write down the reduction rule with
A representing the first introduction rule for @ (in the ordering
of the minor premisses in the elimination rule). Let A; be the
following context:

2y (OD/GE, .z, (@j,l)f/aj”

Notice that each variable zj, in this context, is of type ((6}) —
GY)T. This is the type of the terms that correspond to the i-
th premiss in the (first) ® introduction rule. Fact 1 says that
we must have in the first ® introduction rule the set of types
discharged (variables bounded to the new term) is ©! for the
first premiss, ©} for the second, and so on. Let’s consider the
following redex (associated with this first introduction rule).

Appo[0| Ay | ... | AJ(Aa[®) | ... OL(, ... 1), di, ..., dn) : A[T]

© Manuscrito, 1999. XXI1(2), pp. 149-163, October.



RULES-AS-TYPES AND NATURAL DEDUCTION 155

Consider the process of filling all of the z; (of type (04H)1/G})

with the terms ¢ (of type G} and context ©?). The reduction of
this redex is the result of applying this process of filling (which is
a generalization of substitution) to dy. We shall now detail this
filling process of variables (representing rules) with terms (rep-
resenting the associated deductions). This will be called iterated
substitution and is illustrated below in the context of N.D.

To replace a variable z of type O1/G by a term u of type G
and context ©,T'in a term t(< z,d1, - - -, d,, >) (here we explicitly
show the occurrence of z) is equivalent in N.D. to replacing a
derived rule by the deduction that justifies it.

Let TI be the following derivation:

1 IT;
m
R
o
by
B
Given a deduction IT*

H,...H,

H*

o

we can replace the application of the rule R:
Hi s Hy
o

by IT*, obtaining in this way the following derivation:

10 1y
H o OH,
I’I*

(07
s
p
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In AR, the process of substitution discussed above can be formal-
ized in the following definition of iterated substitution.

Definition 3.1 Let T; be a type of level k and B a type of level
0, then:

o p1(B) =0 and py(B) = {B}.
o po(T},...,T}/B) = {B}.
. pl(TIT7 7T71-/B) = pZ(Tl) U. "UPZ(Tn)'

o Ifd(z): Clz :T,A]is a term, and ¢; : p1(T)[[, 7 : p2(T)1],
then the iterated substitution of z by ¢;, denoted
d(z & t)) : C[A, I'] is such that:

— If T is a formula, then d(z & t;) is d(ty) : C[I.
- T =4H},...,H' - F,... H., ... Hi» > F,/G,
then ¢; and d must have the forms: .
d(< z,dy,...,dp >): Clz: T, A]
with d(7; : Fi[A, g : H;], and
b {1y oo 3 Bp) Gl 3 ﬁiT/Fi,F]
d(z & t1) : Cla : T, T, A] = d(ty (2; & dy)) : C[A, T

We should consider what happens if some of the z; are of the
type of a rule in the example above when we are treating the case
of introductions and eliminations. In this case, if z;, for some 7,
is of the type of a rule, it must be of type AT/H]- where A is the
context of d;, in the elimination rule, which in turn is of type H;
(Fact 1).

Thus, given the following operational redex

© Manuscrito, 1999. XXII(2), pp. 149-163, October.
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Appa[yi, .-, k) < A<p[:c_‘%, SN ,a:f{u](t‘f, vesghi )y W1y o oo 5 Wk BB A[TY,
for 1 < w < k, its contractum is

v (y§ i t) : A[l']
In the same way, given the structural redex
Appo[A] < Appu[O] < t1,... tk >, V155 Un >t A[T],

its contractum is
Appy[O](t1, Appa[A](tz,v2, -y Vn)s -, Appo[A](tk, V2, - -+ Vn))

We use the notation £ > t’ to denote that ¢ reduces ¢’ in one
step. >* is the transitive-reflexive closure of >.

We show below a short example of a reduction for the case
where z; is of the type of a rule in N.D. in our calculus. Consider
the following deduction which has ®(F) as a maximum formula.

I [f14]
A
51 B
L e
C 1,
®(F)
D
This reduces to
I
A
I3
B
I,
@
I14
D
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In Mg the reduction is as follows.
Apps[2] < Ao[z]u([] < @,t >),v([y] < 2,t'(y) >) >
D] >*v(z + u(z «t'(y + 1)),

where Ag[z]u([] < z,t >) : ®(F)[] represents Il;, ¢ represents
,,t'/(y) : Bly : A] represents IIs, and v([y] < =z, t'(y) >) :
D[z : A — B/C] represents Ily.

From the relationship between Schroder-Heister N.D. (HC)
and Ag as shown here we have the following results.

Theorem 3.1 For any proof IT of & with assumption set I', there
is a Ag-term ¢ : o[[']. For any Ag-term ¢ : o[I'] there is a proof II
of « with assumption set IV C I'.

Theorem 3.2 For any term ¢ : T[['] there is a term without
redexes (Normal) ¢ : T[] with IV C T.

Theorem 3.3 Let t(Z) : ofZ : T'] be the term associated with
a proof IT in HC of o from I'. Then if t = t1,...,t, = t/, with
t' normal, is a sequence of reductions, then the normal proof
associated to Il can be obtained from the inverse image of ¢’ and

the reduction sequence in HC is the inverse image of ¢q,...,¢,.
1B e B o B b,
0 ¥ !
Hh (> Ht,' e 2 th

4. CATEGORICAL SEMANTICS

The categorical semantics for Ar is defined in the usual way,
interpreting Types as objects and terms as morphisms. Given a
Cartesian closed category C with finite co-products, the denota-
tion function [[.]] takes as arguments types, patterns and terms,
and yields values in C (either objects or morphisms).

© Manuscrito, 1999. XXII(2), pp. 149-163, October.



RULES-AS-TYPES AND NATURAL DEDUCTION 159

Types
e If T is a basic type of level 0, then [[T]] is an object of C.

° IleT.,...,T,I/Y is a type of level n > 0, then

(zf, ..., Th/ YN = [y B e 0bi(C)

o If ®(F,..., F,) is a type of level 0 and has Ri,..., Ry as
the types of its abstraction (introduction) rules , then

[@(F, ..., F)] = (Rl + . + [[Ball

IfT =2y : T4, ...,&n : Ty is a context, then we use [[[]] to denote
[Tiz1 A [[T3]], that is, the product of the denotations of each type
in the context.

Patterns

o [[z: Rz : Rl = Ry

Terms

A term ¢ : T[] will be interpreted as a morphism from [[I']]
into [[T7].

o [[z: X[z : X]I| = Iiixy)

o Given that z : T},..., T}/ Y[z : TIT, ...,T1/Y] is a pattern
and ¢; : Y;[T; U ©;] are terms, 0 < i< n+1, provided that
T; = ©,/Y; and that

[[t: - Va0 U O] = fi : [I0) x [[©:] — [[¥ill,

by the property of exponentials that gives a natural iso-
morphim between Homgc(a X b,c) and Homc(a, ), we

© Manuscrito, 1999. XXII(2), pp- 149-163, October.



160 EDWARD H. HAUESLER & LUIZ CARLOS P.D. PEREIRA

have a unique morphism Ji from [[I;]] into [[¥;]){l®). Thus,
< fi,..., fn > is a morphism from [[I']] into

[(vaJiedl x ... x [[¥,]jle-1,

= :’_—.;‘
=) &,
I ?ﬁ =
: A : 2
X N X g
=8 = <
5, : g A
X ( £ X
— N: =
= voE
x =X
x
x ~ X
E v E
>, B

© Manuscrito, 1999. XXII(2), pp. 149-163, October.
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Finally, we define
[0 ]...0n] < z,t1, st >: Y] TF, ., TH/Y,T1, ., Talll

as eV[[R)]° < I[[R]], < E, Y ,ﬁ >>, where Ris TIT, i ,T,I/Y
and ev(g)) is the corresponding “eval” morphism of its deno-
tation, which is of course an exponential. That the denota-
tion given above is indeed a morphism from [[x BB, D1y -5
I',]] into [[Y]] is represented by the Diagram (L)

o Given that t; : Y;[[;U®©;]is aterm, 0 <@ <7n+ 1, and that
[[t: : vi[T; v @) = fi : [[T:]] x [[©:]] — [[¥il],
< Fi,..., fa > is a morphism from [[[]] into
[[Yl]][[el]] X ... X [[Yn]][[gn]]

Thus, we define

[Ag[O1]...1On] <t1,...,tn >: Y[[y,...,[x]l]
as i[R,J)° < 3‘;, - .,ﬁ >, where R; is

0,2 Yi,...,0, = Yo /®(F, ..., Fn),

the i-th introduction rule for ®. So, ifg,) is the injection

morphism given by the denotation of co-product of type
BLFy 5005 Fos )

e Finally we have the morphism associated with the elimina-
tion rules. Let

- G= :Tf‘l,...,Tf,ml/G’i,~--,y;i :T;;,1>"'1Tr)i,mrj,i/G;;]
— v;  A[A]]

© Manuscrito, 1999. XXII(2), pp- 149-163, October.
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- v:®(F,..., F,)[A]

Given that ’
1a] B g, ... B

and
[g) x (1A &3 ay

where A} = A; — ¢, let DISTRB = ev o dist be the mor-
phism that plays the role of the distributivity law of the
product with regard to the co-product. Thus, observing
that

[[®]] = [[¥il] + - . - + [[wnll,

we finally define
[[Appa[gi,. .., gn] <v,v1,... 00 > A[A AL, AL
as the composition
(eallo < Tggig mgagy >, - [loalle < Ty mragy >)
oDISTEBo < [[v]] Igaqnx..xtann) >
By defining a suitable concept of substitution at the semanti-

cal level, i.e., a kind of a iterated composition, we can prove the
adequacy of our categorial model.

Theorem 4.1 Let ¢t : Y[A] be a Ag-term such that there is
t":Y[A]and t>*¢'. Then, we have that [[t : Y[A]]] = [[t' : Y[A]].

5. CONCLUSION

From this theorem we can conclude that any Cartesian Closed
Category with finite co-products is a model of Ag. The addition

© Manuscrito, 1999. XXII(2), pp. 149-163, October.
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of types of arbitrary levels does not interfere with the basic se-
mantical intuitions. The enlarged expressive power of AR relies,
for example, on the possibility of considering certain assumption-
formation processes as the specification of programming modules
(as in MODULA-II (Wirth (1985))): the modules hide their im-
plementations, but specify the interface (types of the premises, of
the discharged hypothesis and of the conclusion) that they ought
to have with the world.
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