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The purpose of this paper is to point the way for a construc-
tive proof-theoretical and algebraic analysis of the connective of

equivalence. This theme is developed further in [LEM99].

The purpose of this paper is to point the way for a construc-
tive proof-theoretical and algebraic analysis of the connective of
equivalence. This theme is developed further in [LEM99].

It appears to be a characteristic of Western Philosophy that
it always searches for a small number of primitives with which
to explain everything. Sometimes this was carried to extremes,
as was the case in Parmenides” “One”™!. Occasionally success is

“ \\ hich scems to be returning to Cosmolugy; sce [Ferto).
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achieved for a while; for example consider when it was theorized

that the Cosmos could be reduced to protons, neutrons and elec-

trons; or in the case of Mathematics, when it was thought that it
]

could be reduced to Set Theory with just a binary relation “¢”.
In the field of Logic similar events took place.

Once the primitives have been reduced to a small finite num-
ber, then the question arose whether it could be done with just
“one”; in the case of Logic that meant one axiom, one rule, one
connective. Sometimes the problem, although interesting in its
own right, was, together with its solution, quickly forgotten?.
On the other hand, the reduction to a small finite number has
often led to either new fields or to simplifications in other areas.
An example of the latter is Prawitz-Russell-Scott discovery that
the traditional intuitionistic connectives and quantifiers could be
generated from the second order universal quantifier and the con-
ditional®. The reduction in the number of logical particles made
it then possible to give much simpler formulations of semantical
notions as well as obtaining new proof-theoretical results and in-
terpretations. For example, the Prawitz-Russell-Scott result jus-
tified the common observation that the conditional in intuition-
istic logic has a much more important role than, say, conjunction
or disjunction *.

One could then further reduce the number of logical parti-
cles by combining the universal quantifier and the conditional
into a version of Russell’s material implication and thus it could
be claimed that it had been reduced to just one logical parti-
cle. However that result could (and would) easily be forgotten
since it only made the semantical and proof-theoretical concepts

2 A formmlation of the classical propositional calculus with one axiom and
one rule of inference was given in by Nicod, see Wajsberg’s [Waj00], in 1917.

#[ScoT9], [Pra65).

111 more than one instance, when measuring the complexity of a formula
it has been advantageous to consider the conditional on the par with the
quantifiers.
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INTUITIONISTIC EQUIVALENCE 207

more complicated, adding very little to the understanding of the
subject.

Now there is a propositional connective which has had a long
and meritorious history, namely equivalence. Amongst its many
important roles, is its role in definitions. The founders of mod-
ern logic (i.e. mathematical logic) placed a great deal of impor-
tance in definitions and thus it is not surprising that the question
arose whether the “conditional” could not be replaced by “equiv-
alence” in classical logic. The question was posed first by Sta-
nistaw Leéniewski and answered by Alfred Tarski. In his paper
“On the primitive term of logistic”®, which constitutes an essen-
tial part of his doctoral dissertation submitted to the University
of Warsaw in 1923, Tarski shows that it is possible:

to construct a system of logistic in which the sign of equiv-
alence is the only primitive sign (in addition of course to

the quantifiers).

The quantifiers used in ”On the primitive term of logistic”
were quantifiers over propositions and propositional functions®.
At the beginning of the century, the Polish School were obtain-
ing fundamental results in many areas of Logic, in particular in
the traditional propositional calculus as well as in the extended
propositional calculus (that is; allowing quantifiers over proposi-
tions)

Jan Lukasiewicz, Stanistaw Le$niewski and Alfred Tarski were
amongst the first contributors to that field. The works of Luka-
siewicz and Tarski are well known, however the work of Les-
niewski is relatively unknown outside of Poland. The reasons
why Le$niewski’s work has not had a wider acceptance are var-
ied. Much of it was lost during the 1944 fire of Warsaw and the

*Translated in [Tar56], also appearing as “Sur le terme primitif de la

logique”, [Tar23b], and as “O wyrazie pierwotnym logistyki”, [Tar23a).
Concepts introduced by Bertrand Russell in [Rus03].
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few articles that have survived are in Polish Journals not readily
available outside of Poland. Fortunately the Ballieu Library and
the Philosophy Department of the University of Melbourne have
formed the Ledniewski Collection. This collection comprises all
materials published by Stanistaw Leéniewski during his lifetime,
and some unpublished materials in their original languages’.

All these developments came about before Godel had shown
that truth and derivation need not be co-extensive. Consequently
the azioms for the sentential connectives were determined purely
on their truth-value interpretation; furthermore only two truth
values were considered®. On the whole derivations were consid-
ered as secondary objects; they were just a means to discover the
truths. Almost universally, the only rule of inference was modus
ponens. The particular choice of axioms was motivated mainly
by aesthetical considerations (the least, shortest etc.).

After Godel’s incompleteness theorems it became evident
that derivations could, and should, be studied on their own right.
Gentzen’s systems of Natural Deduction showed that pure logic
could be adequately analyzed through the use of various rules of
inference rather than relying on cleverly chosen azioms. In fact
Gentzen went much further and showed that the Natural Deduc-
tion Systems could be set up so that each logical atom (i.e. each
connective, quantifier etc.) had its own set of rules (in which
no other logical atom was explicitly mentioned); in addition he
observed that the rules of inference for the logical atoms could be
separated into two types. One type, now traditionally called an
Introduction-rule, acted as a definition® of the logical atom; the

TThe works of Lesniewski are being translated into English and published
in the Nijhoff International Philosophy Series by Kluwer Academic Publish-
ers, (see the Introduction to [SS88]).

31 ukasiewicz introduced the many valued logics at more or less the same
time.

9That is, gave sufficient conditions to derive a formula with the logical
atom as principal connective (quantifier).
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other type, called an Elimination-rule, gives sufficient conditions
in order to infer from a formula with the logical atom.

Another event that took place at the turn of the century that
reduced the over-emphasis on truth-values was L. E. J. Brouwer’s

Intuitionistic Mathematics. Now although Brouwer insisted that
his interest lay in the study of Mathematics and not in the study
of this or that particular logic, Arend Heyting observed that in
intuitionistic mathematics the linguistic expressions and, or, for
all, etc., were being used with certain regularities!®. Thus in spite
of Brouwer’s dislike of formal logic, there arose a well defined
“Intuitionistic Logic” and in particular an “Intuitionistic Propo-
sitional Calculus”. Gentzen’s investigations on logical inference
include intuitionistic logic — the NJ and LJ systems — and in
fact he found that as far as the Natural Deduction Systems were
concerned the intuitionistic inference was far more amenable to
his analysis in that he was able to derive his famous Haupsatz for
NJ''. With 20/20 hindsight this is not surprising since both intu-
itionism and Gentzen’s systems place much more importance on
proofs than on truth-values; although in intuitionism the proofs
are represented in the (ideal) mathematician’s mind, while in
Gentzen’s systems the proofs are represented by finite trees of
formulas.

Eventually it came to be recognized!? that the abstract no-
tion of proof could be made the subject of mathematical analysis,
just as it had occurred with the concept of set. Consequently in
the middle of the century different theories of constructions were
put forward!3; the aim usually being to show that a sentence is

YFor the history of the formalization the reader is recommended to read
Troelstra’s [Tro89] and Ruitenburg’s [Rui91].

" And 30 years passed before D. Prawitz, in [Pra65], obtained it for the
classical system NK.

2Principally because of the many articles by G. Kreisel supporting that
view.

"¥See, for example, Goodman’s [Goo70], Laiischi’s [Lau70] and Scott’s

© Manuscrito, 1999. XXII(2), pp- 205-266, October.
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an intuitionistic theorem iff there is a(n abstract) construction
justifying it.

Now although the idea of an abstract proof arose in the intu-
itionistic mathematics, it need not be so restricted; it can be used
whenever one is more interested in a dynamic rather than static
viewpoint!4. And even in classical mathematics, the problem of
the identity of proofs is wide open; in particular there are con-
flicting views between proofs and their linguistic representations

as derivations.

1 Constructive Equivalence

Tarski had shown that a considerable portion of classical logic
could be based on the classical propositional connective of equiv-
alence “=” (and suitable quantifiers). The original equivalence
connective (used by Leéniewski and Tarski) had its roots in the
two valued truth table; however in this manuscript we base it
upon an abstract concept of construction.

Since we wish to be sure that the discussion can be carried
out in a constructive metatheory (and will so do on many occa-
sions) we start by considering a subtheory of the propositional
minimal calculus whose only connective is “=” and name it the
Minimal Equivalence Calculus; MEC.

For the propositional parameters'® of MEC we will use:
p,q,7,.... The formulas of MEC are defined so that they are ei-
ther propositional parameters or expressions of the form (A = B),
where A, B are themselves formulas.

The crucial step, which determines the nature of the logic, is

[Sco69].
1A viewpoint shared by the Categorists, see Lawvere’s [Law75].
15Sometimes referred to as atomic formulas

© Manuscrito, 1999. XXI1(2), pp. 205-266, October.



INTUITIONISTIC EQUIVALENCE 211

the understanding of when one may assert a formula of the form
(A = B). Following the Brouwer-Heyting-Kolmogorov interpre-
tation (also known as the BHK interpretation. In the authors’
view it would be more accurate to call it the “BHK? interpreta-
tion” because of the many contributions of Kreisel, for example,
[Kre62]) we will assert such a formula only when there is an ab-
stract proof (a.k.a. construction) that justifies it. Keeping in
mind the view of equivalence as a biconditional, one argues that
a construction ¢ proves or justifies a formula (A = B) when ¢ con-
sists of a pair of constructions (cj,cz) where ¢; takes any proof
of A into a proof of B and c; takes a proof of B into a proof
of A Note also that one could put other additional conditions,
e.g. that ¢; and ¢y be in some sense equivalent (equal complexity,
similar structure, built up from the same components and so on).

The simplest formalization!® to represent such an interpreta-
tion is one in the style of Gentzen’s NJ. That is, the derivations
are to be trees of formulas. The formulas at the top of the tree
are assumptions and (some) of the rules of inference may close
or discharge assumption formulas. As Gentzen himself observed,
the beauty of his Natural Deduction Systems is that the rules of
inference deal explicitly with one logical atom at a time. Fur-
thermore the rules on inference for any given logical atom can be
partitioned into two classes, one that acts as a definition (called
I-rules) and the other which gives sufficient conditions for draw-
ing inferences from formulas containing the logical atom (called
E-rules).

There is only one I-rule of inference. It defines” the propo-
sitional connective = and it represents a possible reading of the
above interpretation using a pair of constructions:

®But by no means the only one. Nevertheless we find it to be the simplest
one that does not explicitly involve terms from a construction calculus.
"In the sense of Gentzen’s [Gen36].

© Manuscrito, 1999. XXII(2), pp- 205-266, October.
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[7] [€]
C F
(F=C)

(We are following the convention of enclosing within “[ ]” the
formula occurrences discharged by the rule.)

In Gentzen’s [Gen36] it is stated it should be possible to
obtain the E-rules from the I-rule:

Durch Prizisierung dieser Gedanken diirfte es moglich sein,
die B-Schliisse auf Grund gewisser Anforderung als eindeutige

Funktionen der zugehoringen E-Schliisse nachzuweisen.

In Lépez-Escobar’s [L6p95] a method is given on how the E-rules
can be effectively obtained from the syntactical form of the I-
rule. Following the algorithm one would obtain the following two
rules:
€] [7]
(F=C) F B and (F=C) C B
B B

However, since we are interested in a specific Natural Deduc-
tion System—instead of obtaining results about many diverse
systems—the above rules suggest the following simpler E-rules
for the connective =:

(F=C) F and (F=C) G

& F

In other words, the biconditional form of modus ponens. The
formula explicitly mentioning the logical atom = is known as the
major premise. An important characteristic of the biconditional
forms of modus ponens is that the conclusion (of an application)
of the rule is a proper subformula of the major premise.

It should perhaps be emphasized that intuitionistic equiv-
alence is not associative, as is the case for classical proposi-

© Manuscrito, 1999. XXII(2), pp. 205-266, October.



INTUITIONISTIC EQUIVALENCE 213

tional calculus. In fact, an axiomatization of classical equivalence
can be obtained by adjoining a rule that guarantees associativity.

If T is a set of formulas and B is a formula then by
+B

is to be understood that there is a formal derivation II of the
formula B in which the formulas which have an open assumption
occurrence in IT belong to I'.

The following observations express the principal properties
of the MEC derivability relation. We call them propositions not
because they are in any way difficult to prove but rather because
they could be used as a starting point for other logics. We write
them in a “sequent like” manner

Proposition 1.1 (Finiteness) If'F B, then thereis A Crinite
[ such that A+ B.

i i 'EB
Proposition 1.2 (Monotonicity) TAFE
Proposition 1.3 (Transitivity)

I'-B ABFEF

T.AFF

Proposition 1.4 (Deduction Theorem)

T, F-C ACFF
T,AF (F=C)

Proposition 1.5 (Modus Ponens)

I+ (F=C) AFF
T,AFC

© Manuscrito, 1999. XXI1(2), pp- 205-266, October.
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Using the above tools one can obtain the following results
about the system (we shall omit parentheses when there is no
risk of confusion and “T” is an abbreviation for “(p=p)”):

Theorem 1.6
1. F (F=C)=(C=F).
2. F=C,C=B+ F=B.

Lo

FF=(T=F).
flf.Al,]:éE.Az F (,7:15.7:2)5(./415./42).

SRS

F, Al (F=A).
6. F, At (F=D)=(A=D)).
7. (F=A)=D, F k (A=D).

If ¢ is a propositional parameter and F and B are formulas
then [qg = B]F is the ezpression obtained by replacing all occur-
rences of ¢ in F by B and it is called the replacement of ¢ by
B. In the case of MEC, since there are no (bound) variables,
[¢ = B]F is also a formula and thus we say that it is the formula
obtained by substitution of ¢ by B in F. We write the substi-
tution as ‘Fq/B7. If the ¢ is obvious from context then we may
simply write “F7B". On the other hand, if we wish to call atten-
tion to the propositional parameter ¢, then we may write “Fg"
instead of “F”..Correspondingly for simultaneous substitutions:
FD1, s Dg

Proposition 1.7 (Substitutivity)
D]EBl, o .,D}cEBk, j_‘l"Dl’ o .,ij = frBl, . .,Bk_‘.

© Manuscrito, 1999. XXII(2), pp. 205-266, October.
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Proof : By induction on the complexity of the formula F. It
is immediate for atomic formulas and for compound formulas it
follows from 1.6. O

Corollary 1.8 B=D+ FB'=FD"

We extend the notation for substitution to sets of formulas;
that is “I'"¢"™ and “I'” represent the same set, while “I'"¢/B™ and
“I'TB™ represent the set of formulas obtained by substituting in
each formula in T the formula B for all the occurrences of the
propositional parameter g.

Proposition 1.9 (Invariance) If II7q" is a derivation of F'q’
from TG, then for all formulas B: II'B" is a derivation of F'B"
from TTB™.

Proof : This time the proof is on the length of the derivation. O

Corollary 1.10 If I'q' - FTq" then for all formulas B: TTB"F
FB.

In view of the invariance theorem, we shall give, whenever
convenient, the results in terms of the propositional variables.

Let us now add to the propositional language of MEC a
propositional constant for intuitionistic absurdity, “L”. The es-
sence of intuitionistic absurdity is that all formulas are derivable
from L. It turns out that it suffices to have all the atomic for-
mulas derivable from L; hence the following rule of inference:

Rule for Intuitionistic Absurdity —j—

where A is an atomic formula other than L (thus in the present
context, a propositional parameter).

© Manuscrito, 1999. XXII(2), pp- 205-266, October.
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The extension of MEC obtained by adding L to the language
(as an atomic formula) and the rule of intuitionistic absurdity to
the rules of inference will be called Intuitionistic Equivalence, in
symbols: MECn. A simple induction on the complexity of the
formula gives us:

Lemma 1.11 For every formula F of MECn, LFyecnF.

Abbreviation: We will abbreviate “(F=L1)” by “-~F”.

The following results contain some of the basic inferences in
MECn, where “+” is to represent “~MECn -

Lemma 1.12 ) F-~L and + (-1=T).
()) = (ﬂpE—\q)E(—rﬂpE—rﬂq),
¢) F (~p=——q)=(—~g=—p).

Making use of the fact that from L any formula may be derived
we obtain the following;: '

Theorem 1.13 If T, FF L, then I'F=F.

Corollary 1.14 a) p,—pF q.
b) If T, F + G then T,~G F ~F.
¢) b =(p=-p) F —p.

d) F = (p=-p).

e) k= (p=g)=-(-p="9).

The following require a little more work:

Lemma 1.15 a) F = (p=¢)=(-p=——q).
© Manuserito, 1999. XXII(2), pp. 205-266, October.
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b) = ﬁ(qu)E—u(ﬂpEﬂq).
¢) b —=p=((-—p=q)=9).
d) k= —p==(9=(p=9))-
e) b ——p=(-g=-(p=q)).
f) F==(p=g)=(-—p=--9).

The following theorem could be called Associativity under
negation:

Theorem 1.16 F =(p=(¢=r))=-((p=q)=r).

We shall present algebraic proofs of 1.15 and 1.16 when we

discuss equivalence algebras with negation in section 7 (see .

Proposition 7.4).

2 Heyting and Complete Heyting Algebras

Since the systems we are considering are subsystems of the Ex-
tended Intuitionistic Propositional Calculus, we shall character-
ize soundness and completeness in latter sections in terms of
Heyting and complete Heyting Algebras. The aim of this section
is to set down the basic terminology for the topics in the title for
the convenience of the reader and latter reference. Proofs of our
statements can be found in [BD74] and [FS79].

If L is a partially ordered set and z , y € L, write
x27 ={yeL:z <y}
+z* ={yeL:y<a}
* z Ay (the meet of z and y) for inf {z, y}, whenever it exists;

* ¢ V y (the join of z and y) for sup {z, y}, whenever it exists;

© Manuscrito, 1999. XXII(2), pp- 205-266, October.
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« T and L for the largest and smallest element of L, whenever
these exist.

A partially ordered set L is a lattice if every pair of elements
in L has a meet and a join. A lattice is distributive iff

a:/\(sz):(:c/\y)v(:v/\z).

[t is easily verified that this last condition is equivalent to its
dual,

:vV(y/\z):(a;Vy)/\(sz).

Let L be lattice with T. A subset F of L is a filter if
T ¢ F, it is closed under finite meets and z € F implies 27 C
F. A filter is proper iff it is distinct from L. Hence, if L has L,
[ is proper iff L ¢ F. It is easily established that the property of
being a filter is preserved by arbitrary intersections and directed
unions. If S C L, the filter generated by S is the intersection
of all filters in L that contain S.

Lemma 2.1 Let L be a lattice with T. Let S be a subset of L.
Then, the filter generated by S in L is gwen by
[S]={e €L :3ay...,an €S, suchthate 2 a; A ... A a,}

If L has L, [S] is proper iff S has the finite intersection property
(fip), that is, the meet of any finite subset of S is distinct from
1. <&

A Heyting algebra (Ha) is a distributive lattice with T
and L, H, such that for all z, y € H

[Ha] Theset{z€ H:zAz< y} has a mazimum in H.
We write
2 =y =gy max {z € H: 2z Az<y},
called the implication operation in H. Hence, for all z, v,

© Manuscrito, 1999. XXI1(2), pp. 205-266, October.
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z € H,
[—] st Ay<z iff z<(y—2).

Lemma 2.2 Let H be a Ha and let z, y, z € H. Then,
e)z <y iff z—=y=T.
bz A(z—=y) =z Ay.
cJrzAly—z)=zA((zAy) = (zA2).
d) If F is a filter in H, then
(i)z € F and (z — y) € F implyy € F.
(it) z € F implies y — z € F.

e) If F is a proper filter in H and (z — y) € F', then there is a
proper filter G in H, such that z € G and y € G.

Proof : We prove only (e). If y € [F U {z}], 2.1 yields t € F
such that z A t < y, and the adjointness relation [—] implies
t < (z — y). Since t € F, we get (z — y) € F, a contradiction.
Hence, the filter generated by F and @ is the proper extension of
F separating = and y. O

If z, y are elements of a Ha H, define
[«] s y=(z=2y) Ay —a),
called the equivalence operation in H; its basic properties are
stated in
Lemma 2.3 Let H be a Ha and let z, y, z be elements of H.
then,
ag)r =y iff tey="T.
b)z<(yez) iff zAy=zAcz
)z A(y+ez)=zA(zey) &y e2).
© Manuscrito, 1999. XXII(2), pp. 205-266, October.
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d) If F is a filter in H,
(i)z € Fand (z < y) € F imply y € F.
(ii)z € Fandy € F imply (¢ < y) € F.
e) If F is a filter in H, then
(¢« y) € F iff [FU{z}]=[FU{y}]

f) If F is a proper filter in H and (z <> y) & F, then there is a
proper filter G in H, such that F C G and z ¢ G ory ¢ G.

Proof : We prove only (e). Suppose that [FF U {z}] = [F U {y}};
by 2.1, there are a, b € F, such that

aNz <y and bAy <Lz

But then, a Ab Az =a A b Ay and so, by item (b), (e Ab) <z
& y, as desired. The converse is immediate from item (i) in (d).

)
a

Recall that a lattice is complete if all subsets of L have
meets and joins. For S C L, write \/ S and A S for the
join and meet, respectively, of S in L. A complete Heyting
algebra (cHa) is a complete lattice that satisfies the following
distributive law :

[A,V] Forallae Land SCL, a AV S=V,saAs.

Some authors use frame or locale for what here is called a cHa.
Important examples of cHa’s are furnished by topologies on any
set. If L is a cHa, the implication operation in L is defined by

a—sb=\{zeLl:zAa<b}

Because L satisfies [A, V], it is easily established that the defining
property of implication, [—], is verified in L.

© Manuscrito, 1999. XXII(2), pp. 205-266, October.



INTUITIONISTIC EQUIVALENCE 221

3 The Lindenbaum algebras of MEC and
MECn

Another tradition started by Lindenbaum, Lukasiewicz, Tar-
ski et alia, is the association of algebraic structures to logical
theories!®. This technique has been extensively developed so that
it is now possible to construct complete algebraic semantics for
many important logics, see for example H. Rasiowa [Ras74] or D.
Scott [Sco74]. We shall discuss in this section how these ideas
apply to the systems MEC and MECn.

Let T be a set of MEC (respectively, MECn) formulas.

Definition 3.1 If A is a formula of MEC or MECn, set
* A ={B:T F (A= B)}.

* Ap < Bp iff T, A+ B.

« [ = {Br : B is a propositional formula}.

* T = (p = p)p-
* In the case of MECn, we identify L with I.

* When I' = (), write A for Ap.

Using the derivability properties of MEC and MECn, the
following are straightforward :

Lemma 3.2 With notation as above
a) Apr = B if T+ (A=B).

b) < is a partial order on the set I’ and T is its largest element.

18 At first this was quite distinct from the algebrization of Logic, a method
started by G. Boole and continued by Tarski, Halmos et alia. However, with
the advent of categories, the demarcation line has just about disappeared.

© Manuscrito, 1999. XXII(2), pp. 205-266, October.
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¢) For MECn, L s the smallest element in the partial order <.

Because of 3.2.(d), we may define a non-associative binary

operation * on I by :
A * Bp = (A = B)r.

Note that because neither in MEC nor in MECn do we
have a propositional connective for the conditional, there is a
fundamental distinction in I’ between < and *. Thus, we consider
it appropriate that Lindenbaum algebras include both of them.

Definition 3.3 With notation as above,

a) The Lindenbaum algebra of a set I' C MEC (MECn) is the
structure Lp = (L, <, T, %), (resp., L,p = £T5 S T gk )

b) The Lindenbaum algebra of MEC (MEChn), L (resp., Ln),
is the Lindenbaum algebra of the empty set of formulas.

From the derivability properties of MEC and MECHn, in-
cluding the results on negation (1.15), one can show

Lemma 3.4 The Lindenbaum algebra L. of a MEC (MECn)
set of formulas T satisfies the following rules :

(1) < is a partial order in I with T as its largest element and,
in the case of MECn, with L as its least element.

(2) * is a binary operation on I' such that, universally in [’

[« 1]:z*y =y *z.

[*2]: 2% T =z.

#3l:zxy=T iff z=y.

[«4] : fa<z*y and a<bx*c, then, a < (z * a) * (y * c).
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[« 6] : Ife <y< zthen,z xz< T *y.

[« 7] : (z*y) xz<[zx*z]*[(y*2)*2]

(3) In the case of MECn, we also have
[neg] - L+ (z x L) = L.

The remainder of this section is dedicated to the proof of
Theorem 3.9, that will be important for the completeness result
of the next chapter (Theorem 4.4). If A is a set of formulas in
MEC or MECn, write

A={A: AeA}

The relation of provability in MEC and MECn induces a
relation from 2% to L, indicated by the same symbol, and defined
as follows:

For S Ua C L (er L, ),

There is A U {A} C MEC (resp., MECn)

i { such that A C S, A=z and A - A

Definition 3.5 A subset T of L (resp., L) is a theory iff it
closed under F , that is, if T + =z, then z € T. A theory is
proper if T # L (resp., L.).

Note that a theory in £_ is proper iff L ¢ T'.

Proposition 3.6 With notation as above, let T be a theory in
L (resp., L) and let z, y, z € L (resp., L,,).

a) (1) TeT;
(i) z xy, y* 2z €T implies z x2z€T.

(1it) ¢z, z xy € T implies yeT.
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b) For all z € L (resp., L), x ™ is a theory.
¢) The property of being a theory is preserved under arbitrary
intersections and directed unions.
d) ForU C L (resp., L), let U? be the intersection of all theories
containing U (the theory generated by U). Then
Ut={zel:U F =},
and analogously for L _. In particular, {z} =z, forallz € L
(resp., L)
e) IfU C L (resp., L), then
WU ) =UU) ff sryel

[) The operation of taking theories satisfies the following proper-
ties, where U, V C L (resp., L) :

x U C Ut (inflationary);

« U CV implies Ut C V* (increasing);

% (UY)t = Ut (idempotent).

Proof : Items (a) and (b) are straightforward. For (c), let T7,
i € I, be theories and write T = (;¢; T;. If T F =, there is
A U {A} C MEC such that A C T, A==z and A + A. From
this, it follows immediately that z € T, for all + € I, and so,
zeT.

Now suppose that {T} : i € I} is up-directed and T' - z,
with T = U,e; T;- Thus, there is A U {A} C MEC, such that
ACT,A=zand A - A. By the compactness of MEC, there
is a finite I' C A, such that ' - A in MEC. Since I is finite,
T'cC T,, for some i € I. But then, z € T; C T, as desired.

d) It is sufficient to show that the right-hand side of the equality
is a theory. Write T = {z € £L: U + =z} and assume that
T + y. As above, there is A U {A} C MEGC, such that A C T,
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A=2zand A F Ain MEC. Let & be a set of formulas such
that © C U and & + A. But then, in MEC,

YF A and A F A,
and so transitivity of proof yields & = A, ie.,z €T, as desired.

e) By (b) above, the left-hand side of the equivalence implies its
right-hand side. For the converse, the hypothesis means that U,
¢ b yand U, z F y. It follows easily from the definition of
F in £ and the = introduction rule that U F & % y, as needed.
Item (f) is left to the reader.

Clearly, all of the above arguments will also work for £_. O

Definition 3.7 Let S be a set, P a subset of S and z, y be
distinct elements of S. We say that P separates = and vy
if both P and its complement have non-empty intersection with
{z, y}, that is,

Either (z € P andy ¢ P) or (y€ Pandz ¢ Pl

A collection U of subsets of S separates points in S iff all
distinct points in S can be separated by elements of U.

One of the most important properties of theories is described
by

Corollary 3.8 (Separation) Let T be a proper theory in L or
L.Ifz,yel (or L) are such that © * y ¢ T, then there is a
proper theory that extends T and separates x and y.

Proof : By 3.6.(e) we have (T U {z})* # (T U {y})", that is,
either
v @ (TU{y))' or y¢&(TU{z}"

If the first alternative holds, (T U {y})" is a proper extension
of T, separating = and y; if the second alternative holds, then
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(T U {z})* is the extension of T separating z and y. Clearly,
this reasoning also applies to L. a

We are now in a position to prove that £ and £ embed in
a cHa (in fact a topology), in a special way.

Let 7(L) (T(£,)) be the set of all proper theories in £ (resp.,
L.). For each z € L (resp., £,), set

T, = 4T € T{L} ¢ z €T},

with a similar definition for £_. Note that 7 = 7 (£) and that,
in the case of L _, 7, = 0. We take

B:{Txixe,C}U{@} and Bn:{rz;xeﬁn}’

as a sub-basis for a topology on 7(£) and T (L,), respectively.
Thus, a set is open in these spaces iff it can be written as a union
of finite intersections of sets of the form 7. Let Q and Q_ be
the topologies on T(L£) and T (L£,). Write ++ for the notion of
equivalence in the cHa’s Q and Q_. The statement that follows
is for £, but it also holds for £ _, with the same proof.

Theorem 3.9 With notation as above, the map

e : L — Q, given by, e(z) =T

T
has the following properties :
{ z <y f e(z) <ey);
gl x y) = (e(z) & £(y))-
In particular, € is injective. In the case of L, the corresponding
map takes L to L.

(a) Forallz, y € L,

(b) If T is a proper theory in L and F is the filter generated by
T in Q, then F is a proper filter in Q and T = e~ 1(F).

Proof : Since for all z € £, ™ is a theory (3.6.(b)) and 2™ €
7., we have
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gy iff y?Caz7 iff 7, Cr,

establishing the first of the properties stated in (a). For the
second, note that for all z, y € £, item (iii) in 3.6.(a) implies
that

T, N Ty = Ty N T il
and so, by 2.3.(b) we have 7., C (7, ¢ 7,). To verify equality,
it is enough, by 2.3.(b) and the fact that finite intersections of
elements of B are a basis for Q, to check that if {¢1,...,t,} C L,

then

Nz, T, NT, = My Ty, (T, implies (i, THC Touy:
Let T be a theory in £, such that {t1,...,¢t,} CT. Ifz xy &
T, 3.8 yields a theory .S, containing 7', and separating = and y.
Assume, for example that z € S and y ¢ S; then, S € (i, 7.
N 7, although S & N, 7, N 7, Which is impossible. Hence,
T € 7., completing the proof of (a).

Txy?
Let T be a theory in £. The filter generated by £(T') in Q is
given by (2.1)
F={ueQ:3{t1,...,ta} CT,suchthat u >, 7}
Notice that the set £(T") has the fip, because T' € £(t), for all
t € T. Hence, F is a proper filter in . It remains to verify

that e~1(F) = T; if z € L is such that (z) € F, then there is
{t1,...,tn} C T such that

ﬂ?:l Tt,‘ g Tx’
and so T € 7, that is, € T, as desired. O
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4 Algebraic Completeness of MEC and
MECn

From now on we shall follow the algebraic tradition of using
the same symbol (and font) for a structure and the set of elements
of the structure.

Definition 4.1 Let L be a Heyting algebra. Then,

+ An assignment in L is a function from the set of propositional
parameters into L. In the case of MECn, the propositional pa-
rameter L is assigned to L € L.

+ A MEC-valuation in L is a function v from the set of all
formulas of MEC into L, such that for all formulas A, B of
MEC :

v(A = B) = v(A) ¢ v(B).

+ A MECn-valuation in L is a MEC-valuation v such that
v(l) = 1.

* VAL(L) is the set of valuations in L.
The usual induction on complexity yields

Lemma 4.2 If L is a Heyting algebra, then VAL(L) # 0. In
fact, any assignment in L can be extended to a unique valuation.

We extend the concept of a valuation to sets of formulas; if
[ is a set of equivalence formulas!® and v € VAL(L), then we set

v(l) = {v(F): FeTl}

Definition 4.3 Let L be a Heyting algebra and let v be a L-
valuation of MEC or MECn. LetT' U {A} be a set of formulas
of MEC or MECn.

By that we mean formulas of either MEC or MECn.
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(1) A is an L, v-algebraic consequence of I, in symbols

I ]=F Alv],
iff v(A) belongs to the filter generated by v(I') in L.

(2) A is an L-algebraic consequence of I, in symbols,
I, A, if for all L-valuations v, I'kE, Alv].

(3) A is an algebraic consequence of I', in symbols, T = A,
iff for all Heyting algebras L, I' ’:L A.

Theorem 4.4 (Completeness) Let T U {A} be a set of formulas
in MEC or MECn. Then,

()T F A iff @QTEA

Proof : We shall treat the case of MEC, leaving the straightfor-
ward modifications needed for MECn to the reader.

The proof of (1) = (2) (soundness) is by induction on the
length of the derivation, I1, of A from I'. To handle the induction
step corresponding to an application of the elimination rule of =,
one makes use of item (i) in 2.2.(d). To treat the induction step
corresponding to the introduction rule for =, the crucial result
is the separation property in 2.2.(e), reasoning exactly as in the
proof of the preservation of * by the embedding ¢ in Theorem

3.9.(a).
To show that (2) = (1), let Q be the cHa of opens in the

space of (proper) theories of MEC, as in Theorem 3.9; with
notation as therein, define, for a formula A in MEC,

v(A) = (A).

By Lemma 3.2 and Theorem 3.9.(a), v is a Q-valuation. Let T =

T be the theory generated by ' = {FeL:Fel}in L; we may
as well assume that T is proper. Let F be the filter generated
by e(T) = v(T") in Q. By (2), we have v(A) € F, and so, 3.9.(b)
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yields A € T, that is, T + Ain £. But this is implies that I'
A in MEC. |

From soundness we get

Corollary 4.5 Let L be a Heyting algebra and let I' U {A, B}
be a set of formulas in MEC or MECn. Ifv is a L-valuation,
then

a) A - B implies v(A) < v(B).
b) IfT + Aandv(F) =T forall F € [, thenv(A) =T.
¢) If B is a MEC or MECn thesis, then w(B) = T.

For a finite set of formulas T' in MEC or MECn, Lemma
2.1 and Theorem 4.4 yield

Corollary 4.6 IfT' U {A} is a finite set of formulas in MEC
or MECn, then the following are equivalent :

(H T - A
(2) For all Ha’s L and all L-valuations v, Azer v(F) < v(A).

5 Weak Equivalence Algebras

From this section on we endeavor to construct the algebraic
counterparts of MEC and MECn. As it will become clear, there
is an important distinction between the systems developed here
and the usual ones associated to logic : the partial order that rep-
resents provability is not definable in terms of the operations, as
is the case with lattices, Boolean or Heyting algebras. Hence, we
shall have work harder to lay hands on the analogues of theories
and filters.

The following Definition should be compared with 3.4 :
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Definition 5.1 A weak equivalence algebra (wEa),
(L,<,T,x), is a set L, together with a partial order < and a
binary operation x on L, such that, for all a, z, y, t, z € L i

[ 0] : T is the largest element of L in the partial order <;

]
x2]:xx T =x;

J:z*xy=T iff z=y;

]

ca<zxyanda <t*z implies a< (z*xt)* (y*2).

A weak equivalence algebra with negation (wEan) is
a wEa L, that has a least element, L, satisfying

[neg 1] : Forallz € L, z* (zx 1) =1,

If L and R are wEa’s a map f : L — R is a wEa-
morphism if it is increasing and preserves T and x. We say
that f is a wEa-embedding if it is a wEa-morphism such that
forallz, y € L,

<y iff flz) < fy).

The definitions of morphism and embedding of wkan’s s

analogous, adding the requirement that f take L to L. Write

Hom(L, R) for the set of wEa-morphisms (or wEan-morphisms)
from L to R.

Whenever convenient, we write zy for z % y and -z for
T ¥ L

Remark 5.2 Note that, in general, the operation * is not
associative. One of the main distinctions between the equiva-
lence algebras and the usual algebraic structures associated to
Logic is that the partial order < is not definable by a connec-
tive. This introduces the need to be careful in defining concepts
such as embedding. In the category of meet-semilattices (or join-
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semilattices), an injective increasing map is an isomorphism onto
its image; for, in this case we have

g <y iff e Ay=z (resp.,zVy=y).

In the category of posets and increasing maps, it is an entirely
different matter. Just consider P = {{1}, {2}, {1, 2}} with its
natural partial order (containment) and @ = {1, 2, 3} with the
order induced by the natural numbers. Then, f({1}) =1, f({2})
= 2 and f({1, 2}) = 3 is a bijective increasing map, but it is
clear that P and @ are not isomorphic. This is at the root of
the definition of embedding of wEa : it must be required that
order be strictly preserved, for an injective increasing map to be
an isomorphism onto its image.

Lemma 5.3 Forz,y, z inawFa L,
a)z <yandz <z implies z <y * Z.
b)z < (z*y) *y.
c)z*xy < (z*z)* (y+*2).
dez+xy<y iff z+xy<ez

eJzxz<az*xy iff txz2Lyxz

Proof : a) Using [+ 1] and [* 2], we may write our hypothesis as
z<y*xT and z <T *z.
An application of [* 4] yields the desired conclusion.
b) From [* 4], z < z * T and < y * y, we conclude
< (e*y)* (T*y) =(z*y)*y.

c)Sincez * y<zxy and z#*y < zx*z, [x4]yields the desired
result.

d) From [* 4], 2y < T xy and zy < z * y, we get zy < z. The
converse is clear.
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e) [x4],zxz<z+y and z*z<zx*z yleld
s (2x2) % (y*z)=(y*2)

The converse is similar, ending the proof. O
Definition 5.4 A subset F of a wEa L is a filter ¢f T € F and
forallz, y, z € L
(fil 1]z € F implies z7 C F;
(fil2lz xy € Fandy * z € F implies z + z € F.

A filter is proper iff F # L.

Note that if L has a least element L, then F is proper iff L € F.

Lemma 5.5 If F is a filter in a wFa L, then for all z, vy, t,
zel

a)z € Fandz xy € F implies y € F.

b)z,y € F implies © xy € F.

c)zxy € Fandt x z € F implies (at) * (yz) € F.
Proof : (a) and (b) are a consequence of [fil 2] and [+ 2]. For
(c), note that [fil 1] and 5.3.(b) yield

zy € ' implies (zt) * (yt) € F;
tz € F implies (yt) * (yz) € F,

and so [fil 2] yields (zt) * (yz) € F, as desired. O

Example 5.6 1. The set {T} is a filter in any wEa. The only
condition that needs verification is [fil 3]; recalling that z * y =
T iff z = y ([* 3]), it is easily seen that it satisfies [fil 3]. {T}is
the smallest filter (with respect to containment) in any wEa.

2. More generally, let 2 be an element of a wEa L. It is clear
that 2™ satisfies [fil 1] and [fil 2]. That it is, in fact, a filter,
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is a consequence of [ 4]. The filter 2™ is the principal filter
generated by z.

3. If F,, i € I, is a family of filters in L, then Micr F; is a filter
in L.

4 fF,i1€lisa right-directed family of filters, that is,
For all 4, j € I, there is k € I such that Fj, Fj ¢ L
then J;e; F; is a filter in L.
Because the property of being a filter is preserved by intersec-

tions, we may define the filter generated by a subset S of an
wEa L as

[S]=N{F: Fisafilterin L and $ C I}
Clearly, S C T implies [S] C [T]. The following is straightfor-
ward :
Lemma 5.7 Let S, i € I, be a right-directed collection of sub-
sets of L. If S = U;er S, then
[S] = Uier [S.)-

In particular, if A C L and 24 is the set of finite subsets of A,
then

[4] = Uaeas [0

6 T-operators. Equivalence Algebras

Let D be a set. Recall that a map p : 2P — 2P is
— Inflationary if A C u(A), for all A C D;
- Increasing if for all A, B € 2P, A C B implies u(A) C u(B);
— Idempotent if 4 o p = p.

© Manuscrito, 1999. XXII(2), pp. 205-266, October.



INTUITIONISTIC EQUIVALENCE 235

Let L be a wEa. Define y : oL 3 oL by
po(A) = U {(z*xy)™ : 3t € L such that (z * t), (t *y)
€ AU{T}}
Lemma 6.1 With notation as above, p is increasing and in-
flationary. Moreover, for allz € L and A C L,
z € py(A) implies =7 C puy(A).

Proof : Clearly p, is increasing and z € MO(A) implies = C
,LLO(A). For a € A, note that a = a * T, with (¢ * T) and (T *
T) both in AU {T}. Hence, A C p (A). o

0

For A C L, define a sequence of subsets of L, o, (A), n >
by induction on n, as follows:

oo(A) =A and o, (A) = py(o,(4)).
Now, set 7((A) = Upn>o 7, (A). Then,

Proposition 6.2 For all A C L, 7,(A) is the filter generated
by A in L.

Proof : It is clear that any filter containing A must contain
7o(A). By 6.1, AU {T} C p,(A) C 74(A) and = € p,(A) implies
2™ C 74(A). To verify [fil 2], let (z * t) and (¢ * y) be in 7,(A).
Since the sequence o, (A) is increasing, there is n > 0 such that
(z+t), (t xy) €0, (A). But then, z vy € 0, ,,(A) C 7,(A). O

From here on we shall use, interchangeably, the notation [A]
and 7,(A) for the filter generated by A.
Definition 6.3 Let L be a wEa. A T-operator on L is a map
B : 2L — oL, satisfying :
[T 1] : B is inflationary, increasing and idempotent;
[T 2] : Forall A C L, B(A) is a filter in L;
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[T 3): Forallz,y € L and AC L,
BAU{z}) =B(AU{y}) if (zxy)eB(A)

Write Top(L) for the set of T-operators on L. Define a partial
order in Top(L) by

a < B iff Forall AC L, a(A) < B(A).
For B, € Top(L), i € I, and A C L, set
[TA] [Nier B,1(4) = Nier B;(A)

Remark 6.4 Let L be a wEa. With notation as above,
a) The map A € 2Ly [ € 2% is largest T-operator on L.
b) T,,(L) is a complete lattice, with meets as in [TA] of 6.3.

It will be important in what follows to obtain an explicit descrip-
tion of the bottom of the complete lattice T,,(L). To this end,
we construct an increasing sequence of inflationary and increasing
maps,

T LTy Lo KTy STpaq 8w
such that forall AC L,alln > 0and all 2,y € L
[c1]: 7,(A) is a filter in L;
[c2]:7 (AU {z}) =1,(4) iff =€, (A);
[c3]: 7 (AU {z}) =7, (AU {y}) implies (z *y) € 7, ,(A).

For n = 0, 74(A) is the filter generated by A in L. Assume that
7, has been constructed, and define gy oL — 2L as follows:

o (A =U Az xy)™ 7 (AU {a}) =7 (AU {y})}.

Lemma 6.5 With notation as above, [ is increasing and
forallz € Land AC L, x € (A) implies 2™ C Py (A).
Moreover, for all A C L, 7_(A) C /¢n+1(A).
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Proof : It is clear that z € u_, (A) implies 27 C p_,.(A). To
n+1 n+1

show that p_ is increasing, let A C B C L. It is enough to

verify that for z, y € L

7. (AU {z}) =7, (AU {y}) implies 7 (B U {z}) =7,(B U
{y})- ()
Since 7, is inflationary and increasing, we have

zer, (AU{y}) C7,(BUy}).
It follows from [c 2] that
T, (BU{y}) =7, (BU{y} U {z}).
Similarly, one shows that 7, (B U {z}) = 7,(B U {z} U {y}),
proving (I). It remains to check that 7_(A) C un+1(A). Since
7 (A) is a filter, T € 7_(A), and so [c 2] yields 7 (A U {T}) =
7. (A). Similarly, [c 2] yields
z €7 (A) implies 7 (AU {z})=7,(4) =7,(AU{T}).
Thus,z =2z % T € pn+l(A), ending the proof. O

For A C L, define, by induction on k > 0, a sequence of
subsets of L, a”"'l(A) as follows:

o0t (A) = A and aZﬂ(A):un_H(JZH(A)).

Clearly, o7 (A) is increasing. Now set

Tpp1(A) = Uk>0 UZH( ).

It is clear that 7 (A) < 7., (A) (e, 7, <7.,,) and that 7,
is increasing.

Proposition 6.6 The map 7, satisfies [c 1], [c 2] and [c 3].
Proof : [c 1] : Fix A C L. Clearly, 7, (A) satisfies [fil 1] and

T € 7,,,(A). Now assume that (z * ¢), (t * y) € T g1 (4):
Then, there is k& > 0 such that (z * t), (t x y) € ofT'(A). It is
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enough to show that
T (07T (A) U {e}) = 7, (07 (4) U {v}), (D
because then (z * y) € p _H(UZH(A)) = 021'11 (A) C 7,.,(4).
Since 7, satisfies [c 2], to get (I) it is sufficient to check that
{ (i) y € 7, (07" (4) U {z})
(i) z € 7, (0 "+1( ) U {y})

Since (z * t), (t * y) € o}t (A) and T (oFtH(A) U {z}) is a
filter containing z, 5.5.(a) implies that (i) is verified. A similar
argument proves (ii), completing the proof of [c 1].

[c 2] : First notice that for all k >0

T (01 (A)) = 7,44 (A), (1)

because for all [ > 0

P (o7t (A)) = phyy (Hhy1 (A)) = pnfa (A) = 07f) (4) €

Tn-i-l (A)
Hence, if € 7, (A), then thereis k£ > 0 such that z € o}t (A)
and so (II) yields

Tn+1 (A U {IIJ} C Tn-|-1( TH—] (A)) g Tn+1 (A)7

and equality follows from the fact that 7, is increasing. That

7,41 satisfies [c 3] follows from the fact that

T (AU {z}) =7 (AU {y}) implies (z*y)€p,  (A)C
Tn-}—] (A)’
ending the proof. O

Proposition 6.6 completes the construction of the 7_’s.

Proposition 6.7 With notation as above

a) For all integers| >n > 0, 1,07, =T,
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b) For all n > 0 and all right-directed families of subsets of L,
B.,v€el,

]

In particular, for all A C L andn > 0, 7,(A) =Ugesa 7,(0).

Proof : a) We first verify that for all » > 0 and all A C L

Tot1(Ta(A)) = 740 (4). (*)
Since A C 7, (A), it follows that 7, (4) € 7., (7,(A4)). On the
other hand, by Lemma 6.5, 7,(4) C x,_,(4) = O’T+1(A). But

in the proof of 6.6 (see (II)), we have shown that 7, (o7t (A))
= T,,1(A), and the equality in (*) follows. Then, induction on
k > 1 yields

Totkt1l = Tndkt1 © Tntk = Tntks1 © (Tn+k °T,)

oT OTn,

T (Tn+k+1 n+k) O Ty = Thtk+1

ending the proof of (a).

b) Write A = (J;¢; B;. It is enough to verify that if ¢ € 7 (A),
there is 7+ € I, such that ¢ € 7 _(B;). Proceed by induction on
n > 0. For n = 0, the result follows from 5.7. Assume the result
true for n. We first prove

Fact Forall k > 0, o7t (A) = U;es o7t (B))-

Proof For k = 0 there is nothing to prove. Assume the result
true for & and that y € UZ:H (A). Then, there are u, v € L such
that

Ta(oRH (A) U {u}) = 7, (0771 (4) U {v}),

and y > (u * v). Note that the family (o7 (B;) U {u}), i € I,
is directed. Moreover, by induction,

ot (A) U {u} = Uses (0771(B;) U {u})
Since v € 7, (o7 (4) U {u}), the (first) induction hypothesis
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yields k € I such that v € 7 (o ot (B,) U {u}). By a similar
argument, there is j € I such “that u € T o ”'H B;) U {u}). 1
we select ¢ € [ such that B;, B, C B,, we conclude that
w€r, (ot (B;) U{v}) and ve 7 (7T (B;) U {u}).
It follows that
7, (07 (B) U {u}) = 7, (o7 (B) U {v}),

and soy € (u*v)” C UZI}(B%') ending the proof of the Fact.

If z € 7_,,(A), then € o}t (A), for some k > 0. By

n+1
the Fact, there is i € I such that = € o7t (B;) C 7,,,(B;), as
desired. O
For A C L, set

7(A) = Unso 7, (4).
Whenever clear from context, we omit the name of the wEa
[ from the notation. Since this is a directed union of filters
containing A, 7(A) is a filter containing A. Moreover, A — T(A)
is increasing, because the same is true of each 7.

Proposition 6.8 For AC L andz,y € L

a)z € T(A) iff T(A) =T(AU {z}).

b) (AU {z}) =7(AU {y}) if =€ (AU {y}) and
y € T(A U {z}).

¢) The operation A — 7(A) satisfies [T 1] and [T 2].
d) For alln > 0 and all B C L
B C 7(A) implies 7(B) C T7(A).
e) Forall A C L, 7(T(A)) = 7(A).
Proof : a) If z € 7(A), there is n > 0 such that z € 7 (A4). By
[c2], 7 (AU {z}) =7, (A). It follows from 6.7 that for all I > n
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Ti(A U {z}) = 7(7,(A U {z})) = 7(7,(4)) = 7,(4),
and so 7(A U {z}) = 7(A). The converse is clear.
b) If the right-hand side of the equivalence holds, then (a) yields

T(AU{e}) = T(AU{e} U {y}) = 7(A U {y}),
while the converse is obvious.

c) We have already observed that 7(A) is a filter. If (z * y) €
7(A), since 7(A) C 7(A U {z}) and this last set is a filter, we
get y € 7(A U {z}). Similarly, z € 7(4A U {y}) and equality
follows from (b). Conversely, if 7(4 U {z}) = 7(A U {y}), since
the sequence 7_(A) is increasing, (b) yields n > 0 such that z €
7. (AU {y}) and y € 7 (A U {z}). Consequently, 7 (A U {z})
=7,(AU{y}) and (z x y) € 7,,,(A4) C 7(A).

d) By induction on n > 0, we prove
Fact 1 For allm > 0 and all B C L
B C r(A) implies 7 _(B) C 7(A).

Proof By induction on n > 0. For n = 0, since 7(A) is a filter,
it must contain 7,(B) (6.2). Assume the result true for n > 0.
We then have

Fact 2 Forall D C L, D C 7(A) implies un+1(D) C 7(A).
Proof Ifr (DU {z}) =7 (D U{y}), then D C 7(A) C (AU {z})
implies D U {y} C 7(A U {y}) . By induction, we get

s €, (DU{y}) C (AU {y}).

Similarly, one shows that y € 7 (D U {z}) C 7(4 U {z}). By
(b), (A U {z}) = 7(A U {y}), and so (c) yields (z * y) € 7(A).
Since 7(A) is a filter, we get un+l(D) C 7(A), ending the proof
of the Fact 2.

By Fact 2, if B C 7(A), then o7 (B) C 7(A), for all k£ > 0.

Hence, 7, ,(B) C 7(A), completing the induction step and the
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proof of Fact 1. Item (d) is now clear, while (e) is a consequence
of (d). O

By Proposition 6.8, 7 is a T-operator on L. From 6.7.(b)
comes

Corollary 6.9 If{B,:i€ I} isa right-directed family of sub-
sets of a wEa L and B = J;¢; B, then
7(B) = Uier 7(B;)-
In particular, for all A C L
[compactness] 7(A) = Useas 7(@),

where 24 is the set of finite subsets of A.
We now prove
Proposition 6.10 If L is a wEa and 8 € Top(L), then 7 < B.

Proof : By induction on n > 0, it will be verified that for all A,
BCL,
B C B(A) implies 7_(B) C B(A). (1)

For n = 0 there is nothing to prove because B(A) is a filter.
Assume the result true for n > 0; we then have

Fact B C B(A) implies ,unH(B) C B(A) .

Proof Since B(A) is a filter, it is enough to verify that if
z, y € L are such that 7 (B U {z}) = 7,(B U {y}), then
(z * y) € B(A). The induction hypothesis guarantees that

zeT, (BU{y}) CA(AU{y}) and yer, (BU{z})C
B(AU {z}),
and so B(A U {z}) = B(A U {y}); but then (z * y) € B(A), as

desired.
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The Fact implies that if B C B(A), then o7t (B) C B(A),
for all & > 0. Hence, Tn_l_l(B) C B(A), completing the induction
step. O

Our next result describes some of the basic properties of T'-
operators.

Proposition 6.11 Let L be a wEa and let B, v € Top(L). Let

B., i € I, be a family in 2L and let B, i €1, bea Sfamily in

K3

Top(L).
a)y<B iff yoB =B iff Boy=45
b) Write Fiz(B) = {A € 2L : B(A) = A} for the set of fived
points of B in L. Then, v < B implies Fiz(8) C Fiz(y).
¢) If D = (ier B(B;:), then D = B(D).
Proof : a) if y < B8 then for A C L, we have
{ B(A) C 7v(B(A)) C B(B(A)) = B(A)

and
B(A) C B(v(4)) C B(B(A)) = B(4),
verifying the stated identities. The converses are left to the
reader.

b) For A € Fiz(B), (a) yields v(A) = v(B(A)) = B(A) = A, as
needed.

¢) Since D C B(B;), we have 8(D) C B(B(B;) = B(B;), + € 1.
Hence, 8(D) C D and equality follows. O

Definition 6.12 Let L be a wEa. A subset A of L is a x-filter
if A € Fiz(r). Write S(L) for the set of proper x-filters on L.

Proposition 6.11.(b) yields

Corollary 6.13 If 8 € T,,(L), then all fized points of B are
*-filters on L.
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Our next order of business is to give concrete examples of
the s-filters. We start with

Proposition 6.14 In the Lindenbaum algebra L of MIEC, the
x-filters correspond to its theories. In particular, for all z € L,
™ is a x-filter.

Proof : It follows from 3.4 that £ is a wEa and from 3.6 that
the operation

U C L — U? (the theory generated by U)

is a T-operator on L (it is easy established that any theory in £
is a filter). By 6.10, for all U C L, we have 7(U) C Ut. To prove
the reverse containment, we proceed by induction on the length
of proof trees to verify that for all U, V' C L

UCt(V) and U F z implies z € 7(V). ()
We may as well suppose that z ¢ U. The following possibilities
arise :

(i)  comes from an application of the elimination rule.  Then,
there are proofs of strictly smaller length that U F (z * y)
and U F y. By induction, (z x y), y € 7(V); since (V) is a
filter, we get z € 7(V), as needed.

(ii)  comes from an application of the introduction rule. Then,
we have z = (a * b) and there are proofs of strictly smaller length
of U.a - b and U, b F a. By induction, a € 7(V U {b})
and b € 7(V U {a}), that is, 7(V U {a}) = 7(V U {b}). But
then z = (a * b) € 7(V), completing the proof. O

If H is a Heyting algebra (see section 2), consider the struc-
ture H, = (H,<,T,+). Then,

Remark 6.15 Let L be a subset of a Ha H, that contains T
and is closed under <. Then, with the operations induced by

© Manuserito, 1999. XXII(2), pp- 205-266, October.



INTUITIONISTIC EQUIVALENCE 245

Heq, L is a wEa. If L € L, then L is a wEan. In particular,
(H,<,T,4) is a wEan.

Proposition 6.16 Let H be a Heyting algebra.
a) The following are equivalent for ' C H :

(1) F is a filter in H_ ;

(2) F is a (lattice-theoretic) filter in H.
b) A subset of Heq is a x-filter iff it is a filter.

Proof : a) Clearly, (2) implies (1). For the converse, it is enough
to verify that a filter F' is the wEa Heq is closed under meets.
For z, y € F, note that

y<(e—oy) =@ (2Ay):

Thus, (z < (z A y)) € F. But then, since ¢ € F and F is a
wEa-filter, we get (z A y) € F, as needed.

b) It is easily established that in any wEa L the operation
A — [A] is inflationary, increasing and idempotent and obviously
satisfies [T" 1]. Since [A] C 7(A), for all A C L, it follows from
6.10 that to prove equality it suffices to show that the operation
of “filter generated by” satisfies [T" 2]. If F is a filter in H  ~
which by (a) is a filter in H -, and z, y € H are such that [F
U {z}] = [F U {y}]. Since F is closed under meets, by 2.1 there
are a, b € F such that

y>aAz and z2>bAy.

Hence, z A (a A b) =y A (a A D), and 2.3.(b) yields (a A b) <
(z * y). But then, (z * y) € F, verifying [T 2] and ending the
proof. m

Definition 6.17 A wFa (wEan) L is an equivalence algebra
(Ea) if for allz € L, ¢ is a *-filter in L. An equivalence
algebra with negation (Ean) is an wEan which is an Ea.
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If L and R are Ea’s, a Ea-morphism, L —f—> R, is a wEa-
morphism. In case L and R are Ean’s, f is required to take L to
L. Write EA and EAn for the categories of equivalence algebras
and equivalence algebras with negation, respectively.

From 6.14 and 6.16 we get

Corollary 6.18 a) The Lindenbaum algebra of MEC is an Ea.
b) The Lindenbaum algebra of MECn is an Ean.
¢) If H is a Ha, then H, = (H,<, T, ) is an Ean.

With section 4 as a model, we can define assignments and
valuations of MEC and MECn in wEa and wEan’s, respectively.
Moreover, as before, any assignment of the propositional param-

oters can be extended to a valuation. Consequently, the proof of
Proposition 6.14 leads to

Theorem 6.19 (Completeness of MEC and MECn.)

a) If L is a wEa, there is a bijective correspondence between
Hom(L, L) and valuations of MEC in L. A similar result holds
for L and MECn.

b) If L is an Ea and T' U {¢} C MEC is such that ' = ¢, then
for all valuations v of MEC in L and all x-filters Fn L,

v(T) C F implies v(¥) € F,
where v(T') = {v(¥) : ¥ € T'}. A similar result holds for MECn.

¢) Let L be an Ea (Ean) and I' U {o, ¥} be a set of formulas in
MEC. Ifv is a L-interpretation of MEC (resp., MECn), then

(1) ¢ F o implies v(¥) < v(o).
2)If T F oand v(¥) =T, forallh € T, thenv(o) =T.
(3)If F @, thenv(P) =T.
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d) L and L are, respectively, the free Ea and the free Ean on
the set of propositional parameters that constitute their basic al-
phabet.

f) (Completeness Theorem) Let I' U {¥} be a set of formulas in
MEC or MECn. The following are equivalent :

()T F ¢

(2) For all Ea’s (resp., Ean’s) L, for all valuations v in L
and all x-filters F in L

v([) C F implies v(¥) € F.

Our next theme is the behavior of T-operators under inverse
image by wEa-morphisms.

Remark 6.20 If L L5 Risa wEa-morphism, then the inverse
image of a filter in R is a filter in L. If f is a wEan-morphism,
then inverse image by f takes proper filters in R to proper filters
in L.

Proposition 6.21 Let L s Rbea wFa-morphism. For B €
Top(R) and A C L, set

a(4) = fHB(f(A)))-
Then, o € T,,(L).

Proof: It is clear that « is inflationary and increasing. Moreover,
by 6.20, a(A) is a filter in L. To verify that « is idempotent, we
have for A C L and recalling that f(f~!(B)) C B (B C R),

a(a(A)) = f1 B fo(d)=fT1Bf 71 Bf(A)
C f1 BB f(A) =B f(A) =a(4),

where composition is written by superposition for ease of reading.
Hence, a(A) = a(a(A)), as desired. It remains to verify that «
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satisfies [T 3] in 6.3. For A U {z} U {y} C L, assume that
a(A U {z}) = a(A U {z}). Now observe that

f(z) € BUF(A) U{f(y)}) and f(y) € B(f(A) UA{f(2)})-
which follow from f(4 U {y}) = f(4) U {f(y)} and the equality
a(A U {z}) = a(4A U {y}). Thus, f(z) * fly) = f(z *y) €
B(f(A)) and (z * y) € a(A), ending the proof. O

If L -L5 R is a wEa-morphism and 8 € T,,(R) write f*B for
the T-operator « defined in 6.21.

Corollary 6.22 Let < Rbea wEa-morphism.

a) The inverse image of a *-filter in R is a %-filterin L. If f is a
wEan-morphism, then inverse image by f takes S(R) into S(L).
b) If R is an Ea (Ean) and f is an embedding, then L is an Ea
(resp., Ean).

¢) If H is a Ha and L C H is such that T € L (Le L) and L
is closed under +, then, with the structure induced by Heq, L s
an Ea (resp., Ean).

Proof : For (a), let B be a #-filter in R. We check that f~Y(B)
is a fixed point of f*r 5 (6.21), and then 6.13 will guarantee that
f~Y(B) is a *-filter. We have

Fra(fHB)) = f T £ F7H(B) C fTirR(B) = f7H(B),

and so f~1(B) € Fiz(f*ry), as claimed. The remaining state-
ment in (a) is a consequence of 6.20. For (b), note that
f~1(f(z)?) = =7, for all z € L, and the conclusion follows
from (a). Item (c) is immediate from (b). O

By 6.16.(a), if L Jy Risan embedding of Heyting algebras,
then 7, = f*rz. For wEa’s in general we pose
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Open Problem 6.23 Suppose that L Ly Risa wEa-embed-
ding. Is it true that 7, = f*rp ?

In the next section it will be seen that every Ea or Ean can
be embedded in a cHa in such a way that the answer to 6.23 is
affirmative.

We end this section with a discussion of the concept of cok-
ernel of wEa-morphisms.

Definition 6.24 Let L -5 R be a wEa-morphism. Define
coker f = f7Hrr({T}) = f*rr({T)).

When {T} is a #-filter in R — in particular if R is an Ea —, coker
[ takes the familiar form {z € L : f(z) = T}. The following is
a straightforward consequence the previous results :

Corollary 6.25 If L iy R is a wEa-morphism, then
a) coker f is a *-filter in L.
b) If {T} is a x-filter in R, then f is injective iff coker f = {T}.

7 Basic Properties of Negation

We now describe some of the properties of negation in a
wEan which satisfies axioms [ 5], [* 6] and [* 7] in Lemma 3.4,
as well as [+ 8] in Corollary 8.6, namely

[¥5]: zxy=((exy) xy) +y,
(*6]: 2 <y<z implies z %2z <z %y,
(x7]: (@ *y)*z<[z*2]*[(y*2)* 2],
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[*8]'[(z*z)*(m*z)]*z<(z*y)*z

referred to as special wEa’s. The most fundamental of these
properties is item (c) in Proposition 7.4. It will be shown in 8.6
that all Ea’s and Ean’s are special wEa’s.

Remark 7.1 It follows immediately from [E 6] that a special
wEan satisfies the contra positive law

[neg 2] Forallz,y €L, 2 <y implies (y * L) < (z * 1).

If L is a special wEa, define
A={zeL:Forallu€lL, ¢=(zu)u},
called the set of associative elements of L. It is clear that
T € A. If A has negation, then L € A. The name for A is
justified by
Lemma 7.2 Let L be a special wEa. Then,
Forallz, 2z € Aand ally € L, (zy)z = z(yz).

Proof : a) From [+ 7] and Lemma 5.3.(d) comes

(ey)z < ((22)2) (y2) = @(y2)-
Similarly, one proves that (yz)z < (zy)z and equality follows. O

Open Problem 7.1 Is A a sub-algebra of L ? Or equivalently,
is A closed under * 2

Another important property of associative elements is that [* 7]
and [* 8] become equalities.

Lemma 7.3 Let L be a special wEa and let t an associative
element of L. Then, for allz, y € L

[(zxt)* (yxt)] xt = (z*ry)*t

(@ t) * [(y * t) * 1]
(y * t) = [(@ x 1) x 2],
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Proof : Applying [+ 7] and [+ 8], we get

(w) [(10)4] < [(21) WOt (a)) (at)] = [(at) (s8)] ¢ < (a) &,
a relation that, together with the inequalities in [* 7], [* 8] and
Lemma 5.3.(d), yields the desired conclusion. O
Proposition 7.4 Let L be a special wEan. For all z, y, z € L
a)z < -z and —r =-—-oz; oz <y implies — -z < -y,
b).Z'*yS_lx*_ly:_l_lx*ﬁ'_‘ly,
(,‘) —|(x * ’y) = k Yy = Y ok :ﬂ(ﬂx * —ﬁy)
d) ﬁﬁ(l‘ * y) = T 7x *x Y.
)ma =y @+l [+ (@5 y) <~
)} == = <y #=(e #y).
9) (@ * (y x 2)) =((z * y) * 2).
h) Tk (_I'_‘ly * —|ﬂz) == (—l_lx * —|—|y) * Tz,
Yoxsy=L iff easyw=L §f w==-y.
Proof : a) comes from Lemma 5.3.(b), [+ 4] and [neg 2] (Remark
7.1). Item (b) follows from Lemma 5.3.(c) and (a). Item (c) is

just a restatement of Proposition 7.3, with L = ¢. For (d), we
get, using (c)

—|—|(Q: * y) = —|(—|x * —|—|y) = T % —1-1(—|—|y) = T *x 7Y,

as desired. For (e), first note that by [neg 2] (Remark 7.1) and
Lemma 5.3.(b),

Sy * (z * y)] < -z
For the reverse inequality, we have, by 5.3.(b) and (c)
a2z <y (nz koY) = ooy k(T x y) = Sy x (2 ok y)],
completing the verification of the first part of (e); the second
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follows immediately from (a). For (f), the preceding results yield
mmg =y * (2 xy] =[nyx (@ ry)] =
(=) % 2=z * y)] =y (e ),
as needed. For (g), first note that it is enough to verify that
[+ (y x 2)] < l(z xy) * 2] (D)

In fact, we have, applying (I) in succession
(wxy)x 2=z % (y+2)] <[z xy) xa] =z x (y*2)
To prove (I), compute as follows, recalling [* 7], (c), (d) and (f) :
Sz x (y * 2)] =T * —a(y * 2) =z ok (2 - -z)
< (—z * —y) * [(mz -z % —z] = (2 * —-y) k0 z
= (nz * y) x ~oz = (@ x y) * 2],
completing the proof of (g). For (h), we have, using (d) and (g) :
Tk (—|—1y * ‘1—12') = 17T * —|—|(y * z) = —1'1[513 * (y * Z)]

= a=[(z *y) * 2] =(z*y) ¥z

= (‘!ﬂiB * ﬂ"\y) ¥ 12,

To verify (i), note that if z ¥ y = L, then (z *y) * L=T. Thus,
by [* 7], m@ * -—y = T, that is, & = = ~y. On the other hand,
if this equation is true, then

_l_:—lz*ﬂy:ﬂ—lm*—xﬁy:—\—\(x*y)7
and so (a) implies ¢ * y = L, ending the proof. O

8 The Embedding Theorem. Applications

The #-filters on a wEa L were constructed so as to have the
following separation property (3.7) :
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Lemma 8.1 LetL be a wEa and leta, b € L. Let A be a proper
*-filter on L. If (a x b) € A, then there is a proper x-filter B,
containing A, that separates a and b.

Proof : Since A is a *-filter, we cannot have 7(4 U {a}) =
7(A U {b}), otherwise (a * b) € 7(A) = A. Hence, either (A U
{a}) or 7(A U {b}) separates a and b. O

Let L be a wEa. Recall (6.12) that S(L) is the set of all
proper *-filters on L. For z € L, set

S, ={FeS():zeF).

We take B = {S_ : z € L} as a sub-basis for a topology Q(L) on
S(L), that is, for all U C S(L)

UeQ(L) iff Thereis K C 24 such that U = |

z°

S

Thus, the empty set together with the finite intersections of el-
ements in B constitute a basis for Q(L). Note that S+ = S(L);
if L has a least element L, then S, = 0. It is well-known that
Q(L) is a complete Heyting algebra (cHa) (see section 2). We are
now in a position to generalize Theorem 3.9 to all equivalence
algebras.

Theorem 8.2 If L is an equivalence algebra, the map
o: L — Q(L), given by a— S,
is an embedding of L in Q(L), satisfying
a) If L has a least element L, then o takes L to L in Q(L).

b) If F € S(L), then the filter G generated by F in QL) is a
proper filter and

Foralla € L, a€ F iff S €@,
that 45, F = ¢~1(G).
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Proof : Write Q for Q(L). The definition of filter (5.4) yields z
<y implies S, C S . For the converse, note that since z7" is
a s filter and = € S, it follows that S, C S, implies y € 7.

For z, y € L, Lemma 5.5.(a) yields
8,118 = S, N -

Thus, S,,, € (5,=5,) in the cHa Q. Since the intersection of
finite subsets of B is a basis for Q and intersection distributes
over arbitrary joins in Q (it is a cHa), to show that

Sy = (5,=5,) @9 )
it is enough to verify that if {1y~ alat © L and V = (Niey S,
then
vns,=vVns, implies V C S, .,
Assume that there is F € V such that (z * y) ¢ F. By 8.1, there
is G € S(L) satisfying F C G and separating a and b, that is,
cither (z € Gandy ¢ G) or (y € Gandz ¢ G). (2)

Since F C G, we have t; € G, 1 < i < n, that is, G eV;
but then, the alternatives in (2) imply that S, NV #S,NV,
a contradiction. Therefore, (1) is true and o is an embedding.
[tem (a) is clear.

For (b), if F be a proper #-filter in L, then
G = {U € Q : There is a finite K C F such that N,ex S; C UL

is the filter generated by o(F) = {S,: t € F}in Q. Since F €
S,, t € F, o(F) has the finite intersection property. Thus, G is
a proper filter in Q. Clearly, o(F) C G. Conversely, if S, € G,
then there is a finite A C F such that (;eq 5; C S,; thus F €
S, ile,a¢€ F, ending the proof. a

Theorem 8.2 has a number of important consequences. Here
is a sample.
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Corollary 8.3 If L is an Ea, the embedding o : L — Q(L)
satisfies o Toy = Tr- In particular, the x-filters in L are pre-
cisely the inverse image of the filters in Q(L) by o.

Proof : By 6.10, it is enough to show that U*TQ(L) < 75 Recall
(6.16) that for B C Q(L), TQ(L)(B) = [B], the filter generated
by B. For A C L, since 7, (A) is a filter, 8.2.(b) yields

rp(4) = o7 ([o(rp(A)]) = " Toqy,

as claimed. O

Corollary 8.4 a) An equivalence algebra with L is an equiva-
lence algebra with negation.

b) Every equivalence algebra can be embedded in an equivalence
algebra with negation.

Proof : (b) is clear. For (a), we give two proofs. Let L be an Ea
with L.

First Proof : By 8.2, L is isomorphic to a sub-algebra K of Q,
with L (= @) € K. Since K is an Ean (6.22.(c)), so is L.

Second Proof : Suppose that for some a € L, b =a % (a * L) #
L. Then, b~ is a proper #filter in L; moreover, (a * L) cannot
be in b, for otherwise it would not be proper. By 8.1, there is
a proper #-filter F'in L, containing b, such that a € F. Then,
from b € F and a € F, we get L. € F, a contradiction. Thus, for
alla€e L, L =(a*Ll)#a,and L is an Ean. O

Corollary 8.5 Let u be an element of an Ea L. Then, u™ is
an Ean. In particular, for alla > u, u =a * (a * u).

Proof : Immediate from Corollary 8.4.(a), once it is remarked
that u™ is a sub-algebra of L, with L = wu. O
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Corollary 8.6 Every Ea satisfies azioms [x 1], 5 < 1 < 7 in
3.4, as well as the following rules :

[ 8] : [(z *2) x (z*2)]*2< (z*y) 2z

x9:e<y iff yx(@+y) <exy ff 2 =yx(2*y).
Proof : It is left to the reader to check that the aforementioned

rules hold in Heq, for any Heyting algebra H. The result then
follows from 8.2.(a). O

9 Ea-quotients

Let L be a wEa and let F be a proper filter on L. For z, y
€ L, define

zlpy iff (z*y)eF.
Lemma 9.1 0 is a congruence on L.

Proof : It must be verified that 65 is an equivalence relation,
such that for all z, y, ¢, z € L

z0pt and y 60y z implies (zxy)fp (t*2). (1)

Clearly, 0, is reflexive and symmetric, while its transitivity fol-
lows from the fact that F is a filter. Hence, 8 is an equivalence
relation on L. To show that it is a congruence with respect to *,
we may apply 5.5.(c) to get (I), ending the proof. m]

If F is a proper filter in a wEa L and z,y € L,
« Write z/F for the equivalence class of z with respect to 0;

* Write L/F = {z/F : =z € L} for the set of equivalence classes
of elements of L by 0p;
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* Write 7, : L — L/F for the canonical quotient map, z
#/L;
* Define an operation % on L/F by

o/F % y/F = (a * y)/F,

which is independent of representatives by 9.1. It is clear that
the structure { L/F,*, T/F') satisfies axioms [* 1], [* 2] and [* 3]
in 5.1.

Now suppose F is a *-filter on the wEa L and define, for z,
y €L,

[po] z/F <y/F iff yer(FU{z}).

Proposition 9.2 If F is a *-filter on a wEa (wEan) L, then

a) The relation defined in [po] is independent of representatives
and constitutes a partial order in L/F whose largest element in
T /F and, whenever L has L, has L/F as its least element.

b) L/F =(L/F,<,T,*)is a wEa (resp., wEan) and the quotient
map g is a wEa-morphism (resp., wEan-morphism).

Proof : a) Suppose (zt), (yz) € F and y € 7(F U {z}). Then,
(y2), y € 7(F U {a}) = 7(F U {t}),

and so z € 7(F U {t}) (5.5.(a)). Clearly, < is reflexive on L/F.
Since F is a filter

ze(FU{y}) and y € 7(F U {z})

implies zy € F, showing that < is antisymmetric in L/F. For
transitivity, we have, note that (6.8.(a))

y € T7(FU{z}) implies 7(FU/{y}) C7(FU({z}),

and so z € 7(F U {y}) and y € 7(F U {z}) yields z € 7(F U
{z}), verifying transitivity. Since
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NFU{T) =r(F)=F and 7(FU{l})=r({L) =1L,

it follows that L/F (when L has L) and T/F are, respectively,
the least and largest elements of L/F in the partial order <.

b) It remains to verify [+ 4] for L/F. Assume that a/F <
(z +y)/F and a/F < (t*2)/F. Set G = 7(F U {a}). Hence,
zy, tz € G, which implies, since G is a filter, that (zt) * (yz)
€ G, as needed. It is clear that mp is a wEa-morphism or a
wEan-morphism, when L is a wEan. |

Before proving that if L is an Ea or an Ean, the same is true
for the quotient of L be a #-filter, we recall some basic facts about
quotients of Heyting algebras. This will also lead to a version of
the fundamental theorem for morphisms of Ea’s and Ean’s.

If H is a Heyting algebra and G is a filter on H, recall that
the congruence 6 defined by G on H may be described by

algb iff thereist € G such that a At =bAt.

The quotient H/G is a Heyting algebra and the canonical quo- -
tient map,

mg: H— H/G, aw~ a/G,

is a morphism of Heyting algebras, that is, it preserves L, T and
the operations meet (A), join (V), negation (=), implication (=)
and equivalence (). In particular, 7 is a morphism of Ean’s.
The next result is stated for equivalence algebras, but is valid

verbatim for Ean’s.

Theorem 9.3 Let L be an Ea and let F be a proper *-filter in
L. With notation as in 8.2, let G be the (proper) filter generated
by o(F) in Q(L). Then,

a) The map o : L/F — Q(L)/G, defined by a(a/F) = S, /G,

is a wEa-embedding.
b) L/F =(L/F,<,* T,%) is an Ea.
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c)IfL L. Risa Ea-morphism such that F C coker f, then there
is a unique Ea-morphism L/F 2y R, such that the following
diagram commutes :

L — & +

\/

Moreover, g is an embedding iff F = coker f.

Proof : We identify L its image via the embedding o : L —
Q(L). Under this identification, if A C L, write [A]y for the
filter generated by A in Q(L). Note that for all B C Q(L), B N
L stands for ¢~!(B). Write 7 for the T-operator 7, on L.

a) Since F' C G, it is clear that o is well-defined and that o(T/F)
= T/G. To check preservation of *, let z, y € L. Then,

o(a/F»y/F) = ol(z+)/F) = S,,/G = (5,=5,)/G
= (5,/G=5,/G) = [a(z/F) = aly/F)),

as needed. Now we observe

Fact For all z € L, [r(F U {z})]y =[F U {z}]y-

Proof Clearly, [F U {z}]y C [7(F U {z})]y. For the reverse

inclusion :

¥ By 6.16.(a), every filter in Q(L) is an *-filter;

% 6.22.(a) guarantees that I = L N [F U {z}]y is a -filter on L.
Note that FU {z} C I. Hence, 7(F U {z}) C 7(I) = I. It follows
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that [r(F U {z})]g C [F U {z}g ending the proof of the Fact.
Now let z, y € L be such that z/F < y/F. Then, the Fact
yields
y € T(F U {z}) C [r(F U {z})]y = [F U {z}ly
and so there is u € F such that S, NS, C Sy. Hence,
SzﬂSyﬂSu:SzﬂSu,

that is, S,/G < Sy/G, showing that o is a wEa-morphism. Con-
versely, suppose that S, /G < Sy/G' in Q(L). Hence, there is V
€ G, such that S, NV C S, . Since G is the filter generated by
F there are ay, . .. , G, in F, satisfying N, S,, € V. Therefore

S, NNz Sq, €5,

This last inequality implies that y € [FFU {z}]g, and so, by
the Fact and 8.2.(b), y € 7(F U {«}), and z/F < y/F. This
completes the proof that o is a wEa-embedding. Item (b) follows
immediately from 6.22.(b).

¢) Uniqueness is clear. For z € L, set g(z/F) = f(z); since {T}
is a sfilter in R (it is an Ea) and F C coker f, for all z,y € L
(xy)€F = flaxy)=T iff f(z)=f(y), (1)

and g is well defined. If F' = coker f, then the first implication
in (1) is an equivalence, and so g will be injective iff coker f =
F. Clearly, g preserves . If z/F < y/F, then y € 7(F U {z}).
It must be verified that f(z) < f(y). Consider the #-filter I =
f(z)™ C R; by 6.22.(a), G = f~Y(I) is a -filter on L. Since
{f(z), T} C I, we conclude that F' U {z} C coker fuda} € G,
Thus,

7(F U {z}) C 7(G) =G,
whence y € G, that is, f(z) < f(y), ending the proof. O
When L is an Ea or an Ean and F is a x-filter on L, the
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structure L/F constructed above is called the quotient of L by
F. It comes with a canonical quotient morphism, 7p : L —
L/F.

10 A non-constructive Embedding Theo-
rem

In this section we describe a non-constructive way of embedding
an equivalence algebra in a complete Heyting algebra, making
use of the concept of irreducible filter, as in section 1 of chapter
Il in [Ras74].

Definition 10.1 A proper filter F in a wEa L is irreducible
if for all filters G|, G, in L

B =0, M G, implies F =G, or F =G3-

Write T(L) for the set of irreducible x-filters in L. For x € L,
set

I ={F e€ZI(L):e¢€F}.
Note that I+ = Z(L), while if L is an wEan, I, = 0.

Proposition 10.2 Let L be a wEa, F a proper x-filter in L and
let a, b be elements of L.

a) If a g F, then there is an irreducible -filter G such that I C
Ganda ¢ G.

b) If (a x b) & F, then there is an irreducible x-filler G' containing
F and separating a and b.

Proof : a) Let V = {G € S(L) : F C G and a ¢ G}, partially
ordered by inclusion. Clearly, V is non-empty and all chains in
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V have an upper bound. By Zorn’s Lemma, V has a maximal
element G, with F C G and a ¢ G. To show that G is irreducible,
assume that G = H, N H,, for filters H, H,in L. Since a ¢ G,
« must be outside one of the H.’s, say a & H,. But then, H, €
V and so the maximality of G and G C H, imply that G = H,.

b) By Lemma 8.1, there is a proper s-filter K, containing F' and
satisfying the alternative in the statement. Ifae Kand b ¢ K,
(a) yields an irreducible #-filter G, containing K, satisfying the

same condition. The other possibility is handled similarly and

the proof is complete. i

Irreducibility generalizes primeness in distributive lattices :

Lemma 10.3 In a distributive lattice A with top element, a
filter F is irreducible iff it is prime, that is

Foralla,be L, (aVb) €L implies a € ForbekF.

Proof: (1) = (2) : Suppose that neither a nor barein F. Define
G, ={ze€d:=z > a A z, for some z € F}.

It is straightforward to check that G, is a filter in A, that is, it

satisfies

£ T € Gy

2 €G,and y >« implies y € Gy;

xz,y € G, implies ¢ Ay€ G-

It is clear that € G| and that F C G . Thus, F # G,. Similarly,
we may define

G2={.7:EA:mZb/\z,forsomezEF},

to get b € G, \ F, with F C G,. We now show that G; N G, =
F, a contradiction that will end the proof of (1) = (2). For z €
G, N G,, there are t, z € F such that
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z>aAt and z>bA 2

Let ¢ =t A z (€ F); the inequalities above imply that @ is larger
than (a A ¢) and (b A ¢). Thus,

z>@Ac)V(bAc)=cA(aVDb)ETF,
and so z € F, as claimed.

(2) = (1) : Suppose that F = G| N G,, with F #I1Gh, i =1, 2.
Select @ € G, and b € G, both outside F. Since a, b < a V b, we
conclude thata Vb e G, NG, = F a contradiction since neither

a nor b are in F. O

Remark 10.4 In spite 10.3, there is an important difference
between prime filters in distributive lattices and irreducible filters
in Ea’s : prime filters are functorial and irreducible filters are not.

We take {§} U {I, : = € L} as a sub-basis for a topology on
Z(L); let £2;.(L) be the cHa of opens of this topology. The
proof of Theorem 8.2, with Proposition 10.2 in place of Lemma
8.1, can be adapted to yield

Theorem 10.5 Let L be an equivalence algebra. Then, the map
h: L — Qi (L), given by z — I,

is an Ea-embedding of L into Q;-(L). Moreover, if L has a least
element L, then h takes L to L in Q;-(L).
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