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The problem of defining modal operators using contingency as a
primitive is discussed by assuming what Lewis and Langford call the
"Existence Postulate", an axiom which is formulated in a modal lan-
guage with propositional quantifiers. It is shoun that the minimal con-
tingency logic K? extended with the contingential counterpart of the Ex-
istence Postulate is definitionally equivalent to the deontic logic KD ex-
tended with propositional quantifiers.

1. THE EXISTENCE POSTULATE

It is well known that in the work which gave birth to con-
temporary modal logic, Symbolic Logic (1932), Lewis and Langford
introduce a controversial axiom, named by them the Exastence Pos-
tulate, to be added to the system they hold to be the basic system of
modal logic, $2. The formulation they give of the Existence Postu-
late is:

(EP) 33 (O(p & g) & O(p & —q)).

EP contains propositional quantifiers and so it can be for-
mulated only in the framework of a linguistic extension of pro-
positional modal logic allowing quantification over propositional
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variables. The meaning of EP may perhaps be grasped more easily

in the equivalent form:
(1) 3p3q(0(p & ¢) & —=(p—=19))

which states the existence of at least two propositions which are
consistent and independent.

The formulations EP and (1) of the Existence Postulate are
two-variable-formulas. But it is useful to remark that in every mo-
dal system including S2 there is at least a one-variable formula
which is equivalent to EP and (1). To begin with, let us recall that
in every logic of propositional quantifiers we have at our diposal
the rule:

(R3) FA— B—F3pA — 3pB.

In S2 we have as a theorem, by the so-called Consistency Axiom
0(p & q) = 0g,

(2) (O(p& q) &O(p & —q)) = (0g& 0—9)

Moving from (2) we obtain by (RJ), EP, Modus Ponens and the
equivalence 3p3¢(0q & 0—q) <> I¢(0q & 0—g), the simple:

(3) 39(0g & 0—q).

On the other hand from (3) we have, thanks to the equiva-
lence Fg <> (¢ & T') (T being a truth-functional tautology) and
Replacement of Proved Equivalents:

(4) 3¢ (0(T& g) & O(T & —q)).

Thus, introducing a second existential quantifier, from (4) we
reach again EP, i.e.:
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(5) Fp3q (O(p & ) & O(p & —9))

The simple wif 3¢(0q & 0—g) in (3) is then equivalent to the
Existence Postulate in every system having standard rules for pro-
positional quantifiers and such as to contain $2: so the two formu-
las are equivalent in every normal modal logic. Now if we recall
the definition of the contingency operator as:

or alternatively the definition of the non-contingency operator as:
(7) AA=p Av A

the formula (3) which is equivalent to EP boils down to the simple

assertion:
(8) 3¢Vq

or to the equivalent wff 3g—Aq.

In what follows we will call the one-variable statement (8)
the Contingency Postulate (CP), which is actually the contingential
counterpart of the Existence Postulate. The meaning of CPis then
the reasonable assertion that some proposition is contingent,
which means that there is at least one proposition which may be
true and may be false. The negation of CP, ~CP, amounts to (¢)Ag,
ie. (g)(0g = Ug; and, given that Lewis and Langford never
question the law g — Og, in every Lewis system —CP implies
(¢9) (¢~ U9 and (q) (¢ < Og), L.e. the universal quantification of
the collapse formula. As is well known, the intuitive meaning of
the collapse formula in terms of possible world semantics is that in
every model there is only one world which is accessible to the ref-
erence world. Since the Contingency Postulate is the negation of
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the collapse formula, its intuitive meaning is then that there are at
least two possible worlds in every accessibility sphere.

To sum up, the result of assuming among the axioms the
Contingency Postulate, or the equivalent Existence Postulate, is
that the latter assumption turns the collapse formula into an in-
consistency, while it is well known that the collapse formula is con-
sistent with each of the standard propositional modal logics.

The Contingency Postulate is a completely intuitive claim
about contingent propositions, so it is reasonable to embody it
into any system of contingency logic extended with axioms for
propositional quantifiers.

2. CONTINGENCY LOGICS

It has been proved that the contingency fragment of the
minimal normal system K, which is the weakest normal contin-
gency logic, may be axiomatized as follows by using both contin-
gency and non-contingency operators:

KAl Ap <> A—p

KA2 (Ap& Ag) = A(p & q)

KA3 (Ap & V(=pv 1) = A(pV q).

(A Nec) FA - FAA
Let us call the preceding system K" (see Kuhn (1995)). It is re-
markable that K* turns out to be not only the contingency frag-
ment of K but the contingency fragment of KD (i.e. of K + 0p —
0f). In other words adding to K" the deontic axiom D: Op — Op,
or the equivalent formula 07, yields no new theorems containing

contingency operators.
The following are some useful theorems of K*:
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(9) V(p& q) = (VEV V9
(10) (V(p—on &V(pv q) = VP
(11) (V(=pV ) & V(p& g)) = V.

We now extend the language of K with suitable formation
rules for propositionally quantified wifs and the axioms of K* with
a set of axioms for propositional quantifiers including CP.

As Kit Fine remarked (see Fine (1970)), when we extend a
modal system with axioms for propositional quantifiers, we have at
least three choices for every modal system. If X is an arbitrary mo-
dal system, let us call Xrt the system which is X extended with the

axioms:

QP1. (p) (A(p) = A(B)) (where Bis a K-formula free for pin
A(p)

QP2. (p)(A— B) = (()A— () D)
QP3. A— (p)A pnotfreein A
and the rule
UG: A/ (p)A.
The two variants of Xr identified by Fine are the following:
(i) Xm-: i.e. a system which is as Xn with the only difference that in
QP1 Bis assumed to be a formula of the truth-functional calcu-

lus PC and not an arbitrary Kformula

(ii) Xm+: i.e. a system which is X1t extended with the axiom:

© Manuscrito 1999. XXI1(2), pp- 283-303, October.
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(QP4) 3p1 (o1 & (po) (o= (1 = 12))

(asserting that for any world x of every model there is a proposi-
tion describing it).

In what follows we will neglect Xn- and Xm+, being inter-
ested in variants yielded by the presence or the absence of the
Existence Postulate. More specifically, here we will consider only
two different minimal normal systems with propositional quantifi-
ers, K and its extension Kn + EP, which in what follows will be
conventionally named Kn°.

In a parallel way we have at our disposal two minimal con-
tingency systems with propositional quantifiers: the first one is K
extended with QP1, QP2, and UG — which will be named here K*r
— and the second one is K1 extended with the contingency
axiom CP, which will be named here K*°. Of course we have
K*n ¢ K*1° ¢ Kn°. From what has been said, K*1° has a high plau-
sibility as a minimal contingency system with propositional
quantifiers, due to the high plausibility of the Contingency Postu-

late.

Remark 0. An interesting consequence of the Contingency Postu-
late is the following. It is well known that among the theorems of
First Order Logic we have:

(12) ((x) (Px— Qx) & FxPx) — Fu(Px & Qx).

So by an obvious parallelism in logics of propositional quantifica-
tion we have that:

(13) ((p) (Vp— A) & Ip Vp) implies 3p(Vp & A).
Thus if 3 pVp, i.e. the Contingency Postulate, is subjoined as an

additional axiom to any contingency system with propositional
quantifiers, a theorem derivable from (13) is:
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(14) (p) (Vp— A) = 3p (Vp& A).

Something should be said about the semantical analysis of
modal systems with propositional quantifiers. The completeness
results which are provable for such systems may be sketched fol-
lowing the lines of Fine (1970). A Kn-model is a 4-ple M=< W, R,
1, v > where:

a) Wz

c) Rc Wx W

d) I < P(W)

e) vis a map from Winto Il

f) 1 is closed under wifs, i.e. {x& W. ™MA=1}ell

The additional constraint over the accessibility relation
which is required in order to validate the Existence Postulate in
Kn® is simply:

g) JxIy(xRy & x#)).

The condition for the truth of atomic wifs is given in this

way:
h,) W (p, %) =1iff x € v(py), i=1,2...

The truth conditions for truth-functional and modal wifs
are as usual, while for quantiﬁed wffs we have the following:

hy,) VM((p)B, x) = 1 iff VM(B, x) = 1 for all models M’ =
<W, R, m, v'>such that u(p) = v(ps)

forall j#4i=1,2..
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A completeness proof for Kn and Kn® with respect to the
given semantics may be given by the standard Henkin method.

The models for the contingency logic K*n may be defined
following the lines of Humberstone (1995). K- models as de-
fined by Humberstone are Km-models with the following clause
replacing the standard clause for the necessity operator:

i) V(A A x) = 1 iff for all y, z such that xRy and xRz,
VM(A, y) = VM( A, 2).

If a K'm-model satisfies g) beyond the other listed condi-
tions, it is a K*w°-model.

A completeness proof of both K*n and K*r° may be given
unproblematically with suitable modifications of the method of
Kuhn (1995) or (endorsing the alternative semantics outlined in
note 1) of Pizzi (forthcoming).

3. THE DEFINITION OF MODAL OPERATORS IN TERMS OF
CONTINGENCY
A topic of contingency logic which has been only partially
investigated in recent decades concerns the possibility of defining
standard modal operators in terms of the contingency operator.

"A different approach to contingential semantics is set out in Pizzi
(forthcoming) where the accessibility relations are defined in terms of
sets of possible worlds with one or two worlds (standard accessibility
relations being treated as relations among singletons).

A K model is a 4-ple <W, R, I, V>where:

(W=D

(i) If WA = ({x, 3 x €W & y e W} (where possibly x = y) then

AR W x W

b) {x, (} Ry, 2} iff {} R*{y, 2} and {{}R* [y, )

(iii) Vis as in Fine’s models with the following clause replacing the
clause for necessity statements:

V(A A, x) = 1 iff for every y and z € W such that {x}R.A{y, V' (Ay)=
VW (A, 2).
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An important resultin this field is that 0 and ¢ turn out to
be definable in KT® (a contingency system equivalent to KT)
thanks to the definition:

but are not generally definable in weaker systems (see Cresswell
(1988)).

However, extending contingency system with propositional
quantifiers opens the door to a different approach to the prob-
lem. In order to show this point we introduce a new notion, the
notion of non-contingent implication, defined as follows:

(16) AA — B=p; A(A— B)
Notice that A(A — B) equals (thanks to axiom KD1) both

A—(A & —B) and A(A & —B). Some equivalences yielded by the
definition in (16) and the definition of A (see (7)) are the follow-

e (17) AA = B> (A-Bv —0(A— B))
(18) AA — B<> (A->Bv (A & —B))
(19) AA - B> (A Bv (A& 0 —B))
(20) AA — B<> ((0 ~Av 0B) - 0(A— B))
1) AA— B (0 =A—0(A— B)) & (0B—>D(4—= B))
(22) AA— B (0(A— B) > 0(A— B))
An operator which is dual with respect to non-contingent

implication turns out to be definable thanks to the following

equivalences:
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(23) =(AA = =B) & ((0 =Av 0 =B) & —-J(A— —B))

(24) ~(AA — —B) &> V(A& B)

Now a simple definition of possibility which we may add to
K*m° by making use of the definition of noncontingent implication
relies on the idea that a possible proposition is a proposition which is
non-contingently implied by some contingent proposition:

(25) 0A =5 3p(Vp & A(p— A)) (pnotin A)
An equivalent definition would be of course:

(26) 0A =5 Ip(Vp & A(p & —A)) (pnotin A)

We already know that K7 is included in Kr, so K*n® is in-
cluded in Krn°. What we have now to prove in order to justify
the definition is that the equivalence between 0A and 3Jp

(Vp & A(p — A)) (p not in A) is a theorem of Kn® + Def V. In
other words we have to prove:

MT1. 3p(Vp & A(p — A)) (p notin A) <> QA is a theorem
schema of Km° + Def V.

(=>) A noteworthy theorem of Kis
(27) (0r& 0 =) & (O(r— ¢) vO(r& —q)) = O
which by virtue of Def A and Def V is equivalent to:

(28) (Vr& A(r— ¢)) — Og

*The proof may be given by a semantic argument, i.e. proving by Re-
ductio ad absurdum that (27) is Kvalid. Thanks to the completeness of K
this implies that (27) is a K-theorem.
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We then apply to (28) the rule R3 by employing a fresh
variable p and then the equivalence 3p 0q <> 0g. So, considering
that the result which is thus obtained holds not only for ¢ but for
every arbitrary wff A which does not contain p we obtain the Kr-
theorem schema:

(29) 3p(V p & A(p—> A))— 0A (pnotin A)

(<=) For the converse implication, first we recall the formula (13)
and the following instance of it:

(30) (1) ((Vp—>5) &TpVp) = 3p(Vp & s)
We are able then to perform the following proof:
1) Og— (p)(p—=29) Krn
2) (P (p =9 = ) (Vb= (p =29) Kr, PC
3) (5) (Vp— (p-39) &IpVp) = 3p(Vp & (p=39)) (30) p-3¢/s
4) Og—3p (Vp& (p =9)) 1),2),3),PC, -3p Vp
5) Og— 3p (Vp& A(p— 9)) 4) (p— q) AP 9)

Since 5) holds for every g, from 5) we derive by a fortiori the

schema
(A) A= VA= 3p (Vp& Alp— A)) (pnotin A)
On the other hand we may prove also the schema

(B) —0A - (0A— 3p (Vp&D(p— 4)):

© Manuscrito 1999. XXII1(2), pp- 283-303, October.
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1) 0¢& 0 =g & O(g— q) Hypothesis
2) 3p ((Op & 0 —p) &O(p— ¢q)) 1), 3 -Introd.
3) (0q& 0 —g) = Ip (Vp&U(p— ¢q)) 1), 2), = Introd.

Fp&O(g— g) <> p, DefV
4) =g — (0g—=3p (Vp & O(p— ¢)) 3), PC

From (A) and (B) we obtain then by a standard PC -
argument the schema of theorem 0A — 3p (Vp & (Ap — A))
(pnotin A). (Q.E.D.)

As a consequence of the equivalence proved in MTI, we
observe that every statement having the form UA turns out to be
equivalent to a statement containing only contingency operators,
as one can see from the following equivalences:

(31) DA <> ($) (Vp— —(p A — —A)) (pnot in A)
(32) DA < ($) (Vp— V(p & A)) (pnotin A)
(33) DA <> (p) (A(p & A) = Ap) (pnotin A)

The last formula could be used to provide an especially in-
tuitive definition of the necessity operator in terms of non-

contingency.

Remark 1. Notice that in K + Def V (i.e. in Kn° + Def V minus
the Existence Postulate) the theorem schema 0A — 3p (Vp & A (p
— A)) (p notin A) does not imply Ip Vp. As is well-known, in any
Kn-model consisting of only one world x which is an end point,
every O-statement is false and every [rstatement is true. Conse-
quently, every A-statement is also true and every V-statement is
false in such model. Thus 0A— 3p(Vp & A(p — A)) (pnotin A) is
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true in such model by Duns Scotus’ law, while (p) Apis true in it
and 3p Vp is false in it. The implication (0A — 3p (Vp & A(p—
A)) (pnotin A) — 3p Vp is thus false in at least one Kr-model,
and thus cannot be a theorem of Krt + Def V.

Remark 2. From the preceding remark it turns out that thereisa
Kr-model in which 3p Vp is false, which means, by the soundness
of Kr, that CP is not a theorem of Kxt + Def V.

Remark 3. The contingency postulate CP is essential to the deriva-
tion of the equivalence proved in MT]1. We may prove in fact the
following metatheorem:

MT?2. The formula 0A <> 3p (Vp & A (p— A)) (pnotin A)
is not a theorem schema of Kr + DefV.

If the equivalence were a thesis of Kt + Def V, in fact, the
implication 0A — Ap(Vp & A (p = A)) (pnotin A) — 3p would
be a thesis of this system. But this is not so, as was proved in Re-
mark 1 (Q.E.D.).

An interesting consequence of MTT1 is given by the following
derivations in Kn® + Def V:

1) 0T Hypothesis

9)3p (Vp& A (p— 1) 1, MT1, Modus Ponens
3)3pVp 2), Quant. Theory
4)0T—3pVp 1), 8), — -Introd.

On the other hand we have also:

©® Manuscrito 1999. XXII(2), pp- 283-303, October.
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1) 3pVp Hypothesis
2) (p) (A(p—>T)) FO@p—T),UG
3)3p (Vp& A (p— T)) 1), 2), Quant. Theory
4) 0T 3), MT1

5) 3pVp— 0T 1), 4), - -Introd.

The equivalence 3p Vp <> 0T is then a theorem of Kn°. But
0T is equivalent to the Deontic axiom D: p — 0p. So adding the
Contingency Postulate 3p Vp to Krn implies having as a theorem
the Deontic axiom D. It turns out then that Kn® + Def V is the
same as KD7° + Def V.

4. EQUIVALENCE OF CONTINGENCY SYSTEMS AND MODAL
SYSTEMS

What we have proved in the preceding section amounts to
the result that K*7° + Def ¢ is contained in Kr°® + Def V, which is
the same as K*1® + Def V. A remarkable fact is that the contain-
ment also holds in the other direction. In other words, KATCO, KD7°
and Krn® turn out to be definitionally equivalent systems. What we
are able to prove is in fact the following result:

MTS3. For every A, if Ais a thesis of Kn®+ Def V, Ais a the-
sis of K*° + Def 0.

Of course the axioms for propositional quantification need
not be proved in K*r° since they are common to both systems. So
what we have to prove is (i) that all K-theses are theses of K*n® +
Def 0; (ii) that the Existence Postulate is a thesis of K*1° + Def 0
(iii) that the equivalence between Vp and 0p & 0—p is a thesis of
K*1° + Def 0.
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(i) We recall that K may be axiomatized as follows:

Axl: (Op & Og) > O(p& 9)

RNec. FA—>FUA

RK:FA —> B—>FUOA—>DUB
Assuming that Replacement of Proved Equivalents holds for both
systems we may prove that Ax1, RNec., RK are all derivable in
K7° + Def 0.

(A) We begin by proving Ax1,ie. (0A&OB) -»0(A& B)

By applying the known equivalences the antecedent of Ax1
amounts to the conjunction of the following two schemas:

(34) (p) (A(p & A) > Ap) (p notin A)
(35) () (A(p& B) — Ap) (pnotin B)
So we have to prove in K*7° that the joint supposition of

(34) and (35) implies (p) (A(p& A & B) = Ap).
Now the following steps are in order:

(36) A((p & A) & By> A(p& 4)  (35)() -Elim (p& A/ P)
(37) A(p & A) = Ap (34), (-) -Elim
(38) () (A(p& A& B)— Ap) (36), (37)

From (34), (35), (38), by = JIntroduction and UG we then
prove the required schema, i.e.
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((P) (A (p& A)—> Ap) & (p) (A(p& B) = Ap))—>
() (A(p& A& B) = Ap) (pnotin Aand B)

(B) Rule of Necessitation (R.Nec) : FA = F UA.

Given the equivalence (33) between A and (p) (A (p & A)
— Ap) (pnotin A), we have to prove in K"7° + Def § the following
rule:

(39) Fxtre A= Fybre (p) (A(p& A) — Ap) (pnotin A)

Let us suppose gt A. We know of course g (p & A)— p,
so, thanks to:

(40) FA < (pv —p)
we have by Replacement of Proved Equivalents:
(1) Fx (p& A) <> p
Let us now suppose by Reductio:
(42) A& 3p (A(p& A) & Vp)

Under this hypothesis, by applying Replacement twice in
(42) in the light of (41) we would have:

(43) 3p(Ap & Vp)
which is a contradiction. Thus we conclude:
Friro —(A & dp(A(p& A) & Vp),

SO
(44) Fxtne A (p) (A(p & A) — Ap)
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and by Modus Ponens we have the derived rule Fgire A — Frbro
(p) (A(p & A) = Ap) (pnot in A).

(C) We prove now the rule RK: e A= B—> Fgine A — UB.

The proof is by observing that A — B equals (A & B) <> A,
so by Replacement in the thesis V (p& A) <>V (p & A) we have

(45) Fydre V(p & A& B) <> V(p & A).
Let us now suppose the contingential counterpart of A, i.e.
(46) () (A(p& A) — Ap) (pnotin 4)

We have to show that the supposition (46) implies the con-
tingential counterpart of OB, i.e. (p) (Ap & B) = Ap) (p notin B).
Let us suppose by Reductio —(p) (A(p& B) > Ap) is i.e. 3p (A(p &
B) & Vp). Then there is a proposition p* such that A (p* & B) &
Vp* is true in some model. We show that, given (46), a contradic-
tion follows from this fact. The supposition (46) implies, by con-
traposition and Universal Instantiation, Vp* — V(p* & A); by
(45) and Replacement of Equivalents this means Vpr = V(p* & A
& B). In K from V(p* & A & B) we have VA v V(p* & B) (see
Theorem (9)), which equals A(p* & B) — VA. Then from
A (p* & B) & Vp* we would have A(p* & B) and then VA by transi-
tivity. VA would be then true in some model. This is, however,
impossible since (46), i.e. (p) (A(p& A) = Ap) implies AA, and so
the negation of VA, (to grasp this point, let us simply remark that
(p) (A(p & A) — Ap) implies A(A & —A )= A=A, but since Al isa
theorem, it implies A —4, so also AA). Thus, the conjunction of
(46) and —(p) (A(p & B) = Ap) yields a contradiction: so (46) im-
plies (p) (A(p& B) = Ap), which establishes the required result.

(il) We have to prove in Ko+ Def ¢ the Existence Postu-
late, namely 3¢ (0g & ¢ —q)- This means to prove in the contingen-
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tial language the wif 3¢(3p (Vp & A (p— ¢)) & Tp (Vp & A (p—
—¢))). But the proof is straightforward if we recall that AT is a
theorem and that we have at our disposal the Contingency Postu-
late 3p Vp. We have as theorems then, by replacement in A7, both
(p = T) and A (L — L) Thus both 3p(Vp & A (p — T)) and Ip
(Vp& A (p = =T)) are theorems. Thus, by existential quantifica-
tion over 7, 3¢ ((3p (Vp & A (p— ¢q)) &3p (Vp& A (p—>—¢))) is
also a theorem. The equivalent two-variables Existence Postulate
is then derived by following, mutatis mutandis, the lines set out in
Section 1.

(iii) The step which concludes the proof consists in proving
in K1 + Def 0 the equivalence yielded by the definition VA =, 0 A
& O —A which belongs to Kr + Def V.

We have now to prove in K*n + Def ¢ the equivalence VA
©3p (Vp & A(p—> A)) & 3p (Vp & A(p — —A))). The two direc-
tions are proved as follows:

(=>) a) Suppose by Reductio VA & (p) (Vp— V(p— A))

The second conjunct implies (by elimination of the univer-
sal quantifier) VA — V(A — A)), so that we have VA — VT. But
since we already know FA T'i.e. F =V T, we would have by contra-
position and Modus Ponens FA A: contradiction.

b)Suppose by Reductio VA & (p) (Vp— V(p — — A)). Then
V-4 - V(—=A — —A)),i.e. VA — VTas before: contradiction.

Now as a result of the Reductio argument based on a) and
b) we have that VA implies both 3p (Vp & A(p — A)) and
3p (Vp & A (p—> —A))), so also their conjunction.

(<=) By converse, suppose by Reductio 3p (Vp & A (p — A))

& 3p (Vp & A (p - —A)) and also —VA4, i.e. AA. By existential in-
stantiation of the hypothesis we have then, for some p* ad some
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gt (Vp* & A (p* & —A) & (Vg* & A (¢* & A)). Let us suppose that
there is some contingential model in which such formula is true.
If, by Reductio, AA were also true in a world x of the model, A
would be true at all accessible worlds related to x or false at all
such worlds. In the latter case A (g* & A) would be false at x, while
in the former A(p* & —A) would be false at x. So there is no con-
tingential model in which the conjunction Vp* & A(p* & —A) &
AA is true, and no contingential model in which Vg* & A(q* & A)
& AA is true: so by contraposition there is no contingential model
in which 3p (Vp & A(p — A)) & 3p (Vp & Alp =~ —A)) & AAis
true. The conditional (3p (Vp & A (p— A)) & 3p (Vp & A(p—
—4))) = —AA is then true in every contingential model. By the
completeness of K°r then (3p (Vp & Alp— A) &Ip (Vp&A(p—
—A))) = VAis then a theorem of K*. (Q.E.D.)

5. FURTHER QUESTIONS

What has been showed in the preceding sections is that the
Existence Postulate (or the equivalent Contingency Postulate) is
essential to prove an equivalence result between the weakest
normal contingency logic with propositional quantifiers and a
normal modal logic with propositional quantifiers: such logic is
however not the weakest normal modal logic since it contains the
Deontic Logic KD. This fact opens the question of knowing
whether the definition of modal operators in terms of contingency
and propositional quantifiers can be established in systems lack-
ing the Contingency Postulate.

In this connection it is to be noticed that there are an
unlimited number of variants of the Contingency Postulate which
are weaker or stronger than the Contingency Postulate itself. For

instance in Kr:
a) 3g(VgA VVg)
b) 3¢ (VgA AVY)
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are both stronger than CP, while
c) Adqg(Vqv VVy)
d) 3¢ (Vgv AVg)

are weaker than CP and follow from it. As a matter of fact, an
analysis of such variants of the Contingency Postulate and of their
relations with standard modal logics with propositional quantifi-
ers has never been performed up to now and may be suggested as
a topic for further investigations in this area.
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