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We examine some issues concerning a logical system for the precise
treatment of assertions involving “almost all” objects and analyse its
underlying ideas. We concentrate on the usage of ultrafilters for captur-
ing the intended meaning of “almost universal” assertions by analys-
ing its underlying presuppositions and some basic intuitions. We first
reassess the ultrafilter proposal, suggesting an alternative interpreta-
tion, and then analyse a few questions, trying to overcome some objec-
tions against using ultrafilters.

“The truth is rarely simple,

and never pure” (Oscar Wilde).

1. INTRODUCTION

In this paper we discuss, trying to explain and justify, some
fundamental issues in the precise treatment of assertions involving
“almost all” objects. We shall focus mainly on the usage of ultrafil-
ters for capturing the intended meaning of “almost universal”
assertions by analysing its underlying presuppositions and some
basic intuitions.
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470 PAULO A.S. VELOSO

Arguments involving assertions about “almost all” (or “typi-
cal”) objects occur often, not only in ordinary language, but also
in some branches of science. A precise treatment of such argu-
ments has been a basic motivation for ultrafilter logic, a logical
system with generalised quantifiers for “almost all”, also handling
“generic” objects.

The meaning of “almost all objects have a given property”
can be given either directly or by means of the set of exceptions, i.
e. those objects failing to have this property. Prior proposals relied
on the idea that “almost all objects have a given property” is in-
tended to mean that the set of exceptions is “small” (Carnielli &
Sette (1994); Carnielli & Veloso (1997)). Later, the idea of “very
small” set of exceptions was found to be more intuitively appeal-
ing (Veloso (1998)). In any case, a precise formulation hinges on
some ideas concerning (very) small or large sets. By relying on
some apparently reasonable criteria for subsets of a universe to be
considered (very) small, one is led to the precise concept of ul-
trafilter, as capturing the dual notion of (very) large subsets (Sette
et al. (1999)).

This approach leads to a well-behaved logic with interesting
mathematical properties. But, what about its underlying presup-
positions? Are they really reasonable?

Probably, no one acquainted with ultrafilters would doubt
their power or versatilityl. But, even though one often uses the
metaphor of (ultra)filters as congregating the (very) large sets,
this does not necessarily mean that ultrafilters are natural or intui-
tive?. In particular, one may cast some doubt on the assertion that
ultrafilters are a natural way to capture the idea of “almost all”.

1 Ultrafilters have many applications in Mathematics. In Algebra and
Topology, they are the conerstone of Stone’s duality (in particular in the
representation theorem: every (abstract) Boolean algebra is isomorphic
to a Boolean algebra of sets) (Halmos (1972)). In Logic they underlie the
idea of ultraproducts and ultrapowers (Bell & Slomson (1971)).

2 The existence of some ultrafilters is often established by appealing
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In this paper we reassess the ultrafilter proposal, suggesting
an alternative interpretation, and analyse some questions. The
main alleged objections to using ultrafilters we shall address are as
follows.

1. Using ultrafilters lacks intuitive justification.

9. Ultrafilters involve a certain degree of arbitrariness.

3. Ultrafilters are not interesting for finite situations.

We shall attempt to circumvent the first objection by means
of an analysis of the underlying ideas. We shall then argue that the
other two can be overcome by a proper understanding of the roles
of models and theories. Besides considering these objections, we
also recall some ideas about our logic and present a novel result
concerning its expressive power.

The structure of this paper is as follows. In the next section,
we shall attempt to circumvent the first objection (lack of intuitive
justification for using ultrafilters) by means of an alternative in-
terpretation, suggested by reassessing the ultrafilter proposal and
analysing the underlying notions. Then, in section 3, we briefly
recall some basic ideas about ultrafilter logic, an extension of clas-
sical first-order logic by a new quantifier for precise reasoning
about “almost all”. We then proceed to section 4, where we exam-
ine the contention that an ultrafilter embodies a certain degree of
arbitrariness, arguing that, even though this may be the case for a
specific ultrafilter, this is largely dissolved when one considers
theories. In section 5, we examine the expressive power of ultrafil-
ter logic, showing that it is a proper extension of classical first-
order logic, by means of a novel result characterising those formu-
lae from which the new quantifier can be eliminated. Then, the
third contention (that finite situations trivialise ultrafilters) 1is
taken up in section 6, where we argue that it is practically dis-
solved when one considers, and reasons with, theories, in lieu of a

to the Axiom of Choice (Bell & Slomson (1971); Chang & Keisler
(1973)).
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particular model. Finally, section 7 presents some concluding re-
marks.

2. WHY ULTRAFILTERS?

We will first indicate how one can arrive at ultrafilters as
capturing the intuitive idea of “almost all”. The approach is based
on explicating “almost all objects have a given property” as the set
of objects failing to have this property is “negligible”.

The prior idea of understanding “almost all objects” in
terms of (very) large sets might suggest a quantitative notion, such
as viewing as (very) small the unlikely sets (those with (very) low
probability). But, we wish instead a qualitative account, dealing
with properties of a topological rather than metrical nature.

Towards this goal, one might start from the notion of “hav-
ing about the same size” and introduce some reasonable proper-
ties of this relation = between sets.

It is tempting to consider that we have an equivalence rela-
tion. Indeed, reflexivity and symmetry seem reasonable. But, what
about transitivity: are we prepared to accept that the extremes X,
and X, of a long chain X; =X, =... = X, are still sets with about
the same size?

Actually, a notion such as “having about the same size” does
not seem to be such a good starting point. This is so because one
is naturally led to think that sets with the same size should have
about the same size. In other words, this is a non-local notion. The
notion we are seeking is, in contrast, a local notion.

As an example, consider two sets, one consisting of a horse
and an ox, and another one consisting of a horse and a dog.
These sets, which have the same size, may be just as important to a
conservationist. But, the former may be more important to a
farmer, whereas the latter might be preferred by an English gen-
tleman, keen on fox hunting. So, sets with the same size may not
be equally important.

© Manuscrito, 1999. XXII(2), pp. 469-505, October.



ON ‘ALMOST ALL’ AND SOME PRESUPPOSITIONS 473

For another example, consider sets with different sizes, say,
a set with twenty birds and another one with a couple of ele-
phants. The Zoo director is likely to consider them equally impor-
tant. But, an ornithologist would rank the former as more impor-
tant, whereas a truck driver in charge of transporting them would
probably give more attention to the latter. So, a smaller set may be
more important than a larger set, or just as important.

Thus, our intuitive notion is not only local but also relative
to the situation or intended application. We might say that we
really have a family of notions and we attempt to describe some of
their common properties.

In view of these considerations, we shall prefer to use names
like “almost as important as” for our basic comparison between
subsets of a given universe V, which we shall denote by =.

Also, instead of assuming at the outset that we have an
equivalence relation, we shall put forward some more basic — and
hopefully more palatable — postulates. (This enterprise is some-
what reminiscent of that of “reverse mathematics”, with an impor-
tant difference?).

In this section we shall be resorting to two kinds of argu-
ments, namely

e intuitive arguments (based mainly on common sense and
ordinary understanding), to try to justify the acceptance of
the proposed postulates, as well as

e (simple) mathematical proofs, to derive some properties
from our postulates.

3 “The fundamental question in reverse mathematics is to determine
which set existence axioms are required to prove particular theorems of
mathematics” (Solomon (1999), p. 45). Here, instead of locating familiar
axioms, we will be suggesting some new postulates, whence the need for
Justifying their acceptance on intuitive grounds.

© Manuserito, 1999. XXI1(2), pp- 469-505, October.
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One might, and perhaps should, keep them separate, but we pre-
fer to employ a structure that helps seeing the dependence of the
properties on the postulates.

If we understand negligible as “fit to be neglected or dis-
carded” (Webster (1970))%, it appears reasonable to say that two
sets are almost as important when their difference is negligible.
The difference, being the part where they differ, is the so called
symmetric difference

XAY:=(X-Y)uU(¥Y-X).

Equivalently, we may say that two sets are almost as important
when the part in either one but not in both of them is negligible5.

Figure 1: Symmetric difference of sets

4 “Something that is negligible is so small or unimportant that is not
worth considering or worrying about” (Collins (1987)).

5 Indeed, we have (X-Y) U (Y-X)= (X UY) = (X A Y).

© Manuserito, 1999. XXII(2), pp. 469-505, October.



ON ‘ALMOST ALL’ AND SOME PRESUPPOSITIONS 475

We are thus led to formulate our first postulate, explicating
‘almost as important as’ in terms of the family ALof negligible sets.

XY X
Y-X

Figure 2: Sets with about the same importance

P1. For sets Xand Y, Xis almost as important as Yiff their symmet-
ric difference is negligible.

[A] X=YoXAYe N

As an immediate consequence of this postulate, the negligi-
ble sets can be described as those almost as important as the
empty set, which appears intuitively reasonable.

CO: A set Nis negligible iff N is almost as important as the empty
set .

Xe NoX=2 (A

© Manuserito, 1999. XXII(2), pp. 469-505, October.
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Another immediate, and also intuitively reasonable, conse-
quence of this postulate is that when two sets are almost as impor-
tant so are their complements (relative to the universe V).

Cl: For sets X and Y, X is almost as important as Y iff their com-
plements are so (i. e. X“is almost as important as X )°.

X=Yo X=Y° 5

One would probably say that a subset of a negligible setis (even
more) negligible, which is the content of our second postulate, about
the behaviour of the family Nof negligible sets under inclusion.

P2. Each subset X of a negligible set Ne Nis negligible.

(<] XcNe N=Xe N

Figure 3: Union with a negligible set

6 This follows immediately from PI1, since XAY=XAY (as
X Y=Y-1X).

© Manuscrito, 1999. XXII(2), pp. 469-505, October.
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One would probably agree that the addition of a negligible
set should have negligible impact, leaving a set almost as impor-
tant as before. This intuitively acceptable assertion is an immedi-
ate consequence of our two postulates.
C2: For each set X, the union XU N of X with a negligible set
Ne Alis almost as important as X (i. e. XU N is almost as impor-
tantas X)7.

Ne A= XUN=X (+)

Now, in view of our intuitive ideas concerning negligible
and almost as important, it seems reasonable to accept that a set
almost as important as a negligible set is negligible, as well. This
gives our third postulate, about the behaviour of the family N\ of
negligible sets under being almost as important.

P3. Each set X almost as important as a negligible set Ne Ais neg-
ligible.

{=] X=Ne N=>Xe N\

As a consequence, we have the closure of the family A of
negligible sets under union.
C3: If sets Xand Y are negligible (i. e. X€ Aand Ye A), then so is
their union XU Y negligible (i. e. XU Ye )%

Xe N&Ye A=>XuYe N (u)
One may or may not find this property intuitively reasonable. No-

tice, however, that it is an inescapable conclusion, once one has
accepted the preceding postulates®.

7 This follows from P1 and P2, since (XU N) A X=N-XcN.
8 Consequence C2 gives XU Y= X, whence P3 yields XU Ye N
9 Another consequence is that our comparison = turns out to be tran-
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Our intuitive ideas concerning negligible suggest that the
empty set is (most) negligible, which we shall accept as our fourth
postulate.

P4. The empty set @ is negligible.

[e] Je N

An immediate consequence of this postulate, to which it is
equivalent (in view of P2), is the existence of negligible sets. In-
deed, what would be the point of considering such sets if there
were none?

C4: There exist negligible sets.

N= & (#)

It seems reasonable to accept that the universe is not negli-
gible. Otherwise, in view of P2, every subset would be negligible,
which would trivialise the notion. This idea gives us our fifth pos-
tulate.

P5. The universe Vis not negligible.

[e] Ve A

An immediate consequence of this postulate, equivalent to
it by P2 (as noted above), is the existence of non-negligible sets.
C5: There exist non-negligible sets.

N= £ (V) (<)

Now, we have already agreed that the empty set is (most)
negligible. Dually, the universe is (least) negligible, i. e. (most)
important. Our intuition suggests that a subset is very important
(worth considering or worrying about) when its complement is

sitive (because X— Zc (X-Y) U (Y- 2Z)).
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ON ‘ALMOST ALL’ AND SOME PRESUPPOSITIONS 479

negligible. Such considerations give our sixth postulate, explicat-
ing the family 7 of very important subsets (those carrying consid-
erable weight) in terms of the family 7\of negligible sets.

XC

Figure 4: Subset with negligible complement

P6. A subset H < Vis very important iff its complement H¢is neg-
ligible.

[ W] He We Hoe N\

As a consequence of our postulates so far, we can character-
ise the very important subsets as those almost as important as the
universe, which appears intuitively reasonable.

C6: A subset H < Vis very important iff His almost as important as
the universe!.

He We H=V ()

10 This follows immediately from P6 and C1.

© Manuscrito, 1999. XXII(2), pp- 469-505, October.
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We now come to our final postulate, which is probably the
least intuitively acceptable one (and with more profound impact).
The underlying idea is that the universe is so important (i. e. car-
ries so much weight) that any attempt to cover it by finitely many
subsets must employ a very important subset (one carrying consid-
erable weight, or equivalently, almost as important as the entire

universe) 1.

Figure b: Finite cover of the universe

P7. Any finite cover of the universe V must have a very important
subset.

11 Over an infinite universe, one may regard the finite subsets as not
carrying considerable weight. Another example where this postulate
holds is provided by considering as carrying considerable weight only
subsets with elephants.

© Manuscrito, 1999. XXII(2), pp. 469-505, October.
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[ V] V=X uU...uX,= X, W, forsome k

As a consequence of our postulates, we have that a subset or
its complement must be very important.
C7: If a subset X Vis not very important then its complement X
is very important!2.

Xe W= X‘e W (p)

Summarising, in virtue of our postulates, the family % of

very important subsets (those carrying considerable weight) has

the following properties!?

e non-empty: W# I,

e proper: Wz £ (V);

e upward closed: Y € W, whenever X € Wand X Y,

e closed under intersection: X N Y € W, whenever X € Wand

Ye W

e prime: X e W whenever X ¢ W.

12 This follows immediately from P7, since XU X¢= V. (Notice that it
requires only the simpler instance of P7 concerning covers by two subsets,
namely if X; ¢ W and X, ¢ W then X, U X, # V)

13 The last property is C7, and the first four follow, by P6, from the
corresponding dual properties of family A of negligible subsets (namely
C5, C4, P2, and C3).

© Manuscrito, 1999. XXII(2), pp. 469-505, October.
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A%

%)

Figure 6: Negligible and very important subsets of the universe
Thus, the family
W={Xc V:He \}

of very important subsets is'*

14 A similar hierarchy of families of subsets can be used for variations
of the logic of almost all (Grécio (1999)): upward closed families to cap-
ture ‘many’ (a sizeable portion) and filters for ‘plausible’ (a reasonably
large set of evidences).

© Manuscrito, 1999. XXII(2), pp. 469-505, October.
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e anon-empty, proper, upward closed family of subsets of Vv,
being also
e closed under intersection (thus, a proper filter on V),
and, moreover, is
e prime (thus, a maximal proper filter on V).
Hence, the family % of very important subsets is a proper ultrafil-
ter over the universe V5.
Summing up, the acceptance of some simple (and arguably
reasonable) postulates about subsets of a universe being
e almost as important,
e negligible,
e veryimportant,
leads to the conclusion the family % of very important subsets is
proper ultrafilter over the universe.
Conversely, each proper ultrafilter on a universe gives rise to
a family of subsets satisfying our seven postulates!®.
Therefore, we can see that
e ultrafilters, and
e families of subsets satisfying our seven postulates
turn out to be equivalent formulations of the same basic ideas.

3. ULTRAFILTERS FOR “ALMOST ALL”

We shall now briefly recall some basic concepts of ultrafilter
logic, an extension of classical firstorder logic for reasoning about
“almost all”17.

15 The dual family 2 of negligible subsets is seen to be a maximal
proper ideal.

16 By using formula [ A ] (in postulate P1) to introduce relation = and
formula [7/] (in postulate P6) to introduce family A\, we can see that
each ultrafilter gives rise to a model of our seven postulates.

17 More details concerning ultrafilter logic can be found in (Carnielli
& Veloso (1997); Veloso & Carnielli (1997); Sette et al. (1999); Veloso
(1998), (1999)).
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Under the light of the preceding section, the interpretation
of
o “almost all objects have a given property”
as
e “the set of objects failing to have this property is negligible”
can be seen to amount to
e “the set of objects having this property belongs to a given
ultrafilter”.

Our logic for almost all adds to classical first-order logic a
generalised quantifier V, with intended interpretation “almost all
objects” and whose behaviour can be seen to be intermediate be-
tween V and 318. We now briefly examine this logic: its syntax,
semantics and axiomatics.

The syntax of our logic is obtained by extending the usual
first-order syntax by the new quantifier. We extend the usual first-
order syntax by adding the new quantifier V together with a new
(variable-binding) formation rule giving almost universal formu-
lae, namely those of the form V9.

The semantics for our logic is obtained by extending the
usual first-order definition of satisfaction to the new quantifier?.

For this purpose, we resort to ultrafilter structures, an ul-
trafilter structure M" being the expansion of a first-order structure
I by an ultrafilter U over its universe. We then extend the usual
Tarskian definition of satisfaction to almost universal formulae, so
as to capture the above interpretation: an almost universal for-

18 But with different properties. For instance, whereas Vx and Vy
commute (and likewise for 3), in general VaVy x < y and VyVxx <y are
not equivalent.

19 Notice that iterated applications of V are allowed. More precisely,
we have the new formation rule: for each variable v, if ¢ is a formula then
so is Vo @ a formula (where variable v is bound).

20 So, the propositional connectives as well as the usual quantifiers v
and 3 will keep their familiar interpretations.

© Manuscrito, 1999. XXII(2), pp. 469-505, October.
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mula Vv is satisfied iff the extension of ¢ belongs to the given
ultrafilter?!.

We set up a deductive system for our logic by adding a set
AY of schemata, coding properties of ultrafilters??, to a calculus
for classical first-order logic?? .

In this deductive system, we have substitutivity of equiva-
lents24. Also, we can see that, within equivalence, the new quanti-
fier V provably

e commutes? with negation —,
and
e distributes2 over the binary propositional connectives A,
v, = and <.
We also have prenex normal forms?7.

This system provides a sound and complete deductive calcu-
lus for reasoning about assertions involving “almost all”: a sen-
tence 7 is derivable from a set I iff T holds in all ultrafilter models
of T'2%8,

21 More precisely, given an ultrafilter structure M= (M, U), for a
formula Vyy(x, y), we define mer V() [a] iff the set b e M:
M+ "y(xy) [ ab]) belongs to the ultrafilter U For a purely first-order
formula 0 (z) (without V), M0 () [m] iff MEO(w) [22] (as indicated
in the preceding remark).

22 These schemata code the properties: the empty set is not in an ul-
trafilter, ultrafilters are closed under intersection, and a set or its com-
plement is in an ultrafilter. (Closure under supersets follows from these
properties.)

23 We will then have =@ iff U A" b ¢ (which yields monotonicity).

24 We have L F Vv <>V 0 whenever Z Fy <> 0.

25 More precisely, F'=Vup <Vu-o.

26 For instance, F Vu(yad)<«> (Vv you AVv 0) and F'=Vu(yv0) <> (Vo
yuvVu0).

27 Every formula is provably equivalent to one consisting of a prefix of
quantifiers (V, 3 and V) followed by a quantifier-free matrix.

28 More precisely, I' Firiff T E'7.
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Our ultrafilter logic is a proper (as we will see later) and
conservative extension of classical first-order logic?®, with which it
shares some metamathematical properties, such as compactness
and Léwenheim-Skolem properties®.

4. ARBITRARINESS?

We shall now examine the contention that an ultrafilter
embodies a certain degree of arbitrariness. The idea is that, even
though this may be the case for a given ultrafilter, this is largely
dissolved when one considers, and reasons with, theories.

As an example, let us consider the set N of the natural num-
bers and the two (infinite) subsets of N:

e the set E of the even numbers,
and
e its complement E° (the set of odd numbers).

These two infinite subsets have the same cardinality and ap-
pear to be equally important, but exactly one of them must be
negligible. Now, considering either one of them as negligible, and
the other one as very important, appears to be somewhat arbitrary.

Sometimes, a context (given by an application) may remove
this feeling of arbitrariness (rendering it only apparent). For in-
stance, the set P of prime numbers may be rightfully deemed very
important by a number-theorist working on problems of Cryptog-
raphy.

Now, let us return to the general case, where ultrafilters may
appear to involve some arbitrariness.

29 For classical formulae (without V), our V-axioms add no extra de-
ductive power, i. e. for such £ and ¢ without V, we have £ Fop iff k.

30 The apparent conflict with Lindstrém’s results (Lindstrém (1966))
is explained because we are using a non-standard notion of model (due
to the ultrafilters). This feature may confer to ultrafilter logic some inde-
pendent model-theoretic interest.
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First, we recall an example of a proper filter over an infinite
universe V. It is the so-called Fréchet filter consisting of the
cofinite subsets of V (i. e. those with finite complement) 3.

Now, consider the Fréchet filter Fover the universe of N of
the naturals. Given any infinite subset Z of N, we can see that the
family FU{ Z} has the finite intersection property (fip) *2. Hence,
it can be extended to a proper ultrafilter3® ¢7, over N, i.e.
FulZlc Uz

So, we have several proper ultrafilters over N, for instance

o an ultrafilter 7z, with E€ Uy (hence E° ¢ Up), and

o an ultrafilter U, with E° € U (hence E¢ Up).
The set E of the even numbers is very important in the former
case, but not in the latter, when the set E° of the odd numbers is
very important.

We thus have ultrafilter models where the assertion “almost
all numbers are even” holds, as well as models where it fails to
hold. Hence, in a theory having such models the assertion “almost
all numbers are even” is left undecided: neither it nor its negation
is provable3*.

In this sense, the alleged degree of arbitrariness, that may
be attached to a given model, is largely dissolved when one con-
siders theories.

31 The dual family consisting of the finite subsets is clearly a proper
ideal.

32 For any finite family of sets X, ..., X, in Fu{Z)}, we have
Xn..n X, @ (otherwise Z would be finite).

33 It can be extended to a proper filter, and then, by resorting to
Zorn’s Lemma (or, equivalently, to the Axiom of Choice), to a proper
ultrafilter.

34 Notice that the set of even naturals is definable in the structure
9N = (N, +) of the naturals with addition, and its theory Th( 91) is decid-
able (Presburger’s Theorem, see, €. g. (Enderton (1972), p- 188)).
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N

%)

Figure 7: Filters over the naturals

This fact is corroborated by a result of ultrafilter logic: in
the absence of almost universal information, the only almost uni-
versal consequences are the universal ones®®. This expresses the
fact that the universe is the only set that can be guaranteed to be
in every ultrafilter.

A perhaps pertinent analogy is with probability. Probability
theory is more concerned with obtaining some probabilities from
others, by means of properties, than with assigning probabilities to
particular events. Particular distributions may assign different

35 More precisely, for £ and ¢ without V, L+ Vo @iff L+ Vv .
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probabilities to evens and odds, but, without information about
distributions, one would know very little about their probabilities.

Even in a theory with almost universal information express-
ing that the cofinite sets are very important (i. e. a finite set has
almost no number) 3, the assertion “almost all numbers are even”
is still left undecided.

5. EXPRESSIVE POWER

We shall now briefly consider the expressive power of our
ultrafilter logic, showing that it is a proper extension of classical
first-order logic.

As a motivating example, imagine a (consistent) first-order
theory T expressing information concerning flying birds. Assume
that

e we know that some birds fly (i. e. Z+ JvF(v));
e we do not know that all birds fly (i. e. ¥ V vF(v)).

Now, consider the almost universal assertion
e almost all birds fly, i. e. VuF(v).
Can this almost universal assertion be expressed by a purely first-
order logic sentence (without V)? One is likely to lean toward a
negative answer.

In view of the result mentioned at the end of the preceding
section, we know that we cannot derive the assertion VuF(v) from
the information in 237. (But, notice that our question does not
concern truth, or derivability, of this assertion, but rather its ex-
pressibility in simpler terms.)

Now, assume that we have some other predicates, such as W
(for ‘has wings’), K (for ‘has beaks’), and D (for ‘is a biped’), as
well as perhaps further (consistent) classical information, such as

e all birds have beaks (i. e. Z} VuK(v)),

36 This can be expressed by the assertion VyVx—x=y (see section 6).
37 Indeed, £ ¥ VuF(v) since § 'V uF(v).
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e every bird is a biped (i. e. £ F VuD(v)),

e flying birds have wings (i. e. ZF Vo[ F(v) — W(v)1);

e but we still do not know that all birds fly (i. e. Z¥ V

uF(v))38.

Can we now express the almost universal assertion VuvF(v) by an
equivalent sentence without V? The question seems to have be-
come more difficult, but it still has a negative answer. Moreover,
the reason for this negative answer rests entirely on classical first-
order reasoning, namely

S ¥ [BuF(v) = YuF(v)].

We will now indicate why the only almost universal asser-
tions Vup (where ¢ has no V) that can be expressed without V are
the trivial ones (such that 3vg — Vv can be derived).

Considering X and ¢ without V we will show that

o if Z}¥ [Vvo «<>0], for some 6 without V,
o then Z} [Fve — Vvgl.
Towards this goal, we first note that, for 6 without Vv,
e if X [Vvep — 0],
e thenZ} [Fve — 6],
by reasoning with models®.
We then also have, for 8 without V,
o ifX}[0->Vve],
e thenZXZ} [0 — Vvg],
by duality40.

38 Or, even more strongly, that we know that not all birds fly (i. e.
ZF —VuF(v)), as long as T is consistent.

39 Otherwise, we would have a model M of T such that M ¥ 6 where
the extension of ¢ is nonempty, and thus can be extended to a proper
ultrafilter U This gives an ultrafilter model M“= (M, U) of T such that
ME" Vo .

40 Since kY =Vop Vv .
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Finally, by combining these two implications, we can con-
clude the announced necessary*! condition for eliminating V.

Now, returning to our example, we see that this necessary
condition fails%2. Thus, the almost universal assertion VuF(v) can-
not be expressed without V.

Hence, in ultrafilter logic we have formulae that cannot be
expressed within classical first-order logic, showing that the former
is a proper extension of the latter.

6. FINITENESS?

We shall now examine the contention that ultrafilters are
not interesting for finite situations. Again, the idea is that, even
though this may be the case for a particular (finite) structure, this
is practically dissolved when one considers theories.

Clearly, over a finite universe V; every ultrafilter is finite.
Moreover, as it is well known, such an ultrafilter must be gener-
ated®3 by a singleton®®. So, such an ultrafilter consists of all the
subsets including some element of V; i. e. it must be of the form

g-’”:{XgV:geX}

for some element g € V (its generator).
For ultrafilter gz’ generated by ge V, we have
e almost all objects have a property ¢(v), i. €. Vu@(v)
iff#5

41 Tt is also sufficient: if T F [Jv p—=>Vv @], then we can take 0 as Jv ¢
(or Vv o).

42 Because T F Jvv F(v) but T¥ Vv F(v).

43 The ultrafilter generated by subset G V consists of all the subsets
X c V including the generator G.

44 1 view of postulate P7, because each finite universe has a finite
cover by all its singletons.

45 Indeed, we have the following equivalences
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e the generator g this property, i. €. @(g).

This equivalence provides a crucial test for property o(v),
reducing almost all to element g So, such an element g may be
termed archetypal?® or generic?’ for this property (Carnielli &
Veloso (1997); Veloso (1998)).

Notice that this equivalence implies that “almost all objects
are equal to the element g’, which may sound exaggerated, but is
really intended to mean that the singleton { g} is very important.

One must, however, bear in mind that we are making these
considerations in the presence of a given ultrafilter. It is in this
context that

e the almost universal assertion Vup(v)
reduces to

o the simpler assertion Q(g).
In a given finite ultrafilter model, we have its ultrafilter, so we can
assume to know its generator.

Let us now consider several finite ultrafilter structures, each
one with its own ultrafilter. We know that each such ultrafilter has
a generator, but we may not have access to it.

A similar situation occurs with theories. Even though we
may know that each ultrafilter has a generator, we may unable to
identify it.

e almost all objects have a property ¢(v)

iff
e the set [p(v)] of objects having this property is in the
ultrafilter et
iff
o the generator g is in the set [¢(v)] of objects having this
property
iff

o the generator g this property, i. e. ¢(g).
46 For a typical element g, Vv ¢(v) would follow from ¢(g).
47 The term ‘generic’ has been used in other contexts, such as (Fine
(1985)), for a similar, but not quite the same, idea

© Manuscrito, 1999. XXI1(2), pp. 469-505, October.



ON ‘ALMOST ALL’ AND SOME PRESUPPOSITIONS 493

For instance, reconsider the case of the flying birds, now
with information, such as
e almostall birds fly (i. e. Vul{v)),
e Mother Goose does fly (i. e. F(m)),
e Woody, a woodpecker, flies (i. e. F(p));
e Sam, a penguin, does not fly (i. e. =F(s)).
Assuming that the universe B of birds is finite, we can be
sure that each ultrafilter will have a generator, i. e. we know that

FyVax =y.

But, we do not know its identity. In fact, we have very little infor-
mation concerning the generator. Besides the fact that it cannot
be the non-flying Sam, for all we know the generator might be

e cither Woody;

e or Mother Goose;

e or even some unnamed bird.

Thus, if Tweety is (the name of) a bird, the theory will not
decide whether or not it flies.

Having names for all the possible objects in a finite universe
will not change the situation. For, even though the theory guaran-
tees the existence of an object (a generator), it still may happen
that all we can know is that it is one of the objects in the finite
universe, without being able to decide the disjunction and identify
1t.

For a universe with three objects, consider theory A involv-
ing three constants, say s (for ‘solid’), / (for ‘liquid’), and & (for
‘gaseous’), with axioms stating that these three constants are pair-
wise distinct and exhaust the entire universe*®. We will then have

48 For instance, ~s =1 =s=k, ==k and Vx[x=sv x= v x= k].
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Figure 8: Ultrafilters over a three-element universe
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AF JyVxx =y,
whence, also
AF [Vxx=sv Vxx=1v Vxx=k],

but, theory A will not decide this disjunction?, which is to be ex-
pected (there are no grounds to deem an element much more
important than the others).

Indeed, over the universe { s,k }, we have three ultrafilters,
namely

o ultrafilters (U, U, and U,
with respective generators s, /, and k.
So, theory A has three ultrafilter models®, namely
e X F and ;g
expanding the three-element universe {s,Lk}, respectively, with
the ultrafilters (U, jU, and U.

In this sense, the contention that ultrafilters over a finite
universe are not interesting (because then they are generated by
an element) is dissolved when one considers theories. Even
though in each particular finite structure, its ultrafilter has a gen-
erating element, this does not mean that a theory will be able to
pinpoint such a generator (for all its models).

7. CONCLUSION

We have examined, trying to clarify and justify, some issues
underlying a logical system for the precise treatment of assertions

49 More precisely, AP Vax=s, A" Vaxx= 1 and A¥ Vxx= k.
50 Each one of these models decides the disjunction in favour of the

generator of its ultrafilter, e. g. 2 E"Vaxx = 5, but ' Vaxx = I and

SS hvﬁVxx =k
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involving “almost all” objects. We have concentrated on the usage
of ultrafilters for capturing the intended meaning of “almost uni-
versal” assertions, trying to expose and explain some basic intui-
tions.

We have addressed three objections to using ultrafilters,
namely

1. lack of intuitive justification,

2. degree of arbitrariness,

3. trivialisation in finite situations.

We have attempted to circumvent the first objection by
means of an analysis of the underlying concepts, and then argued
that the other two can be overcome by a proper understanding of
the roles of models and theories.

We have approached the first alleged objection (lack of in-
tuitive justification for using ultrafilters) by analysing the ultrafilter
proposal. Instead of trying to justify directly the usage of ultrafil-
ters, we have suggested an alternative interpretation, based on
local and relative notions concerning sets (the relation of ‘having
about the same importance’, as well as the properties of being
‘negligible’ and ‘very important’). An analysis of our intuitive un-
derstanding of these basic notions has suggested some reasonable
postulates®®, from which we can rigorously derive the characteris-
tic ‘properties of ultrafilters.

Clearly, the alternative interpretation suggested has little, if
any, impact on ultrafilter logic in so far as mathematical logic is
concerned?®2. It may, though, affect its acceptance as well as its
possible applications.

51 These postulates are, admittedly, not all equally acceptable on in-
tuitive grounds.

52 1 other words, this interpretation has negligible impact on the
mathematical results, but it may affect the search for results and their
applications.
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We have then briefly recalled some basic ideas about ul-
trafilter logic, a logical system for the precise reasoning about “al-
most all”. We have sketched its syntax, semantics and axiomatics,
indicating that we have a proper, conservative extension of classi-
cal first-order logic, with which it shares some properties, such a
simple sound and complete deductive calculus, as well as com-
pactness and Léwenheim-Skolem properties.

We have then examined the second alleged objection (arbi-
trariness in connection with ultrafilters). Indeed, this may be the
case with a particular ultrafilter (since it must have either a set or
else its complement). We have, however, argued that this is largely
dissolved when one considers a theory (with models for both al-
ternatives).

Before embarking on considerations about the third con-
tention, we have examined the expressive power of our ultrafilter
logic, showing that it is a proper extension of classical first-order
logic. We have established the result that an almost universal pre-
fix can be eliminated from a pure matrix only when this matrix is
trivial (with existence implying universality). This result shows that
we have a proper extension, and it also yields that, even in finite
situations, almost universal sentences express more than classical
first-order sentences.

Finally, we have taken up the third alleged objection to ul-
trafilters (trivialisation in finite situations). Indeed, this may be so
with a particular ultrafilter (since, being over a finite universe, it
must have a generator, providing a crucial test for the almost uni-
versal assertions). Again, this objection is dissolved when one con-
siders a theory (with several ultrafilter models). Then, the mere
existence of a generator (established by the theory) does not iden-
tify it (and the crucial test is lost).

We shall now briefly mention some other aspects of ultrafil-
ter logic and comment on possible applications (Carnielli &
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Veloso (1997); Veloso & Carnielli (1997); Sette et al. (1999);
Veloso (1998)).

For reasoning about “typical” or “archetypal” objects, ideal
individuals can be introduced by means of almost all, and internal-
ised as constants, thereby producing conservative extensions
where one can reason about generic objects as intended. For in-
stance, from “almost all swans are white” one can conclude that
“typical swans will be white” and “a non-white swan cannot be typi-
cal”. So, ultrafilter logic provides a logical system for reasoning
about assertions with “almost all”, as well as “typical” or “arche-
typal” objects, over a given universe.

More interesting situations, however, require such assertions
relative to several universes, involving “almost all birds”, “almost all
penguins”, and “typical eagle”, for instance. Finer analyses show
that relativisation fails to capture the intended meaning®?, thus
indicating the need for distinct notions of negligible subsets. To-
wards this aim, one introduces a many-sorted version of ultrafilter
logic, with notions of negligible subsets relative to the universes,
which shares many properties, such as supporting generic reason-
ing, with the original version. Moreover, some situations require
comparing distinct notions of negligible subsets over some uni-
verses. Many-sorted ultrafilter logic can handle such comparisons
by means of appropriate transfer assertions.

Thus, ultrafilter logic provides a logical system for precise
reasoning about assertions involving “almost all” as well as “typical”
or “archetypal” objects.

53 This problem appears to be related to the so-called “Confirmation
Paradox” in Philosophy of Science (Hempel (1965)). Each flying cagle is
considered as confirmatory evidence in favour of “Eagles fly”, whereas a
non-flying non-eagle is not felt so, even though “Eagles are fliers” and
“Non-fliers are non-eagles” are logically equivalent (Carnielli & Veloso

(1997); Veloso (1998)).
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As a logic with generalised quantifiers, ultrafilter logic is
connected to such extensions of first-order logic (Barwise & Fe-
ferman (1985); Keisler (1970)). It is also related, though to a
lesser extent, to the tradition of analysis and formalisation of lan-
guage®?,

One of the original motivations for extending first-order
logic was capturing “common-sense” reasoning (Schlechta
(1995)), thereby providing an alternative to non-monotonic logic
(Carnielli & Sette (1994)). Ultrafilter logic is thus related to de-
fault logic (Reiter (1980)) and its variants®® (as well as, even
though to a lesser extent, to belief revision®). Indeed, they do
have a large intersection in so far as applications are concerned, as
indicated by benchmark examples. They turn out to be, however,
quite different logical systems, both technically’” and in terms of
intended interpretation®® (Carnielli & Veloso (1997); Veloso
(1998)).

We finally comment on some perspectives and directions for
further work, specifically some interesting connections with fuzzy
logic and inductive and empirical reasoning, which suggest the

54 Asin (Frege (1879); Tarski (1936); Church (1956)), for instance.

55 See, €. g. [Antoniou (1997); Brewka (1991); Lukaszewicz (1990);
Marek & Truszczynski (1993)).

56 Sce (Girdenfors (1988); Makinson & Gérdenfors (1991)), for in-
stance.

57 Concerning technical aspects, ultrafilter logic is monotonic and a
conservative extension of classical first-order logic, in sharp contrast to
the non-monotonic nature of the approaches via defaults.

58 Concerning intended interpretation, one can perhaps phrase the
difference in terms of positive and negative views (Sette et al. (1999)).
Our approach favours a positive view, in the sense that we wish to express
assertions involving ’almost all’ and 'typical’ explicitly. The default ap-
proach takes a negative view in the sense of interpreting such assertions
as “in the absence of information to the contrary”.

© Manuscrito, 1999. XXII(2), pp. 469-505, October.




500 PAULO A.S. VELOSO

possibility of other applications for our ultrafilter logic. The basic
idea is exploiting the expressive and deductive powers of ultrafil-
ter logic.

A first possible application is to the realm of imprecise rea-
soning, in the spirit of fuzzy logic (Turner (1984)). Some common
ground is indicated by the basic intuitions of ‘almost all’, ‘negligi-
ble’, ‘very important’ and ‘about as important as’. For instance, a
fuzzy concept, such as ‘very tall’ might be explicated as: a very tall
person is a person that is taller than almost everybody (else)>°.
Such approach may provide alternative qualitative foundations for
(versions of) fuzzy logic.

Another possible application could be to the area of induc-
tive reasoning, as in empirical experiments and tests. This arises
from the observation that, whereas laws of pure mathematics may
be of the form “All M’s are N’s”, one can argue that empirical laws
(as in natural sciences) can be regarded as assertions of the —
more cautious — form “Almost all M’s are N’s”. Here, the expres-
sive power of V may be helpful®.

The possible applications outlined above suggest another
interesting avenue: the weakening of some mathematical con-
cepts. For instance, the idea of ‘almost dense’ is close to that of

59 Another example is provided by a non-standard model of the natu-
rals with a Fréchet ultrafilter (one excluding all the finite subsets). Then,
the standard naturals would be “very short”, whereas the non-standard
numbers would be “very high” (and numbers in the same copy would be
“about as high”).

60 The case of program testing may be illustrative: one tests the behav-
jour of a program for a (small) set of data and then hopes to argue that
the program will exhibit this behaviour in general. Here, the rationale is
that the set of test data is “representative” in that it covers the possible
execution paths. This may be considered as an example of an inductive
jump: from fairly small experimental evidence to an almost universal
conclusion.
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‘almost coverage’, which was found useful in expressing connec-
tions between sorts (Veloso (1998)). Along similar lines, concepts
such as ‘almost equal’ or ‘almost disjoint’ might be useful. The
basic idea is weakening some universal quantifiers to almost all.
For instance, one might consider the notion of ‘almost partition’
as a set of blocks almost covering the universe where intersecting
blocks would have almost the same elements. Analogously, “almost
equivalence’ could be obtained. Similar weakening of some
mathematical ideas might be of interest®l.

To conclude, we have discussed and tried to explain some
fundamental issues in the precise treatment of assertions involving
“almost all” objects. We hope that our attempted rational recon-
struction of some basic intuitions has contributed to clarify, and
justify, the usage of ultrafilters as capturing the intended meaning
of “almost universal” assertions. We trust that our analysis of the
contentions concerning (apparent) degree of arbitrariness and
trivialisation in finite situations has helped to dispel some possible
misconceptions about ultrafilter logic. Logics such as this one ap-
pear to merit further investigation, both as logical systems and in
connection with other fields, which may suggest interesting appli-

cations or variants of these ideas.
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