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Uma nova maneira de abordar o estudo dos fundamenios da geometria é agui
proposta. Ela consiste essencialmente em considear o tema numa perspectiva his-
térica. Uma discussio critica e comparativa dos conceitos grego e ocidental de
geometria procura mostrar suas diferengas.

A new way of approaching the study of the foundations of geometry is at-
tempted here by locating the subject in ils historical perspective. A critical and
comparative discussion of the Greek and the Western concepls of geometry tries
to emphasize their differences.

Introduction
Transcendental Dialogue:

Euclid: “Tnueiov éotiw, od pépos ovdév.”
Hilbert: “Nein! Die Ebene ist ein System von Dingen, welche Punkte
heissen.”

1. In this paper we intend to develop a critical study on the foun-
dations of geometry under a broader philosophical perspective than
usual. Usually geometry is understood as a science that started with
the Greeks and had afterwards a “natural evolution” through many
centuries, with contributions by several people, finally reaching its
“higher perfection” in the hands of the Western mathematicians. We
shall develop here a completely different picture. We begin by re-
calling some basic facts of philosophy of history and also some ideas
developed in our previous works (Lintz 1977, 1988).

Any theory of history develops a certain scheme through which
facts are collected and analyzed in order to explain “what happened
and what will happen”. A theory is better than another if it can
explain more facts with a minimum of general assumptions. It is our
opinion that the line of thought developed in philosophy of history
starting with G. B. Vico in the 18th century and culminating with the
monumental works of A. Toynbee and O. Spengler is, according to
the criterion above, the most general and profound theory of history.
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It allows us to locate and explain facts better than any other we know
of; hence it is the philosophy we shall use in this paper. The reason
why these theories have been rejected by the majority of philosophers
and scientists is easily explained by psychology: they shake the very
foundation of beliefs we consider as solidly established; in particular,
they hurt the pride of our Western Civilization, for they remove it
from its position as the finest achievement of mankind, requiring, in-
stead, that it be put on an equal footing with the other civilizations
and historical cultures. It is about time we put aside our pride and
arrogance and try to analyze the facts in a realy objective and unbi-
ased perspective.

2. Any historical culture is an organism which exists and de-
velops itself in time and space. The word organism is made precise
in the following way. It is an object of our consideration (udfnua)
determined by:

a) a certain form which can be detected by us through some mate-
rial media like figures is space, colors, sounds, written words or signs
of any kind, which we shall call its organogram, expressed by a set of
rules named its syniaz;

b) a certain number of fundamental elements giving the organism
its own identity and distinguishing it from other organisms which we
call its structure;

¢) a certain genetic code responsible for its evolution in time ac-
cording to certain rules, its organogen.

Let us illustrate this concept with a few examples (cf. Lintz 1977).

Take a flower: its appearance is given by its particular shape,
color, etc., which is its organogram; nature organizes these elements
according to rules depending on its species and genus, which is its
syntaz; its internal organization, namely, its physiology — character-
ized by the proper functioning of its several organs - provides its
structure; finally, its genetic code, which conditions its development
from birth to death, is its organogen.

Similarly for a historical culture. Its organogram is given by all
its expressive forms, namely architecture, sculpture, perhaps music
and also mathematics. These are objective documents which show
the existence of the historical culture in space and time. Its syntaz is
provided by the rules of succession of those forms in space and time.
One of these rules is that the beginning of each historical culture is
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a mythological age and the end a technological age. The structure
of a historical culture is given by its prifmitive symbols translating
its feeling of the cosmos. For instance, in the Greek culture among
these symbols we find a strong tendency for the finite, for the visible
and plastic space; there is a terror of the infinile and time that ex-
plains why sculpture is its most characteristic expressive form rather
than, say, music; and their mathematics comprises only geometry,
the study of figures in space, together with arithmetic, the study of
the integers. The Greeks have no room for the abstraction of set
theory and real numbers. Finally its organogen is given by its law
of evolution in time: its birth, youth, maturity and old age. Each of
these stages emphasizes one or more particular expressive forms. In
general mathematics emerges as an expressive form in the transition
from maturity to old age, while architecture is usually the first great
expressive form of a historical culture appearing in its youth.

The leit-motiv of this paper will be the consideration of geometry
as an ezpressive form or, better, an organism attached to a historical
culture. In our case we shall be dealing with geometry in Greek cul-
ture and in Western culture. By ‘Western culture’ we understand the
historical culture born in the so-called nordic mythology and domi-
nating today the world and perhaps a large part of the universe, due
to its deep passion for the infinite, for abstract space and time. Its
strong opposition to the picture of the world created by Greek civi-
lization will be a responsible for its opposite approach to geometry.

3. The study of the syntax of the organogram of a certain organ-
ism is an important stage of the study of that organism and the dis-
cipline dealing with it shall be called Inorganic Logic. It corresponds,
when the organogram is given by a language, to what is tradition-
ally called Logic and, more recently, Mathematical Logic. However,
there is another discipline concerned with the study of the structure
and the organogen of a certain organism, which we shall call Organic
Logic. As far as we know this discipline did not receive the same
attention as Inorganic Logic, though it is present in all our mental
activities. One of its fundamental principles is the Principle of Anal-
ogy, which allows, for instance, a naturalist to classify plants and
animals and which is the basis for all experimental sciences. By its
own nature, contrary to what happens to Inorganic Logic, it is not
formalizable: it exists only in intuitive and inductive reasonings and
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never in deductive ones. It seems to have been already noticed by
Goethe through his great and profound intuitive feelings of Nature
as in (Goethe, J.W.) (for details, see Lintz 1977).

After the introduction of the fundamental notions above, we can
state with more precision our aim. We intend to consider geometry
as an organism attached to either Greek culture or Western culture.
Consequently, what we understand by the foundations of geometry is
not what is usually known by that name. To study geometry or its
foundations is to study its organogram with its syntax, its structure
and its organogen. This requires the use not only of Inorganic Logic
but of Organic Logic as well. What has been done by people studying
the foundations of geometry is really the study of its organogram and
syntax and, moreover, only as conceived in the West. Clearly thisis a
rather limited perspective. Instead, we shall deal first with geometry
as conceived by the Greek culture in its proper environment; after-
wards we shall consider its study in the Western culture; and finally
a parallel between both geometries will be drawn. This attitude will
provide new insight into the subject with many surprising results,
perhaps shaking some of our strongest convictions.

Foundations of Greek Geometry

1. The study of any manifestation of a historical culture de-
pends on the documents available to us and one of the difficulties of
the subject is the correct analysis and interpretation of those docu-
ments. The historian faces here the same type of problem as does
the archaeologist who wants to reconstruct a whole sculpture from
scattered pieces. The reconstruction is always subjetive, though he
tries his best to be as objective as possible. In the case of geometry
we rely on the texts that remain, to reconstruct the Greek thought
on the subject. Of course, it is outside the scope of this work and also
of our competence to endeavor a critical analysis of the texts. We
rely here on the work of T. L. Heath and his translations of so many
texts of Greek mathematicians, which are among the best available
in English. The work of Heiberg and Diels will be always in the
background to help us in the more obscure and debatable points.

Every analysis of the foundations of geometry starts with the
question: “what does exist at the basis of geometry?” For the Greek
mathematicians the answer was: geometrical figures conceived as en-
tities existing in a visible space. They were realities given a priori,
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as far as possible from pure abstraction. Indeed, we have the feel-
ing of straightness, of flatness, of spaciousness (due to our freedom
of movements and felt with great intensity by a ballerina), etc. In
giving form to these feelings, the Greeks explained the concepts of
straight line, point and plane granting them a strong plastic, visible
and finite content.

The Greeks acknowledged the existence of two kinds of mathemat-
ical entities, geometrical figures and numbers conceived as discrete
units, both were completely set apart when mathematics became a
rigorous discipline, in the hands of Eudoxus and Euclid. Indeed,
the failure of the Pythagorean approach to geometry, leading to the
“crisis of the incommensurable”, originated in the idea of associating
numbers to segments in the belief that “number is the origin of ev-
erything”. Their theory of measure of a segment with a certain unit
led to the dilemma: either the result was a rational number or they
had to assume the possibility of division of a segment ad infinitum,
creating the well known paradoxes of Zeno and others. The solution
of the puzzle, is attributed to the great Eudoxus with the creation
of his deep theory of magnitudes, which we know through Book V
of Euclid’s Elements. Eudoxus’s fundamental idea was to eliminate
numbers from geometry. Geomeirical figures become then the pri-
mordial elements of geometry, the initial data. The measurement of
length, areas and volumes is no more the business of the geometer;
it belongs now to applied mathematics or logistics (Aoyiorexiy), the
“art of calculation”. That art was useful for engineers, architects,
physicists, etc. but it was not the concern of the mathematician or
philosopher. As a matter of fact, not only Plato but even Archimedes,
the greatest of the Greek “applied mathematicians” considered as “ig-
noble and vile the business of mechanics”. Certainly nature provides
challenges for the mathematician but these only attain a supreme
level of dignity when properly treated by rigorous geometrical meth-
ods, i.e., more geomeirico.

Eudoxus’s theory of magnitudes is the foundation of the theory of
similarity of figures and their equivalence in area and volume indepen-
dently of measurements. For the particular case of “curved” figures,
like the circle, the parabola, etc. the method of exhaustion furnished
the means for their comparative study relative to size (weAixorns).

This point alone would be enough to repel the idea of relating
the concept of real number to Greek geometry and thus to under-
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stand why it is not surprising not to find in Euclid, Archimedes and
Apollonius traces of any “formulas” for “computing” the area of a tri-
angle or any other figure. As we proceed this idea will become clearer.

'2. Looking now at the organogram of Greek geometry we ob-
serve that it is constituted by a certain language, say Greek, plus
geometrical figures taken as real entities existing in space. Space is
the inorganic space, which for the Greek mind retains all the basic
feelings of the organic space, rather than an abstract idea without
any visible elements. It is hard for us, Western mathematicians, to
grasp fully this idea. We shall never be able to do that, the real and
deep feelings of past civilizations are lost forever! Only with great
effort in trying to “think as a Greek” we shall be able to experience
that feeling of the plastic space so magnificiently expressed not only
in the Greek geometry but in the architecture of Callicrates and in
the sculpture of Phidias and Praxiteles as well. This plastic space is
the stage where all the drama of Greek geometry unfolds, with its
figures and demonstrations.

The syntaz of this organogram is made up of definitions, axioms,
postulates and rules of inference which include not only Aristotelian
logic but geometrical consiructions as well. That is one of the most
important aspects of the subject which has been completely over-
looked and distorted by late Western criticism. Indeed, through the
prism of our mathematical logic it is almost impossible to under-
stand how a geometrical construction or figure can be part of rules
of inference of any logical system, because it cannot be formalized
as such. The reason is that, for Peano, Russell, Hilbert and all the
other creators of “modern” logic and mathematics, a logical system
is, basically, a collection of signs and the rules of inference are noth-
ing but rules of manipulation of these signs (2 point of view explicitly
defended by Hilbert’s formalist school). Therefore, there is no room
for a geometrical figure to be part of the rules of inference. Of course,
we are forgetting that signs or letters drawn on paper are, after all,
geometrical figures.

For the rest of this section we shall be concerned with the analysis
of the organogram of Greek geometry and its syntax. For the sake of
completeness, we add a few words about its structure and organogen,
which fall under organic logic. In future work we intend to focus on
this area. The structure of Greek geometry is given by the peculiar
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feeling of space of Greek culture. Organic space is here the essential
element, felt as a visible, finite and plastic object, where geometrical
figures can move without deformation. The intuitive basis for the
concept of superposition of figures is rooted in the structure of Greek
geometry and consequently can only be understood under the laws of
organic logic without any possibility of being formalized. This con-
cept is used very often in proofs of theorems as part of the rules of
inference. Only through the postulates, to be discussed below, it is
possible to render this concept a formal one. But a trace of the or-
ganic will always remain behind the scene. It is this close relationship
between organic logic and inorganic which is as strange to us as it is
dear to the Greek mind. Finally, the organogen of Greek geometry
is responsible for its development in time in the succession of expres-
sive forms constituting Greek culture. As discussed elsewhere (Lintz
1977, 1988), it evolves through three stages: primitive ornamenta-
tion, from the beginning up to Eudoxus, art, from Eudoxus through
Euclid, Archimedes up to Apollonius, and posterior ornamentation,
from Apollonius up to the end of Greek culture around the 5th cen-
tury A.D.

3. Let us go back to the organogram and syntax of Greek geom-
etry. We begin with the analysis of some of the definitions given in
Book I of Euclid’s Elements. As we know it today, this book begins
abruptly with the definition of point:

“Point is that which has no parts”.

Our first reaction to that definition is: “it is meaningless”. But
let us try to understand what Euclid intended to say. The Greek
word for point is onueiév, which means a mark, or a visible sign.
By saying that this mark positively has no parts, o0 uépos ovfév,
as emphasized by the adverb ovfév, Euclid ties the concept of point
with Eudoxus’s definition of magnitude. More precisely, a point is
not a magnitude relative to size, because it cannot have multiples
and submultiples. In this way, when we talk about a point either it
is given as an object by itself or as the intersection of two lines, or
a line and a plane, etc. This excludes from the very beginning the
possibility, which is very popular in the West, of defining a point P
by a sequence of other points, i.e.

P= lim P,

71 =+ 00
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This expression is meaningless in Greek geometry, first of all because
the point P is not given as an object by itself nor as the intersection
of two figures, and second because the concept of infinity was from
the start eliminated from geometry as a “dangerous concept” leading
to paradoxes.

This idea of a point as an object existing in space with its own
individuality is typically Greek and cannot be translated in terms of
Western symbolic logic.

Let us consider now the concept of straight line:

“A straight line is a line which lies evenly with the points on it-
self”.

Intuitively, this definition, like that of the point, is intended to ex-
press the organic concept of straight line as something that proceeds
always in the same “direction” without deviating either to the “right”
or to the “left”, namely it is trying to explain our feeling of straight-
ness and as such cannot be taken as a formal definition of straight
line. The problem of the geometer is how to render these organic
concepts into inorganic ones. This is achieved with the introduction
of conveniently chosen postulates.

When Greek geometry began to be analyzed and studied by West-
ern mathematicians its postulates were regarded only as part of the
so called “logical structure of geometry”. This misunderstanding had
tragic consequences. It led to overlooking the fact that the postulates,
besides setting the “rules of the game”, where also intended to intro-
duce the concepts of point, straight line, plane and other geometrical
figures as technical concepls, adapted to inorganic logic and able to
be used in the development of geometry as precise and rigorous tools.
Otherwise, they could be only handled by organic logic which is not
the right discipline to be used in the study of the organogram and syn-
tax of Greek geometry. As a matter of fact, traditionally, when one
talks about the foundations of geometry, this is usually understood
as the study of the organogram and syntax of geometry, which is
completely different from the study of geometry as an organism. The
consequences of this confusion of an organism with its organogram
will be discussed later. To render our ideas clearer we shall now study
the postulates of Greek geometry as conceived by Euclid.

4. Starting from the assumption that point, straight line, plane
and other geometrical figures had been precisely introduced as ob-
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jects existing in space with their own individualities, Euclid states
the following postulates:

Postulate 1. To draw a straight line from any point to any point.

Postulate 2. To produce a finite straight line continuously in a
straight line.

Postulate 8. To describe a circle with any center and distance.
Postulate 4. That all right angles are equal to one another.

Postulate 5. That, if a straight line falling on two straight lines
makes the interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that side on
which the angles are less than the two right angles.

Concerning postulates 1-4 we shall discuss only a few points inter-
esting us here, directing the reader for more details to the magnificent
translation of Euclid’s Elements by Sir T.L. Heath, which is our main
reference. However, in the case of postulate 5, we shall deviate from
the traditional interpretation and indeed we could say that the clar-
ification of this point is one of the reasons why we decided to write
the present paper.

In postulate 1 Euclid translates in pure geometrical terms the
organic feeling of going from one position in space to another in a
“straight way”, i.e., without going around in a crooked path. In the
act of looking ahead, to another place far from oneself, is contained
that “feeling of straightness”, which is the deep feeling of spaciousness
expressed by that postulate. As a matter of fact, the use of the verb
éyayeiv in the aorist tense, infinitive mood, emphasizes the space
characteristics of the line defined by two points independent of time.
Also the uniqueness of the line is implicitly understood here, as by
every mathematician after Euclid.

In particular we call attention to the adverb ovwvexé( attached
to the verb exBaleiv, in postulate 2, which makes it clear that the
line can be extended continuously, without gaps. We see that the
notion of continuity of the line is an essential part of that concept
as a space entity and not as an abstract one and consequently it has
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nothing to do with Dedekind’s postulate (see below). This postulate
makes it also clear that the straight line is a finite object in space, not
extending itself from —0o to +0o actually, but rather only potentially.

About postulate 3 we believe that what was really intended by
Euclid was the following: given a point A and a straight line AB
with extremities A and B, there is a circle with center A containing
B in its circunference (7epLpépeia), because, as pointed out correctly
by Heath (1956 vol. I, p. 199), there was no Greek word for radius.
The word Staorijpar: used in postulate 3 means distance, though
not in the numerical sense of the measure of a segment but rather
as something existing in space. Consequently, the definition of circle
(k¥KkXos) as a plane figure formed by all equal segments with one
extremity in A (its center) has a space content and not a metric one.
Here the crucial point is the word equal. Intuitively, two segments are
equal when they coincide with each other by a rigid motion in space.
Clearly, without some care this concept is tautological, because the
definition of (rigid) translation in space requires the notion of equal
segment if one is to avoid the introduction of metrical concepts. To
handle that, Euclid first postulates the possibility of rigid rotation of
one segment over another having one eztremity in common and then,
in Proposition 2, Book I, he proves the possibility of defining equal-
ity by superposition of segments in the plane in general, i.e., without
having necessarily one extremity in common. In the extant texts of
the Elements, due to its deterioration in time by inumerable inter-
polations and copyists’ errors, the clarity of this concept of equality
of segments, which is fundamental in the logical structure of Greek
geometry, is seriously jeopardized.

In the analysis of Euclid’s Elements by Western mathematicians
this assumption of rigid translation of figures in space has always
been looked at as something scandalous “proper to a primitive stage
of the development of mathematics”, which is clearly nonsense! The
introduction of group theoretical concepts as suggested by F. Klein
is completely alien to Greek geometry, being meaningful only in the
context of set theory. To summarize, Euclid proposes that by cou-
pling the definition of a circle with the possibility of rigid rotations
and postulate 3 we can rigorously define in terms of Greek geometry
the concept of equality of segments, by superposition, in the general
case. It is amazing how these fundamental questions have almost
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invariably escaped the attention of many critical analyses of Euclid’s
Elements.

Another important consequence of postulate 3 and of the concept
of superposition of segments is the equality of angles. The concept
of angle by itself would deserve a careful discussion but we shall not
carry it out here. Assuming that an angle is a plane figure formed by
two segments in the plane (its sides) with an extremity in common,
we define the equality of angles as follows: let o and o’ be angles with
sides AB, AC and A'B’, A'C’, respectively. Consider a segment AD
contained in AB which is smaller than AB, AC, A'B’, A’/C’,i.e. AD
is equal to segments contained in each side of @ and o’. Draw a
circle with center A and radius AD intercepting AC in a point E,
according to the definition of circle. The circle’s periphery contains
the extremity of any segment with the other extremity at A and equal
to AD. Since AD is smaller than AC, it is equal to a segment AE
contained in AC and therefore E belongs to the circumference of the
circle in question. In the same manner we can draw a circle with
center A’ and radius equal to a segment A’D’ = AD, defining a point
E' in A'C’'. Now we define: a is equal to o/, iff DE = D'E’.

In short, with the help of postulates 1, 2 and 3 it is possible to lay
down the foundations of a “rigorous” theory of rigid motions in space
and equality by superposition. The meaning of the word rigorous will
became clearer as we proceed.

Postulate 4 conveys a strong and profound feeling of a visible and
plastic space, the space of architecture. No one can ever conceive, say,
a Doric temple without the clear idea that the columns are perpen-
dicular to the floor and the beams are perpendicular to the columns
and “consequently” are parallell to the floor. The words vertical and
horizontal, related to orthogonality and parallelism, having a strong
spatial content, are felt organically as such. In the same way if one
makes a door with edges which are not perpendicular to each other it
will not close properly: in the architectonic organic space of everyday
life there is no room for non-Euclidean geometry.

Euclid’s problem, as in the preceding cases, was to translate that
organic architectural idea of orthogonality into a working concept for
-mathematicians, and we believe that his way of expressing that in
postulate 4 was one of his many strokes of genius. Heath is again
absolutely correct in pointing out that the equality of right angles is
also equivalent to the concept of invariability of figures by translations
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and the homogeneity of space, a fact that reinforces the conclusions
drawn above about postulates 1, 2 and 3.

Finally, we have the celebrated postulate 5, improperly known as
the postulate of parallels, because it is equivalent to the statement
that in a plane through a point not belonging to a straight line there
is only one parallel to it. But the concept of straightness of the line
is essential in the definition of parallel and the problem is: how to
formulate in a technical and precise language the concept of straight-
ness, i.e., the concept of lying “evenly without deviating from its
direction”, etc. That is exactly the aim of postulate 5. It expresses
in a mathematical satisfactory form the intuitive ideas belonging to
the organic concept of straight line, so that it can be used formally
in the proofs of theorems, etc., and in all situations concerning the
organogram of Greek mathematics.

It is hard to understand how Euclid’s original intention could be
interpreted in later times only as the guestion of parallels, creating
for more than 2,300 years the well known orgy of proofs of the 5th
postulate. What lies behind all those proofs? Let us see. Postulate
5 talks about a characteristic property of two straight lines r and s
in the plane intercepted by a third straight line. It says that r will
intercept s if produced in a convenient way. This expresses exactly
the fact that r, when produced, remains “evenly to itself” and “does
not deviate from its direction”. In fact, if r could “deviate from its
direction” it could behave like an arc of hyperbole and never inter-
cept its asymptote s. Now if we want to prove that postulate we
have to express in one way or another that property of the straight
line of “keeping its direction” in some formal statement apt to be
used in the proof. That is exactly what invariably happened in all
the proofs of that postulate. The proofs in themselves are in general
correct, but they have to use somehow, as an hypothesis, some as-
sumption translating in technical terms that fundamental property
of the straight line of “keeping its direction”, which is not contained
in the first four postulates. Otherwise, a proof in the organogram of
Greek mathematics would be impossible because it is clear that one
cannot prove a property of a certain object without using its defini-
tion either directly or indirectly. Certainly, all this sounds strange for
a Western mathematician used to deal with abstract entities deprived
of any intuitive meaning. We shall come back to this question later.

The fundamental historical mistake is the confusion of the equiva-
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lent statements of postulate 5 given by “its proofs” with the question
of its independence. There is no question of independence at all in
the sense understood by the symbolic logic created by Western math-
ematicians and philosophers. It is obvious from the very beginning
that the 5th postulate cannot be a comsequence of the remaining
four postulates, in the organogram of Greek mathematics, because it
states a property of the straight line that is not contained in them.
Consequently it cannot be derived from them unless we use in one way
or another a property of the straight line equivalent to that stated in
postulate 5, translating the intuitive feeling of “proceeding evenly of
itself”, “keeping its direction”, etc.

The root of the misunderstanding is the lack of historical perspec-
tive and the consequent confusion of an organism with its organogram.
A straight line for a Greek mathematician is not an abstract object
without any meaning, as it is the case for a Western mathematician.
It is an object given initially with strong space content and charac-
teristic properties expressed exactly by the postulates. The so called
“proofs of independence” of the 5th postulate through the construc-
tion of proper models and the creation of “non-Euclidean” geometries
‘will be one of the main points to be treated below.

To summarize, the postulates translate among other things the
concept of straight line in technical terms to make it possible using it
in formal proofs. Consequently the attempt to prove the 5th postu-
late, for instance, is cleary nonsense because in such a proof one has
to use the concept of straight line, including some equivalent of that
postulate, otherwise we are not using the whole concept of straight
line. This fundamental mistake has plagued the later understand-
ing of Euclidean and, in general, Greek mathematics. For the Greek
mathematicians, the postulates are not merely conventional state-
ments about abstract entities as conceived in the West, but rather
statements about concrete objects given as initial data expressing,
besides their proper definitions, some of their fundamental proper-
ties in technical terms apt to be used in formal proofs.

Geometry in the West

1. As pointed out before, in the West the concepts of space, num-
ber, magnitude, etc., are expressed through abstract forms strongly
denying the visible and sensible space which is replaced by the concept
of pure number represented by sets, classes, etc.: geometry becomes
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a chapter of set theory. Going back to the basic ideas discussed in
the Introduction, this implies that the organogram of Western math-
ematics is formed by a certain language (metalanguage) like English,
French, German, plus a collection of symbols, axioms, rules of infer-
ence of a particular set theory selected to fit the taste of the math-
ematician building the theory, i.e., either in the line of the logistic
or of formalist or of the intuitionist school of thought. The final re-
sult is a collection of sheets of paper full of signs intelligible only to
the initiated, most often without figures. However, no matter how
abstract, how impartial one’s point of view and how much one tries
to erase any trace of subjectivity in such theories, in the background
lies unavoidably the human mind with all its passions and historical
roots. It is impossible to detach oneself from the profound archetypes
of the human species which are the leit-motifs of all forms of human
expression. Indeed, no matter how formal or abstract or logical one
intends to become, one cannot avoid oneself and all of one’s psycho-
logical tendencies. That may be one reason why one is sympathetic
to one school of thought rather than to another.

One of the most characteristic and beautiful examples of an ex-
position of geometry in the Western style is the celebrated work of
Hilbert (1930), which we shall take as representative of Western ge-
ometry, just as we have taken Euclid’s Elements as representative of
Greek geometry.

Hilbert starts with an abstract set X containing some particular
subsets of objects called point, lines, planes, subjected to a certain
number of postulates or axioms divided into five groups:

I 1-8: Axioms of relationships.
II  1-4: Axioms of ordering.

III 1-5: Axioms of congruence.
1V: Axioms of parallels.

V  1,2: Axioms of continuity.

The rules of inference are essentially those of classical logic which
were later formalized in some abstract models in terms of symbolic
logic (e.g. Artin 1966). That procedure establishes the organogram
and syntax of Western geometry, which are quite different from that
of Geek geometry. Afterwards, Hilbert shows how one can prove
theorems from the axioms and how one can develop a chain of conse-
quences from the axioms above building a system called “Euclidean
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geometry”. It is a nice game and good mental exercise, but at some
point one gets concerned about the question of a model for such a the-
ory. By that it is meant the following: starting from objects whose
existence we accept, to define with them a set satisfying the axioms
stated above. But what objects shall we assume to exist?

As seen before, for Euclid those objects are the geometrical figures
existing in space with their own individualities. But for Hilbert the
initial data or the objects which exist are numbers, or more generally
arithmetics supposed to be a consistent system. From there one can
show that the real numbers are a model for geometry by beginning
with the set E of ordered pairs (z,y) of real numbers, called the
plane. Each pair is called a point and linear combinations of them
like

az+by+c=0

(where a,b, c are real numbers) are called straight lines. Of course we
can generalize this by considering triples (z,y, z) forming spaces and
even n-ples (z;,...,%,) forming the n-dimensional Euclidean space.
Let us consider here only the case of pairs.

By assuming all the properties of real numbers one can prove that
all axioms I-V are satisfied in the set E and therefore the original
theory is not “empty”, i.e. it has at least one “model”. Of course, we
can also argue about the existence of numbers and this would take
us into the line of business inaugurated by Frege, Peano and Russell
7whose success was later jeopardized by the celebrated results of K.
Godel. But this is a dangerous battlefield and prudence dictates that
we should stay, at least for the time being, at a safe distance from it.

Another important consequence shown by Hilbert is that from
the axioms alone we can associate to each segment in a straight line
a real number called its length and then establish a system of coor-
dinates in the line as well as in the plane. Do not forget that the
words point, straight line and plane continue to be understood in the
abstract sense; if we draw figures on paper, to help our reasoning,
that is necessary only from the psychological point of view and not
from the logical point of view. For instance, by a segment AB in_a
straight line r we understand the abstract set of points P € r such
that A < P < B where the relation < is given by the ordering axioms
II, 1-4 and its pictorial representation on paper is only a psycholog-
ical “help” and (perhaps) “guide” to our thoughts. In this way we
establish a one-to-one correspondence between our original set X and
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the set E of Cartesian geometry defined by the pairs of real numbers.
This allows us to talk about the coordinates of a point, the equation
of a straight line, etc. In particular we can introduce the idea of
distance in X, which thus becomes a metric space and soon we are
dealing with more general sets called topological spaces. But let us
leave these general considerations and return to the analysis of the
concepts introduced above.

2. The fundamental question is: by considering the concepts of
point, line and plane as understood by Euclid, is it possible to show
that they satisfy the axioms I-V stated above? We intend to argue
that the answer is no and that the main obstacle to a positive answer
" is the postulate of continuity.

First of all, to show that a certain object satisfies certain condi-
tions we have to know the intrinsic properties of that object, namely,
its definition.

Secondly, in what consists the act of verifying that an object sat-
isfies certain properties? Is it logical or psychological? Here we have
one of the typical situations where we cannot separate the organic
from the inorganic. The first stage of this process and, as a matter
of fact, of almost every process of knowledge, is organic. Indeed, to
verify whether an object A satisfies a property p we have to use the
Principle of Analogy. For example, suppose we say that a certain
ball is red. Our conclusion is based on the fact that we look at the
ball and compare it in our mind, by enalogy, with our concept of
red, a pure organic attitude, impossible to formalize in a system of
inorganic logic. In a second stage we express our organic knowledge
in a language or a formal system, achieving its reduction to inor-
ganic knowledge. Thus, after concluding that the ball A is red, we
express that in ordinary language or in a formal language: let E be
the set of balls in the world and let E(p) be the set of red balls,
then “A € E = A € E(p) & A is red”. In this way our primitive
observation that A is red is reduced to a statement in propositional
logic.

Having this in mind, let us consider a segment of straight line AB
with extremities A and B. For Euclid, the points A and B as well
the segment AB are realities existing in space; for Hilbert they are
abstract concepts, perhaps having as a model the set of real num-
bers between two real numbers, A and B. Then our original question
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reduces to: is it possible to establish a one-to-one correspondence
between the points of the Euclidean straight line and the set of real
numbers? Let us begin with an analysis of the concept of length of a
segment.

3. The Pythagoreans looked at this question in the following
way: let us consider a segment AB and let us select a segment u as
unit. Since “number is the origin of everything” it must be possible
to associate a number to every segment. One possibility is that by
applying the segment u to AB it will fit in there a number m of times
(m being an integer). In this case we say that the length of AB is m,
as measured in terms of the unit u:

I(AB) = m.

Another possibility is that u does not fit exactly an integer number
of times in AB. In this case we subdivide u in smaller units u,, say,
u; = 10~1u, and so on, up to u, = 10~ "y, until we eventually have
integer number of segments u,, covering AB:

(AB)=u+ 10"+ ...+ 10" "u = mu,.

It was assumed that these are the only possible results of the oper-
ation of measuring a segment, for otherwise we would have to proceed
indefinitely and we could never associate a number to AB, contrary
to the basic philosophical position of the Pythagoreans. Recall that
number for a Greek mathematician was a non-negative integeri.e. a
collection of units, a definition attributed to Thales.

As we know, this point of view was seriously shaken by the dis-
covery that no number could be associated to the diagonal of the
square if we take one of its side as the unit. That is to say, there are
segments which cannot be measured, in the sense described above,
with a common unit, i.e. they are “incommensurable”.

This discovery produced a terrible crisis in Greek geometry. Only
after almost two centuries a way out was found by the great genius of
FEudoxus of Cnidos. His solution was to abandon the idea of associ-
ating numbers to geometrical figures and to develop a theory of mag-
nitudes which is independent of any process of measurement. This
led to the separation of number — as an independent concept whose
study belonged to arithmetic — and geometrical figure - whose study
belonged to geometry. His theory of magnitudes, exposed in Book
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V of Euclid’s Elements, and his principle of exhaustion remained the
back-bone of the whole of geometry. It excluded any relationship
with measurement of lengths, areas and volumes, which were left to
logistics, the analogue of our applied mathematics. The question of
measurement of lengths, areas and volumes became the business of
the engineer, the architect and the practical man, having nothing to
do with the considerations of the geometer. This point of view has
been emphasized by Plato, Archimedes and most of the great mathe-
maticians of Greece. That was the origin of the establishment of the
concept of geometrical figure as the basic element, given “a priori”.

What happened in the West? What concepts were taken as prim-
itive, i.e., as given “a priori”? Following Hilbert we should take the
concept of number to build a model for geometry. An abstract set X,
with a certain structure defined by certain particular objects called
point, straight line and plane subjected to a system of axioms or
postulates, is initially given. By using, in particular, the axioms of
congruence and continuity we can attach to an interval AB, under-
stood here as an abstract object, a real number called its length,
m(AB). Following Dedekind, (1872) in order to define real numbers
we assume the existence of the rational numbers and consider the set
R of all pairs of classes of rational numbers (AB) such that:

D;)A+# @,B # Qand ANB = 0.

D;) Every rational number belongs either to A or to B.

Dy)IfreAands€B=>r<s.

Each pair of sets A, B satisfying the above conditions is a “De-
dekind cut” and defines a real number. In so far as measurements
are made with real numbers, the ‘theory of measure’ is, on this ac-
count, reduced to a correspondence between abstract sets without
any contact with “reality”. In “practice”, however, the engineer, the
architect, the merchant, the physicist, etc. have the same attitude as
in Greece, Egypt or anywhere else: they deal with concrete objects
and not with abstract forms. In the design of mechanisms, electric
circuits, public buildings, railroads, etc., all numbers are rational.
For the engineer, there is no such a thing as real number: for him,
V2 = 1.414... and the dots just mean that if he needs more accu-
racy in the results he can get further decimals. In short, our applied
mathematics is what the Greeks called logistics, an empirical collec-
tion of rules and experimental data accumulated through ages and
transmitted from generation to generation and from civilization to
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civilization. It is this accumulation of empirical knowledge that gives
the impression of constant progress if we do not distinguish carefully
the empirical from the symbolic. From the empirical point of view
the engineers who built the pyramids, or a Doric temple or a Gothic
cathedral faced similar technical problems, e.g. the stability of the
structure, the resistance of materials, etc. But, as ezpressive forms,
a pyramid, a Doric temple and a Gothic cathedral are three distinct
symbolic representations of space belonging three distinct historical
cultures. '

At some point in our mathematical education, our teachers would
solemnly announce: “today we intend to show you how to establish a
one-to-one corresponce between the points of a straight line and the
set of real numbers”. The embarassing question here is: what shall
we understand by straight line? If it is Hilbert’s abstract concept,
disregarding any model, we shall have exactly the situation described
above: a correspondence between two abstract sets and nothing is
gained from an “intuitive representation” in space. But if by straight
line we understand an object represented by a model taken from
analytic geometry then there is nothing to prove because this model
i8 already the set of real numbers itself. The only alternative left to
our teacher, and that is what he probably had in view from the very
beginning, is that by straight line we should understand the Greek or
Euclidean line as an object in space given “a priori”. It is here that
our troubles begin.

The only way left was that of the Pythagoreans. Accordingly a
Western mathematician would proceed as follows. First of all we have
to analyze the question of applying a unit segment u over a straight
line r a certain number of times. That depends on the homogeneity
of space and on the rigid motion of bodies. To define that, we must
assume the rigidity of the unity u and we clearly get involved in a
vicious circle. A honest and diligent Western mathematician should
conclude that the procedure used by the Pythagoreans is logically
unattainable and could only be accepted from an intuitive and prac-
tical point of view. But then we should stop short and declare impos-
sible any attempt of establish a one-to-one correspondence between
the Greek straight line and the set of real numbers. But, suppose
a peace-maker comes along and says: “Let us close our eyes for the
time being to that vicious circle and let us assume that in some way
or another we have the possibility of associating with any real number



162 FOUNDATIONS OF GEOMETRY

a uniquely defined point in the Greek straight line”. However, such a
peace proposal is not free of difficulties. Consider all pairs of classes
of rational numbers (A, B) satisfying conditions Dy, D3, Ds above,
defining a Dedekind cut. For each pair (4, B) Dedekind’s continuily
postulate says: there is a “point” a € r corresponding to (4, B).

The first difficulty is that the definition of a as the “supremum of
A", or as the “infimum of B” requires a great logical sophistication,
much more than originally thought, as shown by H. Weyl (1917, pp.
19-20, p. 71).

Secondly — and that is the main question — from the point of view
of Greek geometry the point o (onuciov) is an object with proper
identity existing in space and is either given from the beginning, as
by the phrase “let  be a point in the line r”, or it is given by the
intersection of two geometrical figures, as by the phrase “let o be
the intersection of r with the straight line s”. Consequently, the
definition of the “point” a, as indicated above, by a pair of classes
(A, B) is completely meaningless and could never be accepted by a
Greek mathematician “as rigorously defined”. As a matter of fact,
the reason why the celebrated method of Hippias for the squaring
of the circle by using the quadratriz was never accepted by Greek
mathematicians is exactly motivated by the fact that a certain point
is defined by a “limit process” (cf. Heath 1981, vol. I, p. 226).

Therefore, from the Greek point of view, there is in general no
point corresponding to a Dedekind cut. This leads to the conclusion
that it is logically impossible from the point of view of Western math-
ematics 1o establish a one-lo-one correspondence between the set of
real numbers and the Euclidean straight line. That can only be done
in the so called “applications of geometry” in everyday life.

To summarize, it can be shown that, under the proper perspective
of Greek mathematics, and trying to reason as a Greek geometer, we
can, in a satisfactory way, show that, with the exception of axioms
V of continuity, the remaining axioms are valid for Greek geometry.
Indeed, even axiom V, 1, “Archimedes’ axiom”, is true for Greek ge-
ometry, being introduced in Book V as proposition 1, which really
depends on the definition of comparable magnitudes given in Book
V. As argued before, the method of exhaustion is the real substitute
for the axioms of continuity whenever they are needed in Greek ge-
ometry. All this will be studied in detail in a forthcoming paper.
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Geometry and Logic

1. Traditionally when one talks about mathematics people im-
mediately get the idea of something precise, where one can “prove
what one says”, under an appropriate formalism. In particular, ge-
ometry has always been a model of logical reasoning where we can
establish facts by deduction from initial premisses in such a way that
its validity is beyond doubt.

The investigations about the act of thinking in general, with its
principles and laws, has in Aristotle one of the most celebrated pio-
neers. In the West, logic developed under the influence of Aristotle,
and of scholastic philosophy, but what we call mathematical logic to-
day is quite remote from the ideas of the Stagirite, just as we cannot
say that contemporary geometry is closely related to Greek geometry.
Of course, analogously to what happens in mathematics, an act of
thinking has, from the organic point of view, the same background
for any man, in any historical culture. However, the form in which
one expresses one’s ideas about logic is different in different historical
cultures and this has an influence on the foundations of geometry, as
we intend to show in this last part.

Mathematical logic, or inorganic logic in our terminology, became
established in the West at the beginning of this century as a_result
of the works of Frege, Peano, Russell, founders of the logistic school,
Hilbert, founder of the formalistic school and Brouwer, founder of the
intuitionistic school. Whatever might be their differences, they are
all concerned with the organogram of mathematics, in particular with
its syntaz. Mathematics and in particular geometry as an organism
with historical and cultural dimensions cannot be studied with math-
ematical logic alone, but requires also the help of organic logic. Since
the organogram of Greek geometry is different from the organogram
of Western geometry, the “logical structure” of the former is essen-
tially different from that of the latter and consequently we cannot
study critically Greek geometry by using the “logical structure” of
Western geometry and vice-versa.

With those remarks in mind let us analyze the logical structures
of geometry in Greece and in the West.

2. We have seen that the organogram of Greek geometry is formed
by words of the Greek language and by geometrical figures taken
as initial data existing in space with their own individuality. The
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syntax of this organogram, i.e. its rules of inference, is formed by
Aristotelian logic as understood in Euclid’s time and by geometrical
constructions, as we shall exemplify in a moment. For the Western
mathematician this looks like a very strange and incomprehensible
attitude because he is used to the organogram of Western geometry
which, as a chapter of set theory, is formed by a certain language, say
English, plus a collection of symbols and rules of inference given by
mathematical logic of some particular school. Definitely, geometrical
figures as such are not part of the business. They are not needed at
all as independent entities lying in space. Rather, they are taken as
names, like point, straight line, plane, of particular objects attached
to some abstract set and subjected to certain axioms.

Let us consider an example. It is very common to refer to Propo-
sition 1 in Book I of Euclid’s Elements as defective because it fails
to use the postulate of continuity. This proposition says that given a
segment AB there exists an equilateral triangle with AB as one of its
sides. The proof depends on the fact that two circles with same ra-
dius AB and centers respectively at A and at B intersect each other
at a certain point C. The reaction of a Western mathematician is
the following: to prove the existence of the point C' we have to use
the postulate of continuity. But, as seen before, that is impossible
because segments, circles, etc. are understood in the Greek sense
with their intrinsic spatial content. The only way to handle the situ-
ation is to translate everything in terms of Western geometry and “to
solve” the question in terms of Hilbert’s Grundlagen. This attitude
would be similar to the following one: a Western architect visiting
Athens concludes that the structure of the Parthenon is not strong
enough and decides to rebuild the whole thing with reinforced con-
crete, materials of “better quality”, etc. The final result would be in
its appearance exactly like the original, but with a little difference:
it would not be a piece of Doric architecture anymore, which is a
unique product of a given historical culture. That is exactly what
we do when we try do “adjust” Euclid’s proof to a Western standard
of “rigor”. It is amazing how such crystal clear facts are completely
overlooked in the usual criticism of the foundations of geometry.

Now let us look at that same proposition from the point of view of
Greek geometry. To be strictly logical and precise, it is permitted to
use in the proof only the syntax of that geometry. Therefore, the rules
of inference include Aristotelian logic and geometrical constructions.
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Hence, it is logically admissible to accept the existence of the point
C as a consequence of the properties of the circle as a figure in the
plane. The geometrical figures of the two circles as described include
the point C. However, this line of reasoning is inadmissible in a
statement like: “in a triangle one side is smaller than the sum of the
other two”. In this case we are not talking about a particular triangle
but rather about the genus triangle and then a proof without using
data from a particular figure becomes necessary. As a matter of fact,
in his time Euclid had been criticized for his “excess of rigor”, as
someone who tried to prove what is “evident even for an ass”.

To summarize, the logical characteristics of geometry in Greece
and in the West are:

In Greece, geometry is an organism such that: a) its organogram
is formed by an ordinary language, most often ionic, with a syntaz
given by Aristotelian logic plus geometrical constructions as objects
existing in space; b) its structure is formed by the concept of geomet-
rical figure as objects given a priori with proper individuality and
space is considered as a real entity, finite and with no relationship
with t4éme. Numberis understood as natural number, i.e., a collection
-of units.

In the West, geometry is an organism such that: a) its organogram
is formed by an ordinary language, for instance, English and a syntaz
given by some logical theory, say formal logic as conceived by Russell
and the symbols and axioms of set theory; b) its structure is formed
by abstract concepts named point, straight line, plane, etc. attached
to some theory of sets; space is infinite, not visual and strongly con-
nected with time, disguised in the form of sequences of points, limit
processes, etc. Number is the abstract concept of real number.

3. In the light of these differences, let us return now to the ques-
tion of continuity. As we saw before, in the West the idea of conti-
nuity of the straight line is expressed through Dedekind’s cuts and it
is meaningful only if straight line is understood in the abstract sense
of Hilbert. It is impossible to apply that concept to the Euclidean
straight line and the question arises: how did the Greek geometers
consider the idea of continuity of the straight line? This question has
a great importance for the foundations of geometry and also for the
history of mathematics mainly because it is still an open question.
Indeed, what we know about Greek mathematics, through documents



166 FOUNDATIONS OF GEOMETRY

which survived the destructive action of both time and man, is only
a small part of what was done by the Greek geometers. Hence we
find here and there some facts giving a faint idea of the use of conti-
nuity in geometry. One of these uses is related to the question of the
existence of the fourth proportional.

Following Eudoxus and Euclid, suppose that we are given three
magnitudes a,b,c, where a and b are comparable and attempt to
find a magnitude d comparable with c, called the fourth proportional
of a,b,c, such that a/b = c/d. Clearly this is not possible for all
classes of magnitudes. For instance, it is not true in general for
numbers (natural numbers) like 2, 3 and 5. However, the existence
of the fourth proportional is always true for classes of magnitudes
which are capable of “changing in size continuously” , which is actually
the fundamental hypothesis in the classical proof by De Morgan as
reproduced by Heath (1956) following Prop. 18, Book V.

The question is to clarify the meaning of “changing in size con-
tinuously”. For the case of the straight line we find in Postulate 2
the word cvvexés in the neuter, which is equivalent to the adverb
ovvex®s meaning continuously, without gap. That is, it is assumed
that a straight line can be increased in size continuously, as the re-
sult of the combination of cvrvexés with the verb éxBaleiv which is
the aorist tense mood of the infinitive éx3dAMw meaning “to throw”
or “to cut out”. Therefore, from Postulate 2, taking in considera-
tion its formulation in Greek, we have to assume that the continuity
of the straight line was a datum a priori, with spatial significance.
Of course, a more technical approach to the idea of continuity had
to be provided and this is achieved by the existence of the fourth
proportional coupled with the principle of exhaustion.

According to Book VI, Prop. 12 of Euclid’s Elements, the fourth
proportional exists for the case of straight lines and by Prop. 1 of
the same book the result can also be extended to polygons: if a,b are
polygons and c is a straight line, then there is a straight line d which
is the fourth proportional of a,b,c. Afterwards, by using the method
of exhaustion it is possible to extend the result to figures A having
the property: there are two polygons P and Q with @ contained in
A and P containing A such that the figure, difference P — Q, can
be made smaller than a given square B. That is, of course, quite
similar to the definition of Peano-Jordan measure but only formally.
Indeed, to say that P — Q is smaller than B means that P — Q is
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equivalent to a square B’ which fits inside B without any numerical
content. On the contrary, the Peano-Jordan measure relies heavily
upon the concept of real number, an abstraction incompatible with
Greek thought.

Assuming as well defined the concept of a “continuously changing”
magnitude, the Greek geometers used very often the principle of the
existence of the fourth proportional in the following context: suppose
that we have to prove that, for magnitudes a, b, ¢, d it is true that

a

c
b d (1)

Now, if (1) is false, we have either > or <. If it is > then there is
a magnitude b > b such that

a

Z=c. )

Then we try to find a contradiction as a consequence of (2) and simi-
larly for <. It is clear that this type of reasoning, namely the existence
of b, depends on the “changing with continuity” of the magnitude
b and this technique is used very often by the Greek geometers, as
for instance in Book XII, Prop. 2 of the Elements, without any com-
ments. This leads us to think that it must have been a well known
result in Greece, just as in the West, whenever we use the idea of
continuity in one way or another, we do not bother to recall its defi-
nition. Despite the fact that so far we have been unable to find any
work by a Greek geometer dealing specifically with that issue, we are
convinced that they did it, in some way or another.

4. Let us inquire now about non-Euclidean geometries. It hard
to find an area of mathematics where the misinterpretation of facts
has gone so far and so deep. For about 23 centuries the “problem
of parallels” got the attention of mathematicians both in Greece and
in the West. The great comedy (or tragedy) has been: it was never
really a problem and its “solution”, found in the 19th century, has
never been a solution! We devote this section to the clarification of
this statement. ’

The word parallel is itself Greek, of course, and it means “side by
side”. For instance, in architecture we say that two beams run parallel
to each other, i.e., side by side. This concept is deeply connected with
the principle of analogy of organic logic. When we draw parallels on
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a sheet of paper we start with one line and we imitate that line
by analogy, drawing other lines parallel to it. Without this organic
notion of parallels architecture cannot exist. That is why from the
very beginning the notion of parallels was associated with three other
notions:

(1) two straight lines in the plane without a common point;
(2) two straight lines in the plane with the same direction;

(3) two straight lines in the plane with constant distance from each
other.

Due to the fact that an excellent historical-critical study of the
relationship among the three notions above with the concept of par-
allels is given by Heath (1956) when discussing def. 23 of Book I
of the Elements, we only focus here on those aspects of the ques-
tion which are relevant to our point of view in this paper, strongly
recommending the reader to examine Heath’s work.

Euclid takes (1) as the definition of parallels in the more precise
statement of def. 23, Book I, where he ues the idea of “produc-
ing a straight line indefinitely”.. The word &weipov, which means
generally “without limits” and was already used by the philosopher
Anaximander in relation to the Universe, is connected in geometry
with the idea of some magnitude which can be increased as much as
needed but never infinitely in the sense of actuality, but rather only
in the sense of potentiality. For a Greek geometer it is meaningless
to say that the straight line is infinite. From the very beginning they
realized that to avoid trouble and paradoxes it was better to get rid
of the idea of actual infinity. That is why this notion was banned
from geometry and, as a matter of fact, from the whole Universe as
felt by the Greek soul.

The idea of using (2) or (3) as a definition of parallels was rejected,
among others, by Aristotle as leading very easily to a petitio principii
and consequently it was discarded by Euclid (cf. Heath 1956, vol. II,
p. 190). However, from the organic or intuitive point of view (2) and
(3) are very appealing and indeed are the “everyday” definitions of
parallels. Suppose, for instance, that a company decides to build a
railroad in South America from South to North in a “straight line”.
One of the rails could follow exactly a meridian, the other running
“parallel” to it. Of course, parallel here means “keeping the same
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distance from each other along the way”. The notion of distance here
is very clear for the engineers and workers: it is given by the modulus
which is an iron bar used to fix the rails at equal distance before
nailing them to the beams. Therefore, irrespective of the curvature
of the earth, for the railroad builders the geometry to be used is
the Euclidean and not the Riemannian, i.e., if the rail is taken as a
straight line the other rail is also a straight line parallel to it.

Another example: two airplanes are to fly from South to North
keeping the “same direction”. Clearly this means that they are sup-
posed to fly “parallel to each other”, i.e., they should not follow two
meridians; otherwise they would collide at the north pole. To safely
circumnavigate the earth they have to keep parallel to each other in
the sense of never deviating themselves from a “fixed direction”. Here
we realize that the idea of direction is an organic concept and cannot
be reduced to the formalism of inorganic logic. This does not mean
of course that with suitable conventions we could not formalize this
concept in an abstract formalism. Indeed, with the help of algebraic
topology, differential geometry, etc., the concept of orientation of a
manifold, for example, can be introduced in abstract terms, but never
in terms of Greek geometry. The organic intuition of space is present
in our “visualization of the orientation”, like the rule of three fingers
in the “geometrical” definition of the cross product of two vectors as
used in the notion of momentum of a force, etc.

Considering all those facts, Euclid had to introduce the notion of
parallel in geometry by preserving in the background the concept of
equal distance, same direction and of not having a point in common,
and also, as a fundamental assumption, to preserve the definition
of straight line. All that is achieved by a stroke of genius, with
the introduction of postulate 5. As argued before, this postulate is
only meaningful when understood as a technical procedure for con-
necting the definition of straight line as something which “proceeds
evenly without deviating from its direction” with the notion of paral-
lel. Therefore, any attempt to “prove” this postulate has to use some
alternative definition of straight line and parallel. But this is the
same thing as attempting to substitute that postulate by something
equivalent to it, while preserving the concepts of straight line and
parallels as entities and properties existing in space and given a pri-
ori with their own individuality and not as abstract entities belonging
to some set theory. '
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Consequently this postulate is clearly not provable by using only
the other four postulates, because we cannot prove something about
some object without using its essential properties known a priori.
Now, “to proceed evenly without deviating from its direction” is an
essential property of the straight line and indeed if we analyze all
“proofs” of postulate 5 they invariably use along the way some as-
sumption translating in one way or another that essential property
of the straight line which is not present in the first four postulates!

So, regarding postulate 5 we either provide a proof, by using some
equivalent hypothesis to include the concept of straight line and par-
allel and in this case the proof itself is correct, as the classical case of
Ptolemy’s proof; or we do not use any equivalent assumption and in
this case the postulate is not a consequence of the other four postu-
lates by the reasons explained above. That is what we meant before
by the statement that there was no “problem” of the independence
of postulate 5 with respect to the remaining four. Let us look now
at the “solutions” proposed.

In the 19th century, geometry has to be understood in the Western
sense and consequently the words point, straight line and plane do
not have any spatial content: they refer to abstract concepts. A
straight line, for instance can be “curved”, like meridians on the
surface of a sphere. For the Greek geometers a spherical triangle
was not a triangle in the Euclidean sense but just a figure drawn on
the sphere whose sides were arc of meridians. As a matter of fact,
there existed a whole branch of geometry called Sphaerica, dealing
with figures drawn on a sphere, of great importance to astronomy,
connected with the names of Menelaus, Ptolemy and others. -But
they never considered that as a “new geometry”.

When Gauss, Bolyai and Lobachewsky started their celebrated
research in the theory of parallels, set theory did not exist and the
concepts of point, straight line and plane were not yet clearly con-
ceived as abstract entities in the sense of Hilbert; on the contrary,
the Euclidean tradition was still very strongly rooted in their minds,
even though the Greek concept of space had already been forgotten
through the action of time. The real problem of Gauss, for instance,
when he got disturbed by imagining a “non-Euclidean geometry”,
was his fear of contradiction with the usual (Euclidean?) concepts of
points, straight and plane and the reaction of the public, which led
that great genius to hide his discovery for the time being.
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Bolyai and Lobachewsky were less concerned with plebis opinio
and decided to prove theorems until the eventual finding of a con-
tradiction resulting from the substitution of the fifth postulate by
something else, as for example: through a point P outside a straight
line r in the plane we have two families of straight lines formed by
those lines which intersect r from one side and by those which do not
intersect r from the other side; the boundary lines of both families
were named parallels to r. Of course, no contradiction was found
with “Euclidean geometry” because the concept of straight line used
by them was not the Euclidean one in the Greek sense, namely “pro-
ceeding evenly ...”. If they had decided to use the Greek concept
of straight line, they would have to introduce this concept through
some hypothesis equivalent to the fifth postulate, and in this case
they would have, for sure, reached a contradiction.

After Beltrami, Poincaré and others, a series of models of non-
Euclidean geometries have been built, but in all of them the concept
of straight line is not the Euclidean one and consequently they do
not solve the “problem” of the fifth postulate. All they do is to
present sets with ceriain structures which obey statements similar to
the postulates 1-4 of Euclid’s Elements but not the fifth. To make
this point clearer let us analyze briefly one of those models. Let us
call “plane” the interior of a disc D, and straight lines, all segments
inside D with extremities in its boundary; “points” will be the “usual
ones”. The notion of distance of two points P, @ is defined by the
log of the absolute value of the double ratio of P, @ and the points
A, B defined by the intersections of the line r through P, @ with
the boundary of D. (For details, see Hilbert 1930 or Klein 1928).
Now taking a “straight line” = in this model and a point P outside r
we have two “straight lines” intersecting r in the boundary of D (at
infinity) at points A and B and hence they are “parallel to r”. But,
of course, this model does not show that postulate 5 is independent
of the other because the concept of straight line used there is not the
same as Euclid’s. All it proves is: if a set E with abstract concepts
named point, straight line and plane satisfies formally postulates 1-4
to the Elements, then there is another model E’ which satisfies 1-4
but not 5. Therefore postulate 5 is independent of postulates 1-4 of
model E. “Elementary, my dear Watson!”. And this, of course, has
nothing to do with geometry in the Greek sense. As a matter of fact,
a “small being” living in our previous model in the disc D perhaps
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would have a feeling that the segments AP and PB together would
form a “straight line” and therefore in his intuitive perception of facts
in his universe maybe the fifth postulate would be true after all.

Finally we come to the question: in the real world of our percep-
tions is the Euclidean geometry ezperimentally verified or not? Here
we are dealing with organic logic and consequently everything de-
pends on our intuitive feeling of point, straight line, plane and space.
As seen before, for the architect and the engineer the geometry to
be used is definitely the Euclidean one. Indeed, we doubt if any one
of us would ever buy an apartment in a building knowing that the
architect used “non-Euclidean geometry” in its design. What tragic
consequences would result if an engineer were to build a railroad as-
suming as “straight lines” the meridians on Earth! To be sure, for
the physicist who assumes that a straight line is the distance between
two points P and Q as defined by a beam of light from P to Q, the
four dimensional Riemannian manifold is the natural model to use.
Of course, that is only an abstract object that, although confirmed by
experience, has no claim to be the real world. The latter is organic
and its existences is felt by our intuition through our senses. Here
more than ever the distinction between the organic and the inorganic
is fundamental (see Lintz 1989 for details).

As is well-know, Kant raised the question: is the concept of space
synthetic a priori or analytic? (Kant, 1926). The crucial point here
is to clarify the meaning of the word space. In his criticism of Kant,
Gauss makes it clear that he rejected the assumption that Euclidean
geometry is the geometry of the real world. But the disagreement be-
tween the two thinkers was simply that they were talking about differ-
ent concepts. Gauss intended to show that other geometrical models
for the world could be proposed besides the Euclidean one. We see
clearly that he was talking about inorganic space as a model or nor-
mal representation of our intuition of the space of real world. Kant,
on the other hand, was talking about organic space. One might go
as far as suggesting that the Kantian distinction between “gynthetic
a priori” and “analytic” corresponds to the distinction between in-
organic and organic logic. Consequently, when Kant says that space
is a synthetic a priori concept, he is absolutely correct because he is
talking, perhaps without a clear idea of it, about organic space. If
our assumption is correct, then Kant’s ideas about space have been
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systematically misundestood until our days. It is time to redeem this
unfortunate mistake.
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