Banner Portal
Método para otimizar a tomada de decisão no planejamento do layout do canteiro de obras
PDF (English)

Palavras-chave

systematic layout planning
construction site layout planning
BIM
layout optimization
genetic algorithm

Como Citar

BORGES, Maria Luiza Abath Escorel; ARAÚJO, Gabriel Mendes; MONTEIRO, Ari; GRANJA, Ariovaldo Denis; PICCHI, Flávio Augusto. Método para otimizar a tomada de decisão no planejamento do layout do canteiro de obras. PARC: Pesquisa em Arquitetura e Construção, Campinas, SP, v. 15, n. 00, p. e024015, 2024. DOI: 10.20396/parc.v15i00.8674145. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8674145. Acesso em: 25 mar. 2025.

Resumo

O planejamento do layout canteiro de obras (CSLP) pode ser conduzido como um problema de otimização para determinar a concepção ideal de instalações temporárias, alocação adequada para equipamentos e planejamento de caminhos. Embora estudos anteriores mostrem abordagens avançadas de otimização do layout, como modelos matemáticos e algoritmos computacionais, o CSLP é negligenciado por profissionais. A experiência anterior geralmente é preferida devido à complexidade e falta de flexibilidade em tais soluções automatizadas. Assim, esta pesquisa envolve tomadores de decisão no CSLP, assumindo que um método de regras baseadas no conhecimento integrado com uma técnica de otimização alcança soluções mais assertivas. O Systematic Layout Planning (SLP) é utilizado para planejar o arranjo físico de instalações na indústria manufatureira, aplicando regras para avaliar a necessidade de proximidade entre estas. Também, o Building Information Modeling fornece uma estrutura adequada para apoiar a tomada de decisão. Através da Design Science Research, esta pesquisa propõe um método para apoiar a tomada de decisão no CSLP. Este estudo investiga a utilidade de um algoritmo genético baseado no SLP para alcançar uma solução otimizada de layout, cujos dados de entrada são fornecidos pelo gestor. Relações de proximidade são determinadas de acordo com a intensidade de fluxo entre instalações, preocupações de segurança e preferências do gestor. O artefato foi desenvolvido em colaboração com potenciais usuários através de sua constante avaliação das etapas do método. Os resultados mostram a eficiência do método ao reportar a solução que maximiza a redução de distâncias ponderadas.

https://doi.org/10.20396/parc.v15i00.8674145
PDF (English)

Referências

ABOTALEB, I.; NASSAR, K.; HOSNY, O. Layout optimization of construction site facilities with dynamic freeform geometric representations. Automation in Construction, v. 66, p. 15–28, 2016. DOI: https://doi.org/10.1016/j.autcon.2016.02.007.

ADRIAN, A. M.; UTAMIMA, A.; WANG, K. J. A comparative study of GA, PSO and ACO for solving construction site layout optimization. KSCE Journal of Civil Engineering, v. 19, p. 520–527, 2015. DOI: https://doi.org/10.1007/s12205-013-1467-6.

AKANMU, A. et al. Auto-generated site layout: An integrated approach to real-time sensing of temporary facilities in infrastructure projects. Structure and Infrastructure Engineering, v. 12, n. 10, p. 1243–1255, 2016. DOI: https://doi.org/10.1080/15732479.2015.1110601.

AL HAWARNEH, A.; BENDAK, S.; GHANIM, F. Dynamic facilities planning model for large scale construction projects. Automation in Construction, v. 98, p. 72–89, 2019. DOI: https://doi.org/10.1016/j.autcon.2018.11.021.

AMIRI, R.; SARDROUD, J. M.; SOTO, B. G. DE. BIM-based Applications of Metaheuristic Algorithms to Support the Decision-making Process: Uses in the Planning of Construction Site Layout. Procedia Engineering, v. 196, n. June, p. 558–564, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.08.030.

ANDAYESH, M.; SADEGHPOUR, F. Dynamic site layout planning using MTPE principle from physics. In: INTERNATIONAL SYMPOSIUM ON AUTOMATION AND ROBOTICS IN CONSTRUCTION, 28., 2011, Seoul. Proceedings […] Seoul: IAARC, 2011. p. 857–862. DOI: https://doi.org/10.22260/ISARC2011/0159.

ANDAYESH, M.; SADEGHPOUR, F. Dynamic site layout planning through minimization of total potential energy. Automation in Construction, v. 31, p. 92–102, 2013. DOI: https://doi.org/10.1016/j.autcon.2012.11.039.

BORTOLINI, R.; FORMOSO, C. T.; VIANA, D. D.. Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Automation In Construction, [S.L.], v. 98, p. 248-264, feb. 2019. DOI: http://dx.doi.org/10.1016/j.autcon.2018.11.031.

CHAU, K. W.; ANSON, M. A Knowledge-Based System for Construction Site Level Facilities Layout The Construction Site Layout Problem. Journal of Construction Management and Economics, v. 2358, p. 393–402, 2002. DOI: https://doi.org/10.1007/3-540-48035-8_39

DE CARLO, F.; ARLEO, M. A.; BORGIA, O.; TUCCI, M. Layout design for a low capacity manufacturing line: A case study. International Journal of Engineering Business Management, v. 5, 2013. DOI: http://dx.doi.org/10.5772/56883.

EL-RAYES, K.; SAID, H. Dynamic Site Layout Planning Using Approximate Dynamic Programming. Journal of Computing in Civil Engineering, v. 23, n. 2, p. 119–127, 2009. DOI: https://doi.org/10.1061/(ASCE)0887-3801(2009)23:2(119).

ELBELTAGI, E.; HEGAZY, T.; HOSNY, A.; ELDOSOUKY, A. Schedule-dependent evolution of site layout planning. Construction Management and Economics, v. 19, n. 7, p. 689–697, 2001. DOI: https://doi.org/10.1080/01446190110066713.

FATHY, A.; ABOTALEB, I; HOSNY, O. Genetic algorithms for two-phase construction dynamic site layout. In: ENGINEERS AUSTRALIA RISK ENGINEERING CONFERENCE, 2016, Sydney. Proceedings […]. Sydney: Engineers Australia, 2016.

FLESSAS, M.; RIZZARDI, V.; TORTORELLA, G.; FETTERMAN, D.; MARODIN, G. Layout performance indicators and systematic planning: A case study in a Southern Brazilian restaurant. British Food Journal, v. 117, n. 8, p. 2098–2111, 2015. DOI: https://doi.org/10.1108/BFJ-01-2015-0012.

GASPAR, J. A da M.; RUSCHEL, R. C. A evolução do significado atribuído ao acrônimo BIM: Uma perspectiva no tempo. In: CONGRESO INTERNACIONAL DE LA SOCIEDAD IBERO AMERICANA DE GRÁFICA DIGITAL. 21., 2017, Concepción. Proceedings [...]. São Paulo: Bluncher, 2017. p. 423-430. DOI: https://doi.org/10.5151/sigradi2017-067

GUO, S.-J. Identification and Resolution of Work Space Conflicts in Building Construction. Journal of Construction Engineering and Management, v. 128, n. 4, p. 287–295, 2002. DOI: https://doi.org/10.1061/(ASCE)0733-9364(2002)128:4(287).

HAMMAD, A. A multi-objective construction site layout planning problem solved through integration of location and traffic assignment models. Construction Management and Economics, v. 38, n. 8, p. 756–772, 2020. DOI: https://doi.org/10.1080/01446193.2019.1659510.

HAMMAD, A.; AKBARNEZHAD, A.; REY, D. A multi-objective mixed integer nonlinear programming model for construction site layout planning to minimise noise pollution and transport costs. Automation in Construction, v. 61, p. 73–85, 2016. DOI: https://doi.org/10.1016/j.autcon.2015.10.010.

HAMMAD, A. W. A.; REY, D.; AKBARNEZHAD, A. A cutting plane algorithm for the site layout planning problem with travel barriers. Computers and Operations Research, v. 82, p. 36–51, 2017. DOI: https://doi.org/10.1016/j.cor.2017.01.005.

HAMMAD, A. W. A.; REY, D.; AKBARNEZHAD, A. A mixed-integer nonlinear programming model for minimising construction site noise levels through site layout optimisation. In: INTERNATIONAL SYMPOSIUM ON AUTOMATION AND ROBOTICS IN CONSTRUCTION AND MINING, 31., 2014, Sydney. Proceedings […]. Sydney: ISARC, 2014. p. 722–729, 2014. Disponível em: DOI: https://doi.org/10.22260/ISARC2014/0098.

HAWARNEH, A. AL; BENDAK, S.; GHANIM, F. Construction site layout planning problem: Past, present and future. Expert Systems with Applications, v. 168, n. November, p. 114247, 2021. DOI: https://doi.org/10.1016/j.eswa.2020.114247.

IGWE, C.; NASIRI, F.; HAMMAD, A. Construction workspace management: critical review and roadmap. International Journal of Construction Management, v. 22, n. 10, p. 1960–1973, 2020. DOI: https://doi.org/10.1080/15623599.2020.1756028.

JAAFAR, K.; ELBARKOUKY, R.; KENNEDY, J. Construction site layout optimization model considering cost and safety in a dynamic environment. Asian Journal of Civil Engineering, v. 22, 2021. DOI: https://doi.org/10.1007/s42107-020-00314-3.

JALAEI, F.; JRADE, A. Estimating the Size of Temporary Facilities in Construction Site Layout Planning Using Simulation. In: CASTRO-LACOUTURE, D,; IRIZARRY J.; ASHURI, B.. Construction Research Congress 2014: Construction in a Global Network. Atlanta: ASCE, 2014. p. 70-79. DOI: https://doi.org/10.1061/9780784413517.008

KASSEM, M.; DAWOOD, N.; CHAVADA, R. Construction workspace management within an Industry Foundation Class-Compliant 4D tool. Automation in Construction, v. 52, n. April, p. 42–58, 2015. DOI: https://doi.org/10.1016/j.autcon.2015.02.008.

KAVEH, A.; VAZIRINIA, Y. Construction Site Layout Planning Problem Using Metaheuristic Algorithms: A Comparative Study. Iranian Journal of Science and Technology - Transactions of Civil Engineering, v. 43, p. 105–115, 2019. DOI: https://doi.org/10.1007/s40996-018-0148-6.

KIM, T.; LIM, H.; LEE, U.; CHA, M.; CHO, H.; KANG, K. Advanced formwork method integrated with a layout planning model for tall building construction. Canadian Journal of Civil Engineering, v. 39, n. 11, p. 1173–1183, 2012. DOI: https://doi.org/10.1139/l2012-104.

KREPP, S.; JAHR, K.; BIGONTINA, S.; BÜGLER, M.; BORRMANN, A. BIMsite - Towards a BIM-based generation and evaluation of realization variants comprising construction methods, site layouts and schedules. In: INTERNATIONAL WORKSHOP OF THE EUROPEAN GROUP FOR INTELLIGENT COMPUTING IN ENGINEERING, 23., 2016, Krakow. Proceedings […]. Krakow: EG-ICE, 2016. Disponível em: https://publications.cms.bgu.tum.de/2016_Krepp_BIMsite.pdf.

LACERDA, D. P.; DRESCH, A.; PROENÇA, A.; ANTUNES JÚNIOR, J. A. V.. Design Science Research: método de pesquisa para a engenharia de produção. Gestão & Produção, [S.L.], v. 20, n. 4, p. 741-761, 26 nov. 2013. DOI: http://dx.doi.org/10.1590/s0104-530x2013005000014.

LAI, W.; FU, Y.; LI, R.; LIN, J. Optimum Design of Construction Site Layout Based on SLP Method and Genetic Algorithm. In: WANG, Y; OLOFSSON, T.; SHEN, G.Q.; BAI, Y. ICCREM 2020: Intelligent Construction and Sustainable Buildings. Stockholm: ASCE, 2020. p. 71-83. DOI: https://doi.org/10.1061/9780784483237.009.

LE, P. L.; DAO, T. M.; CHAABANE, A. BIM-based framework for temporary facility layout planning in construction site: A hybrid approach. Construction Innovation, v. 19, n. 3, p. 424–464, 2019. DOI: https://doi.org/10.1108/CI-06-2018-0052.

LI, J. An effective system layout planning method for railway logistics centre in the background of big data. International Journal of Reasoning-based Intelligent Systems, v. 10, n. 1, p. 11–19, 2018. DOI: https://doi.org/10.1504/IJRIS.2018.091121.

LIEN, L. C.; CHENG, M. Y. A hybrid swarm intelligence based particle-bee algorithm for construction site layout optimization. Expert Systems with Applications, v. 39, n. 10, p. 9642–9650, 2012. DOI: https://doi.org/10.1016/j.eswa.2012.02.134.

LU, W.; YUAN, H. A framework for understanding waste management studies in construction. Waste Management, v. 31, n. 6, p. 1252–1260, 2011. DOI: https://doi.org/10.1016/j.wasman.2011.01.018.

LUKKA, K. The constructive research approach. In: OJALA, L.; HILMOLA, O.-P. (org.) Case study research in logistics. Turku: Publications of the Turku School of Economics and Business Administration, Series B1: 2003. p.83-101. Disponível em: https://www.researchgate.net/publication/247817908_The_Constructive_Research_Approach.

MARCH, S. T.; SMITH, G. F. Design and natural science research on information technology. Decision Support Systems, v. 15, n. 4, p. 251–266, Dec. 1995. DOI: https://doi.org/10.1016/0167-9236(94)00041-2.

MARIZ, R. N.; PICCHI, F. A. Implementation of lean practices facilitated by BIM functionalities in the construction phase: advances and opportunities. Ambiente Construído, Porto Alegre, v. 21, n. 4, p. 309-328, Oct./Dec. 2021. DOI: http://dx.doi.org/10.1590/s1678-86212021000400571.

MAWDESLEY, M. J.; AL-JIBOURI, S. H.; YANG, H. Genetic Algorithms for Construction Site Layout in Project Planning. Journal of Construction Engineering and Management, v. 128, n. 5, p. 418–426, 2002. DOI: https://doi.org/10.1061/(ASCE)0733-9364(2002)128:5(418).

MOON, H.; KIM, H.; KIM, C. KANG, L. Development of a schedule-workspace interference management system simultaneously considering the overlap level of parallel schedules and workspaces. Automation in Construction, v. 39, p. 93–105, 2014. DOI: https://doi.org/10.1016/j.autcon.2013.06.001.

MUTHER, R. Planejamento do layout: sistema SLP. São Paulo: Blucher, 1978. 224 p.

NGAMPAK, N.; PHRUKSAPHANRAT, B. Cellular manufacturing layout design and selection: A case study of electronic manufacturing service plant. In: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, 2011, Hong Kong. Proceedings [...]. Hong Kong: IMECS, 2011. Disponível em: iaeng.org/publication/IMECS2011/IMECS2011_pp1182-1187.pdf.

NGUYEN, P. Construction site layout planning and safety management using fuzzy-based bee colony optimization model. Neural Computing and Applications, v. 33, n. 11, p. 5821–5842, 2021. DOI: https://doi.org/10.1007/s00521-020-05361-0.

NING, X.; LAM, K. C.; LAM, M. C. K. Dynamic construction site layout planning using max-min ant system. Automation in Construction, v. 19, n. 1, p. 55–65, 2010. DOI: https://doi.org/10.1016/j.autcon.2009.09.002.

NING, X.; LAM, K. C.; LAM, M. C. K. A decision-making system for construction site layout planning. Automation in Construction, v. 20, n. 4, p. 459–473, 2011. DOI: https://doi.org/10.1016/j.autcon.2010.11.014.

NING, X.; LIU, W. A Safety Model for Construction Site Layout Planning Using an ACO Algorithm. In: WANG, Y; OLOFSSON, T.; SHEN, G.Q.; BAI, Y. ICCREM 2015: Environment and the Sustainable Building, 2015. Lulea: CREM, 2015. P. 28-32. DOI: https://doi.org/10.1061/9780784479377.004.

OESTERREICH, T. D.; TEUTEBERG, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, v. 83, p. 121-139, Dec. 2016. DOI: https://doi.org/10.1016/j.compind.2016.09.006.

OSMAN, H. M.; GEORGY, M. E.; IBRAHIM, M. E. A hybrid CAD-based construction site layout planning system using genetic algorithms. Automation in Construction, v. 12, n. 6, p. 749–764, 2003. DOI: https://doi.org/10.1016/S0926-5805(03)00058-X.

POLAT, G.; BALLARD, G. Waste in Turkish Construction: Need for Lean Construction Techniques. In:ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION. 12., 2004, Helsingør. Proceedings [...]. Helsingør: International Group for Lean Construction, 2004. p. 3-5. Disponível em : https://iglc.net/Papers/Conference/14. Acesso em: 31 out. 2024.

RIGA, K.; JAHR, K.; THIELEN, C.; BORRMANN, Al. Mixed integer programming for dynamic tower crane and storage area optimization on construction sites. Automation in Construction, v. 120, n. December, p. 103259, 2020. DOI: https://doi.org/10.1016/j.autcon.2020.103259.

ROHANI, M.; SHAFABAKHSH, G.; HADDAD, A.; ASNAASHARI, E. Strategy management of construction workspaces by conflict resolution algorithm and visualization model. Engineering, Construction and Architectural Management, v. 25, n. 8, p. 1053–1074, 2018. DOI: https://doi.org/10.1108/ECAM-08-2016-0183.

SADEGHPOUR, F.; ANDAYESH, M. The constructs of site layout modeling: An overview. Canadian Journal of Civil Engineering, v. 42, n. 3, p. 199–212, 2015. DOI: https://doi.org/10.1139/cjce-2014-0303.

SADEGHPOUR, F.; MOSELHI, O.; ALKASS, S. Graphical constraint representation for site layout. In: INTERNATIONAL CONFERENCE ON CONSTRUCTION APPLICATIONS OF VIRTUAL REALITY, 4., 2004, Lisbon. Proceedings […]. Lisbon: CONVR, 2004.

SADEGHPOUR, F.; MOSELHI, O.; ALKASS, S. T. Computer-Aided Site Layout Planning. Journal of Construction Engineering and Management, v. 132, n. 2, p. 143–151, 2006. DOI: https://doi.org/10.1061/(ASCE)0733-9364(2006)132:2(143).

SAID, H.; EL-RAYES, K. Optimizing Material Procurement and Storage on Construction Sites. Journal of Construction Engineering and Management, v. 137, n. 6, p. 421–431, 2011. DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000307.

SAID, H.; EL-RAYES, K. Performance of global optimization models for dynamic site layout planning of construction projects. Automation in Construction, v. 36, p. 71–78, 2013. DOI: https://doi.org/10.1016/j.autcon.2013.08.008.

SAID, H.; EL-RAYES, K. Automated multi-objective construction logistics optimization system. Automation in Construction, v. 43, p. 110–122, 2014. DOI: https://doi.org/10.1016/j.autcon.2014.03.017.

SANAD, H. M.; AMMAR, M. A.; IBRAHIM, M. E. Optimal Construction Site Layout Considering Safety and Environmental Aspects. Journal of Construction Engineering and Management, v. 134, n. 7, p. 536–544, 2008. DOI: https://doi.org/10.1061/(ASCE)0733-9364(2008)134:7(5).

SANTOS, L. C.; GOHR, C. F.; LAITANO, J. C. A. Planejamento Sistemático De Layout: Adaptação E Aplicação Em Operações De Serviços. Revista Gestão Industrial, v. 8, n. 1, p. 1–21, 2012. DOI: https://doi.org/10.3895/S1808-04482012000100001.

SCHWABE, K.; TEIZER, J.; KÖNIG, M. Applying rule-based model-checking to construction site layout planning tasks. Automation in Construction, v. 97, n. January, p. 205–219, 2019. DOI: https://doi.org/10.1016/j.autcon.2018.10.012.

SJØBAKK, B.; SKJELSTAD, L. Proposing a standard template for construction site layout: A case study of a Norwegian contractor. IFIP Advances in Information and Communication Technology, v. 459, p. 376–382, 2015. DOI: https://doi.org/10.1007/978-3-319-22756-6_39.

SONG, X. et al. Conflict resolution-motivated strategy towards integrated construction site layout and material logistics planning: A bi-stakeholder perspective. Automation in Construction, v. 87, n. March, p. 138–157, 2018. DOI: https://doi.org/10.1016/j.autcon.2017.12.018.

SOUZA, U. E. L. DE. Projeto e Implantação do Canteiro. São Paulo: O Nome da Rosa, 2008.

SU, X.; CAI, H. Life Cycle Approach to Construction Workspace Modeling and Planning. Journal of Construction Engineering and Management, v. 140, n. 7, p. 1–12, 2014. DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000855.

SUCCAR, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation In Construction, v. 18, n. 3, p.357-375, May 2009. DOI: https://doi.org/10.1016/j.autcon.2008.10.003.

TAM, C. M; TONG, T.; LEUNG, A.; CHIU, G. Site Layout Planning using Nonstructural Fuzzy Decision Support System. Journal of Construction Engineering and Management, v. 128, n. 3, p. 220–231, 2002. DOI: https://doi.org/10.1061/(ASCE)0733-9364(2002)128:3(220).

VARGAS, F. B. DE; FORMOSO, C. T. Método para planejamento e controle da produção baseado em zonas de trabalho com o apoio de BIM. Ambiente Construído, v. 20, n. 1, p. 129–151, 2020. DOI: https://doi.org/10.1590/s1678-86212020000100366.

XU, J.; LI, Z. Multi-objective dynamic construction site layout planning in fuzzy random environment. Automation in Construction, v. 27, p. 155–169, 2012. DOI: https://doi.org/10.1016/j.autcon.2012.05.017.

XU, M.; MEI, Z.; LUO, S.; TAN, Y. Optimization algorithms for construction site layout planning: a systematic literature review. Engineering, Construction and Architectural Management, v. 27, n. 8, p. 1913–1938, 2020. DOI: https://doi.org/10.1108/ECAM-08-2019-0457.

YAHYA, M.; SAKA, M. P. Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights. Automation in Construction, v. 38, p. 14–29, 2014. DOI: https://doi.org/10.1016/j.autcon.2013.11.001.

ZHANG, H.; YU, L. Site layout planning for prefabricated components subject to dynamic and interactive constraints. Automation in Construction, v. 126, n. June, 2021. DOI: https://doi.org/10.1016/j.autcon.2021.103693.

ZHANG, J. P.; HU, Z. Z. Automation in Construction BIM- and 4D-based integrated solution of analysis and management for conflicts and structural safety problems during construction: 1 . Principles and methodologies. Automation in Construction, v. 20, n. 2, p. 155–166, 2011. DOI: https://doi.org/10.1016/j.autcon.2010.09.013.

ZOLFAGHARIAN, S.; IRIZARRY, J. Current Trends in Construction Site Layout Planning. In: CASTRO-LACOUTURE, D,; IRIZARRY J.; ASHURI, B.. Construction Research Congress 2014: Construction in a Global Network. Atlanta: ASCE, 2014. p. 1723–1732, 2014. DOI: https://ascelibrary.org/doi/10.1061/9780784413517.176.

ZOUEIN, P. P.; HARMANANI, H.; HAJAR, A. Genetic Algorithm for Solving Site Layout Problem with Unequal-Size and Constrained Facilities. Journal of Computing in Civil Engineering, v. 16, n. 2, p. 143–151, 2002. DOI: https://doi.org/10.1061/(ASCE)0887-3801(2002)16:2(143).

ZOUEIN, P. P.; TOMMELEIN, I. D. Dynamic Layout Planning Using a Hybrid Incremental Solution Method. Journal of Construction Engineering and Management, v. 125, n. 6, p. 400–408, 1999. DOI: https://doi.org/10.1061/(ASCE)0733-9364(1999)125:6(400).

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 PARC Pesquisa em Arquitetura e Construção

Downloads

Não há dados estatísticos.