A Formação do Oficial Brasileiro e o Currículo Oculto
Antônio Carlos Will Ludwig(*)

Introdução

Analisando os currículos responsáveis pela formação dos futuros oficiais de nossas Forças Armadas, percebe-se que os mesmos agregam um conjunto significativo de matérias, às quais os cadetes devem estudar. Embora cada uma delas aponte, claramente, determinados objetivos a atingir, sendo possível constatar, através de procedimentos adequados, se eles foram alcançados ou não, o fato é que pouco se sabe a respeito de determinados resultados não intencionais que são atingidos, sem que tenham sido propostos. Este artigo está assentado nessa perspectiva, e visa explicitar, no caso específico da Matemática, os resultados escondidos decorrentes da concretização de seu ensino, assim como a relação desses produtos com uma situação de combate.

Justificativa

O estudo em questão, como foi dito, está voltado para a Matemática. Entretanto, a investigação poderia centrar-se em outra matéria qualquer. Justifica-se a escolha dessa disciplina, uma vez que, tradicionalmente, seu ensino sempre foi enfatizado no meio militar.

É preciso remontar há muitas décadas atrás para entender o porquê dessa preferência para com a Matemática. Nessa olhada para o passado, obrigatoriamente, nossas atenções devem voltar-se para uma arma específica, que é o Exército. Assim sendo, algumas causas podem ser mencionadas para explicar a ênfase de seu ensino no âmbito das academias militares.

Uma delas data do início do século XIX, quando D. Rodrigo Coutinho era Ministro da Guerra. Em sua visão, a Real Academia Militar deveria preparar não só oficiais para o Exército, como também engenheiros para a colônia, uma vez que ele percebia ser necessária a realização de serviços públicos, em face dos reclamos da sociedade. Nesse sentido, além de os militares preocuparem-se com a arte da guerra, deveriam ocupar-se, também, com as obras sociais, em termos de construção de estradas, canais e portos. É por isso que no currículo dessa academia, que se estendia por sete anos, havia uma forte carga de Matemática, expressa na aritmética, álgebra, geometria, trigonometria, cálculo diferencial e integral, geometria analítica e geométrica descritiva.

Outra causa, que se pode localizar a partir de 1831, está contida num documento expedido pelo Ministério do

(*) Doutorando em Educação e Membro do Núcleo de Estudos Estratégicos da UNICAMP.
Exército, onde se encontra a definição da política militar dessa época. Tal política foi proposta ante a quase disolução do exército pela Regência em razão do envolvimento de soldados em manifestações de rua e divisão de oficiais em facções extremadas, causados pelo contexto de estagnação econômica desse período. Nesse documento, encontra-se a seguinte assertiva: “A arte da guerra é atualmente resultado de combinações científicas, de cálculos profundos formados sobre os mais transcendentes princípios da Matemática” (Motta, 1976, p. 61). É importante ressaltar, nessa passagem, o entendimento das relações entre a ciência e a guerra.

A terceira causa, fortalecedora do ensino da Matemática no âmbito militar, foi o movimento positivista, cuja base reside na realidade objetiva, na confiança nos fatos, enquanto fundamentadores de qualquer construção teórica. O papel da Matemática em tal visão adquire importância elevada na medida em que se encaixa como a linguagem da ciência. Tristão de Alencar Fragoso (1960), afirma que a doutrina de Augusto Comte influenciou o ensino da Matemática em meados do século XIX, principalmente quanto ao ensino da Matemática, através da figura de Benjamin Constant, professor de tal matéria, a partir de 1872, quando então entrou para o magistério dessa escola. O apreço para com a Matemática em particular e demais ciências pode ser explicado pela crença positivista quanto à solução dos problemas sociais via utilização do conhecimento científico, pois tais problemas constituíam preocupações não só das elites dirigentes da época como também dos militares, que acreditavam na possibilidade de resolvê-los dessa forma.

A preferência pela Matemática no âmbito da Escola Militar manteve-se contínua no decorrer dos anos, apesar das várias mudanças curriculares levadas a cabo. Hoje, pode-se afirmar que ela ainda conserva uma posição de prestígio. Nas outras escolas congêneres, isto é, da Marinha e Aeronáutica, a predileção pela Matemática também é um fato. Não resta dúvida, entretanto, que as denominadas ciências sociais ou humanas vêm conquistando espaço nos currículos responsáveis pela formação dos futuros oficiais das três armas, pois começa-se a perceber a importância de certas matérias, como a psicologia e a sociologia, na execução das tarefas militares.

Apesar da penetração de outras matérias nos currículos, deve-se dito que a Matemática continua sendo importante para a formação dos futuros oficiais. Podem ser citados como exemplos dessa importância a função diferencial, usada para inferir o respeito do valor dos índices de poder de fogo, fundamentados nos dados fatais de combate e o processo de regressão múltipla utilizado para determinar o percentual de consumo de suprimentos (McQuie, 1970). Não resta dúvida que existem outros conhecimentos matemáticos capazes de auxiliar o oficial em suas missões.

A matemática e seu significado

Parece fazer parte da mentalidade das pessoas, que, em determinados momentos da vida, tiveram a oportunidade de estudar Matemática a concepção de que ela é uma ciência exata. Por isso mesmo, é capaz de fornecer certezas a aqueles que a ela se dedicam. Considerando que nas demais ciências muitas dúvidas existem, como que esse ramo do conhecimento humano seria capaz de tal proeza? Como pode ela ser o reduto do indubitável? Tais questões nos estimulam a clarificar esse fato.

Endorsed by: [YourName]

Em relação a uma certa perspectiva. As exemplos, concretas, pode en...
Embora o campo da filosofia da Matemática seja bastante vasto, é possível, sucintamente, apresentar explicações prováveis, porém não esgotadoras, quanto a essa idéia de exatidão. Duas delas são bastante adequadas a esse intento: o formalismo e a tautologia.

Em relação ao formalismo, exige-se um certo afastamento da realidade objetiva. As operações aritméticas, por exemplo, tomam o lugar das operações concretas. 5 x 5 é um tipo de cálculo que pode envolver dinheiro, quilometragem, etc. As operações algébricas introduzem um novo grau de abstração; os números aritméticos que simbolizavam a multiplicidade concreta têm, por sua vez, suas relações simbolizadas por letras. Uma expressão do tipo 3x = 2y será verdadeira se x = 4 e y = 6; todavia ela também será verdadeira se x = 12 e y = 18. Qualquer que seja o grau de abstração matemática, sempre se trata de uma atividade operatória” (Huisman e Vergez, 1980, p. 59).

A questão do relacionamento da Matemática com a realidade objetiva pode ser abordada com base em três perspectivas: empirismo, idealismo e materialismo. A origem de certas noções, tais como os círculos, as linhas e os pontos, é capaz de esclarecer o tipo de relacionamento. Sob o ângulo do empirismo, essas noções são derivadas da experiência concreta através dos órgãos dos sentidos. Do ponto de vista do idealismo, elas existem a priori na mente das pessoas, pois são essências, modelos constatáveis no real. Na perspectiva materialista, tais noções vêm à tona devido a certos problemas existenciais enfrentados pelo homem. Essas noções, como é sabido, surgiram com a geometria, que por sua vez nasceu da necessidade de se redistribuir as terras resultantes do baixamento anual das águas no Nilo.

Enquanto as perspectivas idealista e empirista pecam pelo determinismo, a perspectiva materialista revela um diferentes.
posição é fazer ver que ela é tautológica em relação às proposições admitidas. Demonstrar que \(2 + 2 = 4\) é reduzir essa proposição às proposições já aceitas, isto é, as definições dos números. Por definição, estabelecemos que: \(4 = 3 + 1\) (a) e por outro lado que \(3 = 2 + 1\) (b). Na expressão (a), podemos substituir o definido \(3\) por sua definição \(2 + 1\). Teremos então \(4 = (2 + 1) + 1\) ou \(4 = 2 + (1 + 1)\). Ora, por definição, \(2 = 1 + 1\). Portanto, \(4 = 2 + 2\)" (Huismann e Vergez, 1980, p.60). É necessário observar que a tautologia não deve ser encarada, como algo útil, o que aparentemente pode revelar, e sim como algo fechado, pois o raciocínio matemático tem o poder de generalização.

Vista como uma ciência exata, capaz de fornecer certezas, a Matemática apresenta-se como um instrumento importante ao homem na sua tentativa de ordenação do mundo, pois parece ser, por natureza, parafraseando Descartes, uma ciência da ordem e da medida, ou que tem por objetivo "criar ordem onde previamente parecia reinar o caos, extrair estrutura e invariância do seio da desordem e da confusão" (Davis e Hersh, 1985, p. 203).

É importante mencionar que, no decorrer da história, muitas tentativas foram realizadas e continuam sendo feitas pelo homem no sentido de estabelecer uma ordenação a tudo aquilo que lhe cerca, pois parece que não apreciamos viver com o duvidoso, o indeciso. Pode-se dizer que as explicações mitológicas constituem o primeiro modo de arranque ambiental. A segunda maneira, decorrente da insuficiência explicativa da primeira, diz respeito à resposta filosófica, iniciada com os pensadores pré-socráticos e que se seguiu com os filósofos posteriores até o nosso tempo. Subsequentemente ou paralelamente a ela, as variadas ciências, na qual inclui-se a Matemática, têm contribuído para a construção de uma visão organizada do mundo. Parece que o pressuposto dessa preocupação com a ordem é o de que o universo é objetivo e especificamente ordenado. Tal pressuposto, entretanto, pode ser questionado.

A relativização em Matemática

A imagem da Matemática como ciência exata, capaz de fornecer certezas e criar ordem, entretanto, não encontra respaldo garantidor dessa configuração. Os prédios que desmoronam e as pontes que ruem, apesar de realizados por engenheiros, todos os cálculos necessários à construção dos mesmos, atestam, na prática, que a Matemática só pode ser certa quando exatamente abstracted do real.

Mesmo do ponto de vista formal, a Matemática não se apresenta como uma ciência do indubitável. No âmbito da geometria, tal assertiva encontra sustentação. Enquanto na geometria euclidiana a soma dos ângulos de um triângulo é igual a dois retos, na geometria de Lobatchevsky, a soma deles é menor que dois retos e, na de Riemann, é superior a dois retos. A diferença entre os três, residente na concepção de espaço, explica tais variações, pois enquanto para Euclides o espaço é aquele que se revela à percepção comum, trabalhado pelo agrimensor, o de Lobatchevsky apresenta uma curvatura negativa e o de Riemann uma curvatura positiva.

Examinando-se os fundamentos da Matemática, pode-se constatar, também, certas dúvidas. Por exemplo, o axioma que reza ser o todo maior que a parte só é válido no âmbito dos conjuntos finitos. Em relação ao dos infinitos, ele perde tal assertiva. "Consideremos, por uma lado, o conjunto infinito dos números inteiros, por exemplo, e, por outro, o conjunto infinito dos números pares. É possível emparelhar termo com termo, colocar os dois conjuntos em correspondência biunívoca: Nesse se}

1 2
2 4

Não obst}

pares é um

meros int

do é igual

80, pp.

A idéia

relativiza

seu e um

mantea

bra e arit

teoria de

gemetri

mestre o

bra, criar

Entretan

originá

permes

"Descobr
tão errad

tornar i

das Trab

nas êxem

plêxica, otr

bas e não

balhos m

spectat

vel (os es

podem se

cialistas),

vantes e se

dos zem

são desco

inferior

los com a

tituídas

ptador (p.

44-45). Expan

do co...

A idéia de certeza na Matemática relativiza-se, na medida em que se analisa seu crescimento. Tal evolução tem um caráter específico, pois ela progride a partir de si mesma. O desenvolvimento da álgebra depende da aritmética. A origem da geometria ocorre a partir da álgebra e aritmética. O cálculo é elaborado sobre a geometria, álgebra e aritmética. A topologia é fruto da teoria dos conjuntos, da álgebra e da geometria, enquanto, a partir dessa mesma topologia, do cálculo e da álgebra, criam-se as equações diferenciais. Entretanto, nem todas as descobertas originadas desse crescimento específico permanecem válidas para sempre. "Descobre-se que fatos individuais estão errados ou incompletos. Teorias se tornam importantes e são desprezadas. Trabalhos caem no olvido, e se tornam úteis aos antigos (como, por exemplo, a multiplicação prostaferésica). Outras teorias se tornam saturadas e não são mais desenvolvidas. Trabalhos mais antigos são encarados sob perspectivas modernas e são reformulados, refundidos, enquanto a formulação antiga pode tornar-se ininteligível (os escritos originais de Newton só podem ser interpretados hoje por especialistas). Aplicações se tornam irrelevantes e são esquecidas (a aerodinâmica dos zeppelins). Métodos superiores são descobertos e substituem outros inferiores (grandes tábuas para cálculos com as funções especiais são substituídas pelas aproximações do computador digital)" (Davis e Hersh, 1985, pp. 44-45).

Expandindo-se nessa linha evolutiva do conhecimento matemático, verifica-se, também, que na atualidade os matemáticos tendem a trabalhar com modelos. Tais modelos são utilizados desde que permitam, com bom êxito, reproduzir ou vaticinar o comportamento do universo. Entretanto, em todos eles são bastante adequados para esse mister. Por isso mesmo é que, constantemente, tem-se procurado um modelo mais apurado ou uma versão mais aperfeiçoada de algum já existente. Evidencia-se, nesse caso, uma relativização do conhecimento matemático, pois é a conveniência que pautará a escolha deste ou daquele modelo.

O raciocínio demonstrativo, muito utilizado na Matemática enquanto assentado em tautologia, fornece, como vimos anteriormente, uma percepção de exatidão e rigor. Devido à tautologia, as conclusões resultantes de uma demonstração serão infalíveis, entretanto poderão reinar sérias dúvidas quanto às premissas dessa demonstração. Tal é o caso, por exemplo, da demonstração da 29ª proposição de Euclides, a qual exige como premissa o postulado segundo o qual um ponto tomado fora de uma reta num plano só pode passar uma paralela a essa reta. Do ponto de vista das geometrias, não-euclidianas, esse postulado pode ser questionado.
O curriculo oculto

Quando se fala em currículo, logo vem à tona a preocupação em estabelecera impossível sua realização. Entretanto, como na maioria das vezes, os fatores favoráveis à sua realização ultrapassam ou ficam aquém dos não favoráveis, diz-se que tal evento será provável.

A contrariedade da lei da tricotomia, segundo a qual um número real ou é negativo, positivo ou zero, ilustra a dubitabilidade no seio da Matemática. É o caso, por exemplo, do cálculo da diferença entre \(\pi \) e \(e \). Essa diferença pode ser denominada de \(Q \). Assim sendo, cabe perguntar se \(Q \) é zero, negativo ou positivo. "Se tentarmos descobri-lo fazendo um computador calcular o desenvolvimento de \(e \), não teremos uma resposta até encontrarmos uma sequência de 100 zeros consecutivos. Se nossa máquina funcionar por 1.000 anos, e não tivermos achado uma sequência de 100 zeros, ainda assim não sabereis se \(Q \) é positivo, negativo ou zero. E mais: não teremos nenhuma razão para supor que fizemos algum progresso ou que estamos mais próximos da resposta do que quando principiamos" (Davis e Hersh, 1985, pp. 415-416).

Pelo exemplo apresentado, parece ter ficado claro que a Matemática não pode ser entendida como uma ciência exata, capaz de fornecer certezas àqueles que a ela se dedicam. É preciso estar cônscio de que a Matemática, como qualquer outra ciência, depende da atividade do sujeito que, pela sua própria natureza, não é exato nem certo. No caso específico da Matemática, a ocorrência subjetiva, denominada intuição, que não possui um significado preciso e pode até ser entendida como o oposto do rigoroso, é muito utilizada pelo matemático no exame de seus objetos de estudo, reforçando, desse modo que em Matemática há muitas inexactidões e incertezas.
ntretan-

tico-
er real,
ilustra

têm-se várias concepções, tais como:

os fato-

tratamé-

sobre

ser seu significado. Em relação a ele,

to ultrâ-

ntico

o que acontece na vida de um

ção favo-

tratamé-

o que acontece na vida de um

o que acontece na vida de um

ão favo-

o que acontece na vida de um

o que acontece na vida de um

rrio ou

uma se-

nho na

as e tricota-

ntico

s, tricota-

uma se-

as e tricota-

uma se-

ela uma
terizas

as e tricota-

tricota-

ela uma
terizas

tricota-

o, logo

o, logo
Resultados inintencionais no ensino da Matemática

Foi afirmado anteriormente que parece fazer parte da mentalidade das pessoas que já estudaram Matemática a idéia de que ela é uma ciência exata, fornecedora de conhecimentos indubitáveis. Essas duas concepções, adquiridas pelos alunos, encaram-se no conjunto dos produtos não-intencionais, resultantes de uma prática pedagógica determinada. Fica evidente, nesse caso, o poder do currículo oculto.

Tendo por base tais concepções, resolvemos verificar a possível existência das mesmas no âmbito de uma das escolas militares encarregada de formar oficiais. Por questão de não-constrangimento, essa escola não será daqui identificada. Assim sendo, foi elaborado um conjunto de perguntas, respondidas por uma amostragem representativa dos cadetes que cursaram várias matérias na área da Matemática. Na primeira, perguntamos ao aluno se ele a considerava uma ciência exata. Na segunda, se ela fornecia conhecimentos certos, de que não se pode duvidar. Na terceira, se podia ser entendida como instrumento utilizado pelo homem para explicar, controlar e fazer previsões. Na quarta, se o ensino ministrado na academia contribuiu para ele responder às perguntas anteriores. As respostas continham cinco alternativas: sim, não, talvez, não me considero capaz de responder e outra resposta.

Do total dos cadetes que responderam às perguntas, obtiveram-se os seguintes resultados incidentes na resposta sim: Primeira pergunta, 93%; segunda pergunta, 70%; terceira pergunta, 64% e quarta pergunta, 52%.

Analisando-se os resultados, pode-se inferir que a escola, através do ensino da Matemática, está passando para a maioria dos alunos as concepções de exatidão, indubitabilidade e ordem. A idéia de ordem pode ser deduzida da questão número três. Na medida em que a Matemática permite explicar, controlar e prever, é possível pressupor que os alunos estejam formando em suas mentes, com a ajuda dela, uma visão de mundo assentada em bases deterministas. É óbvio, entretanto, que dada a unicidade e a abertura da questão, isso não pode ser afirmado de modo relativamente seguro. Faz-se necessário realizar uma pesquisa mais apurada para chegar-se a conclusões mais incisivas a esse respeito.

No entanto, as mesmas perguntas foram feitas em relação à Física, e os resultados foram os seguintes também em termos do sim: primeira pergunta, 65%, segunda pergunta, 38%, terceira pergunta, 65% e quarta pergunta, 52%.

Parece que a ideia de exatidão também está sendo passada para a maioria dos alunos, no que se refere ao ensino da Física, isto é o que pode ser inferido a partir das respostas à primeira pergunta. A concepção de indubitabilidade relacionada à segunda pergunta, se comparada à Matemática, mas 38% é um percentual significativo. A diminuição dos percentuais, comparados à Matemática, no que tange a essas duas perguntas, pode ser explicada pelo caráter fatual da Física. Diferen-
ensino tribuio as ante-n cinco não me e outra

temente da matemática, ela está mais próxima da realidade objetiva, haja vista a utilização do método experimental pelos seus pesquisadores. Entretanto, o percentual relativo à terceira pergunta é ligeiramente maior na Física do que na Matemática. Isto pode reforçar o indicativo de que a ideia de ordem mencionada anteriormente também deve estar sendo passada aos alunos pelo ensino da Física.

A questão da visão ordenada do mundo não deve causar estranheza em se tratando do militar. Outros exemplos, retirados do dia-a-dia da vida em caserna, podem reforçar essa concepção de ordem como parte integrante da mentalidade militar. As salas de aula, com dois ambientes distintos, o do cadete e o do professor, assim como o posicionamento permanente de cada aluno em cadeiras predeterminadas é bastante ilustrativo. A solução dos problemas diários, via sequência hierárquica, constitui outro exemplo. As marchas e evoluções são procedimentos que também evidenciam a preocupação ordeira do militar.

Em relação à indubitabilidade, pode-se constatar outros exemplos também. Um deles refere-se ao fato da limitação, isto é, no meio militar, estipula-se o cadete a tomar como modelo de conduta o superior hierárquico. Pressupõe-se, nesse caso, que o modo de comportar-se do mesmo é o correto. Outro exemplo segue essa mesma linha de modelos, só que no caso trate-se do ensino da língua materna. Nota-se, nesses casos, que a respeito de uma preocupação significativa em fazer com que o aluno aprenda a falar a denominada língua culta e a escrever de acordo com as regras gramaticais. A língua culta e as regras gramaticais aparecem, portanto, como paradigmas imutáveis, certos. Assim sendo, eles devem nortear o processo de aprendizagem nessa área.

É preciso dizer que a preocupação com a ordem não é específica do militar, embora seja possível afirmar que no meio militar ela constitua uma certa obstinação. Se a ordem é um valor prezado por todos, principalmente por aqueles que passaram pelos bancos escolares, caberia indagar a respeito do interesse pela mesma. Embora um desenvolvimento nessa linha seja importante, dada as limitações do trabalho em pauta, isso não será feito. Deve ficar registrado apenas que o interesse pela ordem exige uma análise estrutural da sociedade, principalmente em termos de seu componente ideológico.

A missão do oficial

A grande dificuldade quando refleximos sobre o modo mais adequado de formar o militar, mais especificamente, o oficial, o que nos remete à questão curricular, centra-se nos pressupostos desse currículo. Embora haja uma certa complexidade no processo formativo de todo especialista, o fato é que, em se tratando do militar, a intrincabilidade aumenta bastante, uma vez que, enquanto nas demais profissões visam-se atividades que ocorrem em momentos pacíficos da vida nacional, no caso do oficial, este é preparado, basicamente, para exercer determinadas tarefas no âmbito de situações inamissíveis, ou seja, as de combate.
Por outro lado, ele também é preparado para exercer determinadas funções em épocas de paz. Nesse caso, é quase suficiente para prepará-lo bem, fazer um levantamento das tarefas que ele irá executar, ao sair das academias, e a partir daí elaborar um currículo específico que atenda a essas tarefas. Dissemos quase suficiente porque o suporte profissiográfico presta-se às funções a serem exercidas no âmbito da carreira. Entretanto, não pode ser olvidada a sua participação na vida nacional. Este aspecto nos remete à questão do relacionamento do militar com a política, que tem sido objeto de estudo de muitos cientistas sociais brasileiros e estrangeiros.

Ao fazer-se uma relação entre o preparo para o exercício de tarefas em épocas de paz e em épocas de conflito, destaca-se um fato que precisa ser comentado. Pode ocorrer uma preocupação maior quanto à exercitação de tarefas nos momentos de paz. No caso brasileiro, a aparente percepção de ausência de inimigo externo pode reforçar essa tendência. De tal preocupação, pode resultar determinado modo de preparação dos oficiais que, por sua vez, poderá ser pouco adequado a uma situação de combate. Exemplo típico é a tendência de formá-los tendo como parâmetro o perfil de um administrador. Não resta dúvida que um oficial exercerá funções administrativas e que, portanto, necessita ser preparado para exercê-las; entretanto, é preciso que esse preparo e essa exercitação não sufocuem suas possíveis habilidades de liderança.

Em situações de combate, vale pouco a habilidade administrativa, pois ela é adequada ao âmbito empresarial, que busca a maximização do lucro pela eficiência. Entretanto, uma organização militar tem objetivo diferente, porquanto pretende, pela eficácia, vencer a guerra. No campo de batalha, predominam altos níveis de tensão, uma vez que a possibilidade de ficar inválido ou morrer é bastante grande, o que é praticamente irrelevante dentro do ambiente de trabalho de uma empresa. Por isso mesmo é que, na guerra, vale muito mais a capacidade de liderar.

Os altos níveis de tensão que predominam nos campos de batalha dificultam, mesmo com uma liderança eficaz, a coesão do grupo combatente. Nesse caso, a habilidade administrativa demonstra ser bastante inadequada. Isso ficou evidenciado no exército norte-americano durante a guerra do Vietnã, pois muitos oficiais que dela participaram eram graduados em administração e gerência empresariais e, como não poderia deixar de ser, passaram a atuar nesses moldes, empresariais, isto é, exercendo o papel de administradores eficientes. Duas consequências advieram disso: a queda do moral da tropa e o aumento do número de motins.

A grande diferença entre o ambiente de trabalho numa empresa e o de uma situação de combate reside no fato de que no âmbito de uma instituição produtiva o processo rotineiro, necessário ao não-comprometimento da quantidade e qualidade dos produtos a serem elaborados, transmite ao trabalhador uma sensação de ordem e “certitude”, enquanto no âmbito de uma situação de combate reina o princípio da incerteza, mais ainda no início de um conflito. Esse princípio indica que, por mais informações que se tenha sobre o inimigo, dificilmente se saberá como ele irá reagir. Clausewitz explicita bem o sentido desse princípio quando afirma que “a guerra é o domínio da incerteza. Três quartos das circunstâncias sobre as quais a ação da guerra está assentada estão mais ou menos ocultas em uma névoa de incerteza. É necessário uma inteligência perspicaz e penetrante para determinar a verdade” (Lorenghoven, 1985, p. 71).

É possível constatar, na história, vários exemplos de combate onde a incerteza esteve presente. O caso de Napoleão Bonaparte é bastante ilustrativo.
Lorengoven cita várias passagens a esse respeito. Nas campanhas contra a Prússia, em 1806, ele afirma que Napoleão sabia muito pouco a respeito dos movimentos do inimigo, porém, nas batalhas de Jena e Auerstädt, ele foi bem-sucedido. Numa outra batalha, nesse mesmo ano, Napoleão pensava que derrotara todo o exército prussiano e saxônico, no entanto, tinha enfrentado apenas 53 mil homens comandados pelo príncipe Hohenlohe e Ruchel. Moltke também teve de enfrentar várias situações duvidosas. Uma delas é assim contada por Lorengoven. "No dia anterior a Koenigraetz, acreditava-se no Grande Quartel General, em Gitschin, que os austriacos ocupavam uma posição atrás do Elba, com seus flancos em Josephstadt e Koenigraetz, quando na verdade eles estavam na parte anterior, entre Bistritz e Trostina" (Lorengoven, 1985, p. 76).

Outro exemplo ocorreu na guerra russo-turca, no ano de 1877, quando o alto comando russo quis imitar a campanha audaciosa do marechal Diebich em 1829, através dos Balcãs. A tropa sob o comando do general Gurko, após ultrapassar o Danúbio, no mês de julho, avançou por meio dos mesmos Balcãs com uma forte vanguarda; entretanto, devido a um certo desconhecimento quanto ao poder do inimigo, teve de recuar em face da superioridade das forças adversárias.

Em se tratando de incerteza no combate, diz Clausewitz, "grande parte das informações que um combatente recebe na guerra é contraditória; a maioria é falsa e quase todas são duvidosas. A lei das probabilidades é o seu único guia real. Um chefe deve, portanto, manter-se firme, confiando em seu discernimento acerca do que é provável e do que não é. Uma devoção rígida a dogmas e fórmulas é a antítese do planejamento adequado de guerra, que lida, em sua maior parte, com possibilidades, probabilidades, boa e má sorte. De todas as atividades humanas, a guerra é a que mais se assemelha a um jogos de cartas — nenhuma outra atividade humana é influenciada de forma tão contínua e geral pelo acaso (Lorengoven, 1985, pp. 80-81).

Poder-se-ia argumentar que tais exemplos não teriam validade ante a guerra moderna, uma vez que devem-se a um passado mais ou menos remoto. É comum ouvir que o combate do futuro será predominantemente automatizado, dispensando, portanto, do militar certas habilidades intelectuais relacionadas aos processos de tomada de decisão. A esse respeito, vale muito a advertência de Newell quando afirma que "é a mente do soldado que determina o êxito no campo de batalha, (e) quanto mais mecanizadas se tornam as armas, menos mecanizada deve ser a mente que as controla" (Newell, 1987, p. 69).

A incerteza, de forma alguma, está eliminada do combate atual. Os meios de comunicação utilizados na guerra moderna comprovam tal assertiva. Quanto a eles, pode-se afirmar que se caracterizam por um alto nível de sofisticação. Devido a tal peculiaridade, os mesmos estão mais sujeitos a interrupções e a variações provocadas por acontecimentos naturais ou artificiais. No momento em que cessa a transmissão de informações entre os elementos envolvidos numa operação bélica, devido ao mau ou não funcionamento da aparelhagem utilizada, tal fato pode-rá provocar uma situação de dúvida quanto ao que fazer ou como prosseguir.

Quanto à incerteza no combate atual, deve ser lembrado que, em várias situações de conflito, os vencedores foram aqueles que souberam utilizar o elemento surpresa. A esse respeito podem ser citados o ataque israelense ao Osirak, em 1981, quando, em questão de segundos, alguns aviões destruíram o reator atômico que estava prestes a ser concluído pelos iraquianos. Outro exemplo foi a invasão do Líbano por Israel em 1982. Em tal caso, as forças palestinas esperaram
As possibilidades de conflito

Poder-se-ia argumentar que não há necessidade de uma preocupação quanto à formação dos oficiais brasileiros em relação ao princípio da incerteza, uma vez que, pelo menos aparentemente, o Brasil não possui inimigos externos que possam atentar contra nossa soberania. Em primeiro lugar, é preciso deixar claro que as Forças Ar

madas de qualquer país devem ter por missão principal, senão exclusiva, a defesa externa. Nesse caso, mesmo que não haja inimigos à vista, ela tem de estar preparada para agir a qualquer momento, pois o fato da inexistência de ameaça próxima não dá a certeza de que essa situação perdurará para sempre. A dinâmica das relações internacionais pode criar determinadas circunstâncias que invalidam o esforço diplomático. Consequentemente, o impasse surgido pode requerer o uso da força, o que não é incomum na história da civilização.

Em segundo lugar, faz-se necessário dizer que o Brasil, enquanto país pertencente à América do Sul, está envolvido com determinadas áreas de atriuto, possivelmente capazes de alterar a normalidade da vida nacional, caso falhem os esforços diplomáticos. Uma dessas áreas diz respeito à Guiana Essequiba. É sabido que a Venezuela quer a posse de um espaço territorial localizado próximo ao rio Essequibo. "Por ter parte de seu território fazendo fronteira com a região em litígio, a questão preocupa particularmente o Brasil. Novas evoluções no caso poderiam suscitar tentativas de revisão de suas fronteiras naquela região. Além disso, a eclosão de um conflito armado entre os dois países poderá afetar a segurança do território brasileiro na área limitrofe com o Essequibo" (Oliveira, 1987, p. 142).

Outra área está relacionada à questão da Amazônia Equatoriana. Este caso coloca em cena o Equador e o Peru, pois, quanto ao território localizado próximo aos rios Santiago, Zamora, Marañon e Lagarto-Cocha, reina uma clara indefinição de limites. "Em face da divergência, por exemplo, Brasil e Equador ficam privados de terem ligações terrestres passando pelo território peruano e importantes ligações fluviais, através da Bacia Amazônica" (Oliveira, 1987, p. 147). Além disso, "a revisão do Protocolo do Rio de Janeiro, pretendida pelo Equador, pode ali-
mentar pretensões quanto ao desenca-
deuimento de um processo revisionista
de limites do Alto Solimões e seus for-
madores, envolvendo o Peru, o Equa-
dor, a Colômbia, o Brasil e, muito pro-
vavelmente, a Bolívia, em relação ao
Estado do Acre (Brasil)” (Oliveira,
1987, p. 148). Não é difícil concluir que
consequências adversas podem ocor-
rer, caso tal processo venha a se con-
cretizar.

Ainda, em relação a tais áreas, tem-
se o caso relativo à Arica, que envolve
o Peru, a Bolívia e o Chile. Destaca-se,
nesse caso, a pretensão da Bolívia em
conquistar o acesso para o mar. “Em
face dos antagonismos existentes com
esses países, a Bolívia tem se aproxi-
mado do Brasil utilizando, em grande
escala, o corredor de Santos para a ex-
portação de seus produtos. O fato po-
de trazer algum ressentimento em ou-
trões países, que podem vislumbrar al-
gum tipo de manifestação hegêmônica
por parte do Brasil na América do Sul”

Não pode ser esquecido, também, a
questão do relacionamento do Brasil
com a Argentina. Embora no momen-
to seja notória a preocupação dos dois
países em estreitar suas relações, não
se pode negar a existência de uma pos-
sível corrida armamentista entre eles.
O caso do domínio do ciclo nuclear pa-
rece evidenciar essa possibilidade. A
respeito disso, cabe mencionar a posi-
ção de dois estudiosos da área da estra-
tégia. Um deles, Shiguenole Miyamo-
to, afirma que o domínio desse ciclo
pode indicar a pretensão brasileira em
fabricar a bomba atômica e consequen-
temente adquirir, no Hemisfério Sul,
un posicionamento hegêmônico. Ou-
tro, Geraldo Cavagnari, é de opinião
que o Brasil tem demonstrado capaci-
dade para continuar procurando os co-
hecimentos necessários à produção
dessa bomba. Assim sendo, existe a
possibilidade de apreensões no rela-
cionamento entre os países da região
sul (Folha de S. Paulo, 1987).

Conclusão

Parece ter ficado claro que a Matemá-
tica, tal como vem sendo ensinada,
está passando aos cadetes concepções de
exatidão, indubitabilidade e ordem,
acarretando neste modo prejuízos ao
combatente, uma vez que acreditamos
ter demonstrado que a guerra é coman-
dada pelo princípio de incerteza.

Embora outras matérias que são en-
sinadas ou outros procedimentos que
são executados não tenham sido obje-
to de análise, ou pelo menos de uma
análise mais apurada, tal como foi fei-
to com a Matemática, faz-se necessária
a realização de outras pesquisas para
detectar se as demais matérias ou pro-
cedimentos também estão passando
aos alunos as concepções menciona-
das, o que para nós constitui uma hipó-
tese bastante provável.

Em termos de sugestão, propomos
que o ensino da Matemática deva ser
revisto. Assim sendo, pensamos que al-
gumas medidas podem ser tomadas.
Seu conteúdo deve ser ajustado às ta-
refas que o futuro oficial irá desempe-
nhar, em época de paz e de guerra,
principalmente. Neste caso, a teoria dos
jogos e o cálculo probabilístico são itens
que devem merecer atenção especial,
pois são adequados às situações duvi-
dosas. Assim acontecendo, o caráter
formal dessa ciência, provocador da
idéia de exatidão, tenderá a desapare-
cer, uma vez que ela estará correlacion-
ada com a realidade objetiva. O mé-
todo de aula deve permitir não só um
questionamento por parte do aluno
quanto ao que está sendo ministrado,
mas principalmente pelo professor.
Há, ainda, necessidade de que este re-
veja sua posição quanto à natureza da
Matemática; isto deverá contribuir pa-
ra o desaparecimento da concepção de
certeza. A implementação de um cur-
sso de Filosofia da Ciência, dirigido aos
alunos, parece ser adequado para alte-
rar essa falsa imagem da Matemática.
Apesar do trabalho em pauta ter sido assentado em apenas uma das três escolas responsáveis pela formação dos futuros oficiais, consideramos provável que os resultados não seriam muito diferentes em relação às outras duas. Isso porque pressupomos que qualquer escola, seja ela civil ou militar, tende a inculcar certas concepções no psiquismo dos alunos indistintamente a interesses de determinados grupos existentes na sociedade.

Referências bibliográficas

Resumo
Este artigo trata do currículo oculto implementado numa Academia Militar responsável pela preparação de oficiais das Forças Armadas. Pretende explicitar, especialmente no ensino da Matemática, os resultados ocultos filtrados a partir da concretização de seu ensino bem como as relações de tais resultados com uma situação de combate.

Palavras-chave: Curriculum oculto; formação militar; militar brasileiro; ensino de Matemática e militares; Forças Armadas.

Abstract
This article discusses the hidden curriculum implemented in a Military Academy in charge of officers training for the Armed Forces. It aims to make explicit particularly in the teaching of Mathematics, the covered results filtered through the practice of its teaching, as well as the relationships of such results with a combat situation.

Descriptors: Hidden Curriculum; Military Training; Brazilian Military Official; Teaching of Mathematics and Military Officials; Brazilian Army; Armed Forces.