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Abstract
Knowledge bases are complex systems of integrated technological knowledge that represent 
solutions to specific problems for the state of the art of knowledge in a given period. 
Knowledge bases evolve with technological cycles. In the last 30 years, we identify two 
technological waves. The first one started with the seven technological paradigms in the 
1980s (microelectronics, computers, telecommunications, audiovisual, new materials, 
semiconductors and biotechnology); the second one initiated with the so-called Key Enabling 
Technologies (KETs - nanotechnology, micro and nanoelectronics, industrial biotechnology, 
photonics, advanced materials and advanced manufacturing) from the 2000. This paper 
analyzes the evolution of the properties and complexity of the world knowledge base over 
1978-2016. Using patent data and network analysis, the work calculates indicators for variety, 
coherence, cognitive distance and convergence of the knowledge base. The results confirm that 
the technological paradigms of the 1980s are associated with an increase in the diversification 
and complexity of the knowledge base through an outward convergence, that is, with not 
related technologies - inside the same paradigm. The arrival of the 2000 micro-paradigms 
reveals a retraction of the knowledge base that evolves towards more concentrated paths over 
the trajectories previously established.
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1. Introduction

A knowledge base for a technology or a group of technologies is a representation 
of interconnected knowledge subunits that reveal the ‘state of the art’ of available 
methods, processes, skills and techniques at any given time. These subunits, or 
pieces of knowledge, interrelate in a highly complex way to respond to specific 
functionalities (SAHAL, 1981; ARTHUR, 2009; SAVIOTTI, 2009). A knowledge 
base evolves cyclically along with technical progress, alternating emergence and 
maturation phases of new scientific-technical paradigms (SAVIOTTI, 2009). 
When a new paradigm emerges, new pieces of knowledge or new interconnections 
emerge. As technological standards set in, uncertainties diminish, and the various 
directions of technical progress define themselves in technological trajectories or 
clusters of possible technological directions (DOSI, 1984). The development of 
a technological trajectory leads to incremental changes in the knowledge base 
and the base is transformed by the recombination between pre-existing parts. 
This transformation process happens throughout the innovation-diffusion process 
(FLEMING; SORENSON, 2001; ARTHUR, 2009).

Knowledge bases have four properties that scale their complexity: variety, 
convergence, coherence and cognitive distance (KRAFFT; QUATRARO; SAVIOTTI 
2011). Variety refers to the extent of base diversification in terms of the quantity of 
elements and the multiplicity of combinations formed between them. When new 
pieces of knowledge emerge with new technological paradigms, they combine with 
other previously existing pieces and can establish strong complementarities over time. 
The more often different pieces of knowledge combine, the greater the degree of 
similarity between them; and the greater the number of interconnections between 
similar or dissimilar technologies, the greater the degree of convergence. Coherence 
refers to the way and the intensity by which the pieces are integrated in the knowledge 
base as a whole (NESTA; SAVIOTTI, 2005). Usually, the interrelationship between 
pieces of knowledge follows specific patterns according to the functionality of the 
technology. Cognitive distance refers to the degree of dissimilarity between pieces 
of knowledge. Measures of cognitive distance try to identify, on the one hand, 
discontinuities in the base, that is, the emergence of new pieces that should appear 
to be poorly connected. On the other hand, a reduction in the cognitive distance 
between pieces would point to a process of cumulative knowledge development, 
that is, a maturation phase (KRAFFT; QUATRARO; SAVIOTTI, 2011). 
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The 1980s were characterized by the emergence of seven technological 
paradigms: microelectronics, computers, telecommunications, audiovisual, new 
materials, semiconductors and biotechnology (FREEMAN; PEREZ, 1988), and 
the 2000s by the Key Enabling Technologies (KETs), which are nanotechnology, 
micro and nanoelectronics, industrial biotechnology, photonics, advanced materials 
and advanced manufacturing (VAN DE VELDE et al., 2015). Assuming that new 
paradigms alter the properties of the global knowledge base, this work aims to analyze 
the evolution of the global knowledge base complexity as the technological trajectories 
of the paradigms were shaping during the 1980-2016 period. To do that, the paper 
uses usual network analysis and patent data to create indicators that measure the 
changes registered in the properties of the global knowledge base: variety, coherence, 
cognitive distance and convergence. The main contribution of the article, in this 
sense, is that it is a complexity analysis of the global knowledge base by periods, 
which not only contemplates the interaction between pieces of knowledge related 
to specific technologies, but also in terms of integrity in its completeness, that is, 
considering still the interactions among paradigms to define common trajectories. 

Besides this introduction, the paper first presents how the knowledge base 
should evolve over technological cycles given its properties. Next, the article sets 
out the methodology used; concretely, it discusses the feasibility of using patents 
to elaborate knowledge bases, as well as the description of the indicators used to 
measure the properties of a knowledge base: variety, coherence, cognitive distance 
and convergence. The article ends discussing the main results found.

2. Global knowledge base: structure and evolution 

Knowledge is an abstract structure that relates to different subunits (KRAFFT; 
QUATRARO; SAVIOTTI, 2011). A knowledge base referred to a technology system 
is a complex system of pieces of technological knowledge that interdependently and 
non-randomly combine to solve specific problems – functionalities- over a given 
period (for example electric car, heat resistant materials, etc.). Techno-scientific 
paradigms, as well as technological micro-paradigms, define knowledge bases specific 
to the functionalities the paradigm is associated with.

The knowledge base evolves with the technological cycle (SAVIOTTI, 2009). 
In the initial phase of a new paradigm, new pieces of knowledge can emerge as long 
as some of the old ones can disappear. Solving specific problems within a given 
set of knowledge will be able to occur in isolation from the others. In addition, 
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new functionalities emerge and the possibilities for recombination of old pieces of 
knowledge with the new ones will lead to greater variety. Consequently, the knowledge 
base becomes less coherent (NESTA; SAVIOTTI, 2005). Those effects characterize 
the evolution of technical progress by discontinuity, that is, the natural process of 
creative destruction in the Schumpeterian sense. In mature phases, technical progress 
evolves along specific paths among a diversity of possible directions. Occasionally, 
several trajectories may combine, while others may cease to exist [for example, 
analog cellular technologies] (VERSPAGEN, 2007). The success of a trajectory 
or the possibility of offering greater technological opportunities will lead to the 
associated pieces of knowledge generating interrelationships or new combinations at 
a faster rate in relative terms. The increase or decrease in the frequency with which 
a given relationship occurs and the creation/suppression of links between pieces 
of knowledge characterize the continuity of the technical progress of this phase 
(KRAFFT; QUATRARO; SAVIOTTI, 2011). Greater interdependence means greater 
coherence if complementary technologies grow at the same pace and direction. 
However, new combinations of functionalities do not use to occur at the same rate 
as completely new pieces of knowledge are generated (SAVIOTTI, 2009). Instead, 
greater interdependence introduces tradeoffs in the system, this is, the advancement 
in certain technological domains only happen if their complementary domains also 
advance (SAHAL, 1985).

New connections in the base can combine similar or dissimilar technological 
domains (NESTA; SAVIOTTI, 2005). ‘Similarity’ refers to proximity, that is, to 
pieces of knowledge that belong to the same technological domain - as ‘Dissimilarity’ 
refers to pieces of knowledge that belong to different technological domains in terms 
of application or use for a given level of aggregation. For example, antibiotics and 
vaccines are similar as both solve health problems, but they are dissimilar to the 
extent that the first belongs to ‘healing medicine’ and the second to ‘preventive 
medicine’. When connections occur between dissimilar technological domains in 
their functionality there are technological convergence (NESTA; SAVIOTTI, 2005). 
Empirical studies have observed increased combinations between pieces of knowledge 
that emerged with new paradigms from the 2000s and those that previously existed 
(JOO; KIM, 2010; KRAFFT; QUATRARO; SAVIOTTI, 2011; KIM; CHO; KIM, 
2014). More sophisticated measures of the degree of interrelationship between 
pieces of knowledge allow us to observe changes in the degree of similarity between 
areas of knowledge over time (JOO; KIM, 2010; YAN; LUO, 2017). These works 
revealed that there was quite a lot new connections that belong to dissimilar areas 



Technology cycles and the evolution of the knowledge base complexity ...

4 5Rev. Bras. Inov., Campinas (SP), 20, e021001, p. 1-24, 2021Rev. Bras. Inov., Campinas (SP), 20, e021001, p. 1-24, 2021

of knowledge, particularly in technologies such as microelectronics, semiconductors 
and informatics (JOO; KIM, 2010; HUENTELER et al., 2016).

Table 1 summarizes the hypotheses about how complexity and convergence 
should evolve along the technological cycle considering the four mentioned properties 
of the knowledge base: variety, coherence, cognitive distance and convergence. 
Discontinuity characterizes the initial stage; new pieces of knowledge and new 
combinations emerge. If the new elements are little connected and relatively distant 
from the others, variety will increase and coherence will decrease. As the technological 
cycle matures, the knowledge base evolves by continuity; new connections and 
complementarities will emerge between old and new pieces of knowledge. The 
knowledge base becomes more complex and integrated; therefore, coherence and 
convergence will rise. Technical progress will evolve around specific trajectories; 
therefore, variety and cognitive distance will reduce.

TABLE 1
Assumptions on the evolution of knowledge base properties

Properties of the knowledge base

Variety Coherence Cognitive 
distance Convergence

Phases of technological paradigms cycles

Initial: Discontinuity Rise Diminish Rise Diminish

Mature: Continuity Diminish Rise Diminish Rise

Source: Own elaboration
Note: Among technological subclasses that belong to different classes.

3. Representing knowledge bases 

The structure of a knowledge base is a network formed by subunits or pieces 
accumulated sequentially in time (SAVIOTTI, 2009; KRAFFT; QUATRARO; 
SAVIOTTI, 2011). The pieces of knowledge are the nodes of the network and the 
combinations between two or more pieces of knowledge are the links. Since the 
knowledge base allows cumulativeness, the transformation of the structure formed 
by nodes and links represents the evolution of technical progress (SAVIOTTI, 2009; 
NESTA; SAVIOTTI, 2005, KRAFFT; QUATRARO; SAVIOTTI, 2011).

We can represent knowledge bases using the information contained in patent 
databases and graph theory. A patent represents a technology in the form of a 
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new artifact, method or process. Each patent has one or more similar or dissimilar 
technological domains that represent the interconnected functionalities (sub-
technologies). These technological domains are the International Patent Classification 
(IPC) codes generally linked to areas of scientific-technological knowledge. The 
higher the level of sub-technology specificity, the higher is the level of disaggregation 
and the smaller the scope of functionality. To the extent that patents permit to 
differentiate between technologies and technological domains, patent bases represent 
knowledge bases that may refer to countries, industries and companies. However, 
since IPCs are sub-technologies for any level of disaggregation, they are not pieces 
of knowledge in the theoretical sense, but only a representation. To equalize the 
pieces of technological knowledge (in the theoretical plane) in IPC codes or observed 
technological domains (in the empirical plane), two assumptions must be made. The 
first is that the patent is a technology and the domains are the pieces of knowledge 
that compose it. The second is that the technology domains contained in a patent 
share similarities at some level of IPC classification.

Knowledge bases miss some of their attributes when represented with patent 
data (Table 2). First, patent data are codified knowledge that has an industrial 
application or functionality. Tacit knowledge is not included and scientific knowledge 
does not fit in the IPC classification. Second, the technical fields represent domains 
of knowledge application and not strictly knowledge pieces. Therefore, some 
attributes of knowledge, such as interdisciplinarity – in terms of similarity or 
complementarity –, acquire a different meaning. Interdisciplinarity becomes the 
property of an IPC when it co-occurs with other technical fields that belong to 
different technological domains, that is, convergence. Third, IPC classifications 
are only revised when a new technology extends widely. For that reason, IPC 
classification is very stable over time. As a consequence, new units of knowledge 
can remain hidden under for a long time and the perception of discontinuities 
use to be lower than the real (KAY et al., 2014). 

In addition to the loss of representativeness of knowledge bases in the theoretical 
sense, there are also limitations on the use of patent statistics to represent knowledge 
bases for two reasons. First, because not all innovation efforts result in patents, either 
because they are non-patentable or poorly protected by patents. Secondly, because 
patents are also subject to sectoral distribution bias due to the different propensities 
to patent across industries and technologies.
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TABLE 2
Theoretical elements of the knowledge base and its methodological approach

Theoretical concepts Graph theory Patents

Base of scientific and 
technical knowledge 

(tacit + codified)
NETWORK

Global patent databases  
Local patent databases (by period, industry, 

country or technology)
Just codified knowledge

Pieces of knowledge 
(concepts, methods, 
ideas, experiences) 

NODES

PA
T

EN
T

 IN
FO

R
M

AT
IO

N Technical fields for different levels of 
aggregation:

a) IPC (2-14 digits); 
b) Others: any aggregation of technology 
classes according to their functionality 
Measure: number of occurrences

Links among pieces 
of knowledge LINKS Measures: co-occurrences, patent 

citations and others (see Yan; Luo, 2017).

Source: Own elaboration

In order to handle with the patent data in mathematical terms, we use the 
graph theory to build the adjacency matrix. The number of technical domains 
for any level of aggregation gives the dimensions to the matrix (number of rows               
and columns). We call the number of patents a given IPC i appears in solitary1 or 
with the same IPC for a higher disaggregation level in the database ‘co-occurrence  

’; and the number of patents that an IPC i occurs together with an IPC j in the 
database ‘co-occurrence ’’. Those measures permit to quantify the number of links 
between IPCs. The adjacency matrix is square, symmetrical and non-directed2. The 
diagonal represents the co-occurrences  and the rest of cells represent the frequency 
of co-occurrences ’.  indicates the total number of patents in which the IPC 
i registered at least once as a co-occurrence  or ’ and P is the total patents 
in the database. The adjacency matrix is represented as follows:

1   The assignation of one only IPC to a patent is quite rare. We considered them as co-occurrences for the same classification at 
4-digit level of aggregation, but it also can be not counted in the diagonal values.

2   Knowledge bases can be also represented using patent citations. In this case, the matrix of interrelations is directed.
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Adjacency Matrix

As technical progress advances, the adjacency matrix should change in the 
following sense. First, when new technology domains (IPCs) arise, the number 
of nodes (lines and columns) increases. Second, when new patents use the same 
technological domain (IPC), the number of co-occurrences   increases. Third, 
as new combinations between IPCs appear, the matrix will be filled outside the 
diagonal and the co-occurrences will be more diversified. Fourth, the more frequent 
the interrelationship between two IPC codes, the higher the co-occurrence values 
in the cells.

4. Database

The database consists of all patent documents available in the European Patent 
Office’s (EPO) PATSTAT 2015 database and Orbis (BvD) 2017 for 10-years periods3 
(1978-87; 1988-1997; 1998-2007; 2008-2016). Even the IPC classification registered 
modifications period, we used the 2015 revisited classification for the whole period4. 

The aggregate data show that the 1998-2007 period concentrated 38.7% of 
the total patents, which reveals that this was the stage of greatest expansion (Table 
3). The 2008-2016 period registered 33.7% of the total patents. As long as this is a 
9-years period, this stage has to be considered still as provisional information. The 

3   The last period has only 9 years because it was impossible to make exactly 10-years periods for the period extent of the available 
database.

4  The IPC codes which have been deleted in the previous editions/versions do not appear in the current version.

IPC1 IPC2 ... IPCn Co-occurrences Co-occurrences Total 
Patents

IPC1 ...

IPC2 ...

... ... ... ... ... ... ... ...

IPCn ...

TOTAL - - - - - - P
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average number of co-occurrences  per patent tends to rise from the 1988-1997 
period until its maximum value of 0.6 in the 2008-2016. And the average number of 
co-occurrences ’ per patent tends to low from the 1988-1997 until its minimum 
value of 0.9 in the 2008-2016. The number of domains (nodes) remained between 
628 and 634, which indicates that the size of the networks changed little. However, 
the changes in the average number of links by node was relatively bigger, achieving 
maximum value in the 1998-2007 period (85). As in this period, the number of 
patents was also greater, it seems that the evolution of the knowledge base was 
characterized as a diversified growth.

TABLE 3
Evolution of the knowledge base structure

  1978-1987 1988-
1997

1998-
2007

2008-
2016 Total

N° patents 289,591 669,271 1,347,905 1,172,438 3,479,205

(%/Total) 8.3 19.2 38.7 33.7 100

Number of co-occurrences 133,424 287,658 615,302 669,740 -

(Co-occurrences  )/ P 0.5 0.4 0.5 0.6 -

Number of co-occurrences ’ 456,686 1,315,115 2,285,043 1,092,788 -

(Co-occurrences ’)/ P 1.6 2.0 1.7 0.9 -

 3.4 4.6 3.7 1.6 -

Number of  IPCs (nodes) 628 630 633 634 -

Number of links (1) 31,370 44,476 53,729 42,578 -

Number of links by node 50 71 85 67 -

Source: EPO PATSTAT (2015); Orbis / BvD (2017). Own elaboration.
(1) Only includes links between different IPCs at 4-digits level of aggregation (co-occurrences ’)

Gephi software allows the visualization of the knowledge’s networks structure 
(BASTIAN; HEYMANN; JACOMY, 2009). Each period describes very dense 
networks, that is, with a large number of different domains (nodes) and a vast 
number of connections (links) (Figures 1, 2, 3 and 4). Other characteristics of the 
knowledge base are reported according to the size, color, and position of the nodes. 
The size of each node is proportional to its degree centrality, which is a measure 
based on the number of links it performs. The larger nodes have a degree above the 
whole network’s average, and the smaller nodes have very few links. The clustering 
coefficient measures the likelihood of a node to create all the possible links the 
nodes that are immediate closer. 
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Source: EPO PATSTAT (2015); Orbis / BvD (2017). Own elaboration.
Note: Th e color grading indicates the range of the clustering coeffi  cient value for each IPC (nodes). Th e darker, 
the closer to 1; the yellow are those closer to 0.5; the red are the closer to 0.

In the knowledge network, when nodes get a coeffi  cient close to one, this 
indicator points out to the formation of a cluster between certain technological 
domains and the exclusion of others. Th e blue color indicates a value equal or very 
close to one; yellow color indicates values   close to 0.5 and red color indicates values   
equal or close to zero. Th e blue nodes tend to belong to tightly connected groups, 
while red nodes tend to form a greater variety of links, proportional to the size of the 

FIGURE 1
Evolution of the network that represent 
the global knowledge base - 1978-1987

FIGURE 2
Evolution of the network that represent 
the global knowledge base - 1988-1997

FIGURE 3
Evolution of the network that represent 
the global knowledge base - 1998-2007

FIGURE 4
Evolution of the network that represent 
the global knowledge base - 2008-2016
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network. Few nodes with clustering coefficient close to 1 are present in all periods, 
but they have the smallest sizes since they tend to create very few links with other 
nodes. Finally, the node’s position in the network depends on how connected they 
are. Nodes subgroups are created when they concentrate their links among them 
revealing a higher degree of technological similarity. Alternatively, nodes that are 
very distant from the network core have fewer links and are more isolated.

As Figure 1, 2, 3 and 4 illustrates, the 1978-1987 period network had many 
nodes very distant from the core. They do not differentiate by size and red color 
was predominating, that is, they had similar degree centrality. The 1988-1997 and 
1998-2007 bases showed that some technological domains had a distinguished 
capacity to increase their number of links and were less prone to be restricted to a 
cluster. Network images confirm that big nodes are more likely to show a red color. 
Both bases [1988-1997 and 1998-2007] define the emergence and extension of the 
80th technological paradigms. The average distance between nodes in the 1978-1987 
base is higher that the average distance for the all periods. As the network evolved, 
nodes connected more and got closer to the network’s center. The contraction of 
the 2008-2016 base can not be attributed to a smaller number of nodes, but to 
the distribution of the links between them. After the micro-paradigms of KETs 
emerged, the number of links grew again, but following the 80s paradigms maturity 
processes. That means that their entrance consolidated the preexisting technological 
trajectories that formed groups and made the variability in the size of nodes less 
distinguishable.

5. Analysis of variety, coherence and cognitive distance

The adjacency matrix allows elaborating the indicators for variety, coherence and 
cognitive distance. Informational entropy index measures variety as the concentration 
of co-occurrences ’ by technological domain at any specific level of aggregation 
(KRAFFT; QUATRARO; SAVIOTTI, 2011; QUATRARO, 2010; FRENKEN; 
VAN OORT; VERBURG, 2007; FRENKEN; NUVOLARI, 2004). This indicator 
is formalized as follows:

Where  is the probability of co-occurrence of the pair of IPCs 
i – j, calculated as the ratio between the number of i – j co-occurrences and the 
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total patents of the period. The total variety will be greater the lower the probability 
of co-occurrence of a specific pair. The total variety index can be broken down into 
related and unrelated variety. Unrelated variety (UV) measures the concentration of 
the co-occurrences ’ between unrelated domains of knowledge at lower levels 
of aggregation. This kind of variety can be associated with disruptive technologies 
and evolution by discontinuity. Related variety (RV) measures the concentration 
of the co-occurrences ’ between related domains at higher levels of aggregation, 
that is, that belong to the same technological class. If the i and j domains belong 
to different classes [g and z], such that  and , , then the probability of 
co-occurrence ’ is:

While the probability of subsets co-occurrence is:

Therefore:

Coherence measures complement the analysis of variety indicators showing how 
the network structure combines knowledge. There are three indicators for coherence: 
density, average clustering coefficient and the average degree (WATTS; STROGATZ, 
1998; BARABÁSI; ALBERT, 1999; JACKSON, 2010). Density (D) is the rate 
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between the number of existing links and the total possible co-occurrences of the 
matrix as follows: 

Where  counts the number of pairs of co-occurrences  in the adjacency 
matrix; n is the number of technological domains (rows = columns). The maximum 
value of network density is equal to 1 when the matrix is filled by all the possible 
pairs of co-occurrences. A density value close to zero reveals relatively few connections 
between the technological domains. 

In addition to directed links , the coherence of the network is also 
determined by indirect links that lead to the formation of groups among technological 
classes. When the nodes j ≠ i ≠ k combine, they become neighbors and create a 
complete sub-network filling the cells , e , that is, they are connected 
by all the possible links among them. When this happens, they are more similar 
between them than with other nodes they are not linked directly with. The average 
clustering coefficient captures in which extent a node is connected to subnetworks 
with at least two nodes within them (WATTS; STROGATZ, 1998). The clustering 
coefficient  for a i-node is the ratio between the number of co-occurrences ’ 
formed by i within its K neighbors (N) and the maximum possible number of co-
occurrences that it can create with its K neighbors K * (K – 1)/2 as follows:  

The average clustering coefficient of a network is an average of the individual 
clustering coefficients  of all the n–nodes (IPCs) in the database:

The average clustering coefficient is equal to 1 if all the IPCs ’ co-occur, 
this is, when the adjacency matrix is   fully filled; and it is equal to 0 if there are no 
IPCs ’ co-occurring.

Degree centrality is a count of the total number of co-occurrences ’ 
for each domain in the network. The average degree of an undirected graph is 
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measured by the division of the sum of all nodes’ degree by the total number of 
nodes. When the technological domains create new co-occurrences ’, they fill 
the co-occurrence matrix and raise the average degree and so the complexity of 
the knowledge base. 

The average path length and the diameter measure the cognitive distance. 
Consider the co-occurrence ’. The shortest possible path length between i – j 
is equal to 1. Consider now two domains not directly linked to each other but 
related with a third domain [k], such as [i – j; j – k] The path length between i 
and k is the sum of the direct links between the domains that intermediate their 
connection. For example, if   and there are one combination i – j 
and one combination i – k, the path i – k, w (j, k) = 2,  which is the sum of 
the distances w (i, j) = 1, and w (i, k) = 1. In aggregate terms, the average path 
length indicates the average distance between all the different i – j pairs in the 
adjacency matrix. This indicator considers whether the connections are making 
easier the intermediation between different technologies. Finally, the diameter (d) 
is defined as the largest distance between two i – j domains, such that d = max w 
(i, j), considering the distances between all pairs of base IPCs. A lower diameter 
of the knowledge network indicates that the dissimilarity between technological 
domains got lower.  

Table 4 shows the results of the selected indicators. Between 1978-1987 
and 1988-1997 periods, coinciding with the emergence and extension of the 80s 
technological paradigms, there was an increase in the number of IPCs, which lead 
to a significant increase in the variety of knowledge. Related variety grew more 
than unrelated variety between 1978-1987 and 1988-1997, that is, diversification 
occurred more intensely in IPCs that belong to the same areas of knowledge (for 
example, inside Pharmaceuticals or Telecommunications). This result reveals that 
the knowledge base diversifies through incremental innovations. In the transition 
from 1988-1997 to 1998-2007, the number of patents almost doubled and there 
was also an increase in the number of nodes (Table 3). Variety rate decreased in 
the 1998-2007 period as result of lower unrelated and related variety showing that 
even thought the network got bigger there was a relatively smaller impulse for the 
formation of new links. Therefore, the 1998-2007 knowledge base links are more 
concentrated and largely repeat the previous structure; the knowledge base evolved 
more by cumulativity than by discontinuity. Between 1998-2007 and 2008-2016 
periods, there were significant declines in the variety, both related and unrelated. 
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TABLE 4
Knowlegde network properties

    1978-
1987

1988-
1997

1998-
2007

2008-
2016

Variety

Unrelated variety (UV) 10.2 11.1 10.5 8.4

Related variety (RV) 8.1 9.0 7.9 5.8

Variety rate (RV/UV) 0.8 0.8 0.7 0.7

Coherence(1)

Density 0.16 0.22 0.27 0.21

Average clustering 
coefficient 0.52 0.58 0.62 0.59

Average degree 100 141 170 134

Cognitive distance
Average path length 1.90 1.80 1.74 1.82

Diameter 4 4 3 4

Source: EPO PATSTAT (2015); Orbis / BvD (2017). Own elaboration.
(1) Values vary between 0 and 1

Regarding coherence, the density indicator was very low in the initial period 
(0.16) for a maximum value of 1. This value increased up to 0.22 between the first 
two periods and then up to 0.27 in the 1998-2007 period. In the last period [2008-
2016], it fell to 0.21. All the technological domains presented at least one relation 
and the average of relations per node got higher until the 1998-2007 period (170). 
This evolution confirms the formation of new links between pairs of IPCs. The 
knowledge base experienced an integration process that seems to have slowed down 
in the 2008-2016 period coinciding with the emergence of the KETS. Nevertheless, 
this observation has to be still confirmed when the latter period completes 10 years. 
The average clustering coefficient, which was already high in the 1978-1987 period 
(0.52), increased more until the 1998-2007 period (0.62). These measures reveal 
a tendency to increase cohesion between all the IPCs, that is, the knowledge base 
evolves more cumulatively with more local convergence. In other words, the network 
evolved concentrated in specific clusters.

The cognitive distance or dissimilarity measured by the average path length 
started out being relatively low (1.90) in the 1978-1987 and fell further over time 
from 1.80 to 1.74 in the 1998-2007. This result is closely related to the appearance 
of new links until 1998-2007, which made the cognitive distance shorter and the 
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knowledge more interrelated in the network. The increase in the number of new 
links, without a significant increase in the number of new nodes, reduced the 
overall dissimilarity until 1998-2007. This was because some technology domains 
(nodes) increased the variety of their connections. For a medium-sized network 
of 630 nodes, the diameter values were relatively small, which reflects the large 
interconnection between the technological domains of the network. As a result, 
technological dissimilarity was reduced in 1998-2007.

In summary, in the passage from the 1980s to the 1990s, with the emergence 
of the 1980s technological paradigms, the knowledge base increased in variety 
and coherence simultaneously and cognitive distance reduced. Afterwards, the 
base tended to specialize as an accumulative effect. Since the 2000s, the network 
becomes more integrated, as showed by coherence measures. The emergence of the 
new paradigms (KETs) leads to the appearance of new nodes and links, but with a 
fall in the variety. That observation indicates that the connections between domains 
became more concentrated in specific technology fields. The results also indicate 
that this tendency to concentration stands during the 2008-2016 period. The drop 
in the co-occurrences ’ per domain explains lower variety and coherence in the 
knowledge structure. Although that is only a provisory outcome, it is not expected 
that the lower number of patents be an explanation for this observation.

6. Analysis of convergence

When two or more dissimilar pieces of knowledge combine to create a technology, 
we say they converge. In empirical terms, technological convergence happens when 
dissimilar IPCs (pieces of knowledge) co-occur in the same patent (technology). 

The analysis of convergence has the purpose to identify in the base of knowledge 
how the 80s technological paradigms and the KETs evolved combining with dissimilar 
technological fields to create new technologies. To do that, we first create for each 
period the subnetworks relative to each 80s paradigm (biotechnology, new materials, 
microelectronics, informatics and computers, telecommunications, semiconductors 
and audio-visual technology) and KETs micro-paradigms (advanced manufacturing, 
advanced materials, micro and nanoelectronics, industrial biotechnology, photonics 
and nanotechnology) (VAN DE VELDE et al., 2012). 

We identify the patents corresponding to each of the 80s paradigms using 
the aggregation of IPCs proposed by the WIPO technology concordance table in 
thirty-five fields of technology (WIPO Statistics Database, 2019). Patents activities in 
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KETs are identified based on a list of IPC codes that cover new technologies directly 
representing one of the six KETs (VAN DE VELDE et al., 2012; ASCHHOFF et 
al., 2010)5.

Once created the subnetworks, we use the related and unrelated variety 
indicators to measure convergence. Related variety (RV) measures how the knowldege 
subnetwork of each micro-paradigm diversified along time considering all the 
technological fields, whether they are dissimilar or not. Unrelated variety (UV) 
measures also the evolution of the subnetwork diversification, but only towards 
dissimilar technical fields, that is, combination with IPCs that belongs to another 
field of technology, given the aggregation of technology used. 

Table 5 compares the results for the 80s paradigms, and shows that UV prevails 
in relation to RV, indicating a predominant expansion and diversification outside the 
paradigms, that is, knowledge base grew with outwards convergence. RV and UV grew 
from 1978-1987 to 1988-1997, except for semiconductors that remained relatively 
stable, which confirms a rise of convergence inside and among the paradigms. For 
both periods, the highest value for RV and UV belonged to new materials, which 
encompasses all basic materials chemistry technologies. In the transition from 1988-
1997 to 1998-2007, the number of patents grew, but mostly the number of links, 
as seen previously (see Table 3). In the 1998-2007 base, audio-visual technology 
and new materials showed a fall of RV and UV in relation to the previous period, 
indicating a concentration of their links. Biotechnology, informatics and computers, 
semiconductors and telecommunications continued to increase UV expanding its 
new connections with technologies outside their paradigms. The 2008-2016 base 
shows a reduction in variety in all paradigms, with the exception of microeletronic’s 
RV. However, the decline is more prominent in RV than in UV. That means that 
even with a reduction of the number of links, the links between the knowledge 
belonging the 80s paradigms and other dissimilar pieces of knowledge were less 
volatile, indicating the persistence of the preexisting technological trajectories. In 
the last-period base, the reduction of the total number of patents does not justify 
a reduction of the links. The strength of a certain inwards convergence is due to: (i) 
the increase of the number of co-occurrences i = j; (ii) the higher frequency of the 
same co-ocorrencies; (iii) the disconnection between domains that grew considerably 
(for example, in the 2008-2016 period, certain links between telecommunications 
domains and chemistry domains ceased to exist completely).

5  One should note that there is some overlap between KETs. Most importantly, some IPC codes in the field of nanotechnology 
are also assigned to micro-/nanoelectronics and new materials. There is also a minor overlap between photonics and micro-/
nanoelectronics.
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TABLE 5
Convergence analysis for the 1980s’ technological paradigms 

1980s Paradigms (%) (1)

1978-
1987

1988-
1997

1998-
2007

2008-
2016

RV UV RV UV RV UV RV UV

Audio-visual technology 0.33 0.62 0.44 0.77 0.41 0.71 0.20 0.43
(0.33) (0.24) (-0.07) (-0.08) (-0.51) (-0.39)

New materials 0.75 0.84 0.86 0.90 0.58 0.69 0.36 0.51
(0.15) (0.07) (-0.33) (-0.23) (-0.38) (-0.26)

Biotechnology 0.34 0.43 0.59 0.63 0.53 0.66 0.21 0.38
(0.74) (0.47) (-0.10) (0.05) (-0.60) (-0.42)

Informatics and computers 0.21 0.43 0.35 0.61 0.41 0.77 0.24 0.57
(0.67) (0.42) (0.17) (0.26) (-0.41) (-0.26)

Microeletronics 0.67 0.75 0.70 0.76 0.70 0.73 0.70 0.70

(0.04) (0.01) (0.00) (-0.04) (0.00) (-0.04)

Semiconductors 0.08 0.36 0.11 0.44 0.11 0.45 0.07 0.34

(0.38) (0.22) (0.00) (0.02) (-0.36) (-0.24)

Telecommunications 0.28 0.56 0.45 0.80 0.60 1.08 0.32 0.78
(0.61) (0.43) (0.33) (0.35) (-0.47) (-0.28)

Source: EPO PATSTAT (2015); Orbis / BvD (2017). Own elaboration.
(1) Rate of growth between consecutive periods.

In relation to the 2000s micro-paradigms (the KETs), the convergence analysis 
displayed in Table 6 reveals some differences in relation to the 80s paradigms results. 
Previously to the first decade of 2000, the 1978-1987 base show that the nodes 
belonging to the KETs technologies developed inwards, that is, inside their own 
subset of related technologies. RV was higher than UV, particularly in advanced 
manufacturing. Advanced manufacturing technologies stand out from the other 
KETS since its knowledge base characterizes by a wider scope of combinations.

All the KETs’ knowledge bases increased the RV in the 1988-1997 period, except 
nanotechnology. The UV also increased, especially for the industrial biotechnology6, 
which indicates some outwards convergence. In the next period (1998-2007), some 
KETs bases of knowledge showed a reduction in total variety, but the drop in RV 
was stronger than UV, which points out that outwards convergence persisted more. 
Micro and nanoelectronics, photonic and nanotechnology reached higher values of 
UV than RV, which reflects paths of technological trajectories associated with other 

6   There is some overlap between this technological classification and the one used for Biotechnology in the 80’s paradigms classifi-
cation, but the most important diference is that some of the KETs classification codes are IPC 7 digits, therefore, the information 
extracted has a higher level of technological specificity.
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technologies. Photonics and nanotechnology increased also RV, while industrial 
biotechnology only increased through UV. Advanced materials reducing both, RV 
and UV from 1998-2007 period, that is, it concentrated their connections links 
reflecting a no-convergence path. Photonics and nanotechnology registered the lowest 
variety, but both tended sensitively to increase their scope of combinations during 
all the periods, reducing considerably their distance with other technologies in the 
2008-2016 period. Photonic was the only one that continued growing in both, RV 
and UV, until the last period, revealing a path of inwards and outwards convergence.

TABLE 6
Convergence analysis for the 2000s’ technological paradigms 

2000s Micro-
paradigms (KETs) 

(%) (1)

1978-
1987

1988-
1997

1998-
2007

2008-
2016

RV UV RV UV RV UV RV UV

Advanced Manufacturing 2.88 0.71 2.91 0.70 2.19 0.61 1.57 0.54
(0.01) (-0.01) (-0.25) (-0.13) (-0.28) (-0.11)

Advanced Materials 0.54 0.33 0.67 0.34 0.48 0.26 0.29 0.21
(0.24) (0.03) (-0.28) (-0.24) (-0.40) (-0.19)

Micro and nanoeletronics 0.20 0.25 0.25 0.28 0.24 0.27 0.14 0.23
(0.25) (0.12) (-0.04) (-0.04) (-0.42) (-0.15)

Industrial Biotechnology 0.34 0.22 0.63 0.32 0.63 0.34 0.22 0.21
(0.85) (0.45) (0.00) (0.06) (-0.65) (-0.38)

Photonic 0.04 0.07 0.06 0.08 0.07 0.08 0.08 0.11
(0.50) (0.14) (0.17) (0.00) (0.14) (0.38)

Nanotechnology 0.00 0.00 0.01 0.01 0.03 0.03 0.02 0.03
- - (2.00) (2.00) (-0.33) (0.00)

Source: EPO PATSTAT (2015); Orbis / BvD (2017). Own elaboration.
(1) Rate of growth between consecutive periods.

In sum, the KETs’s knowledge bases departed from a low degree of diversification 
associated to an incipient stage characterized by the search of applications of a new 
body-of-knowledge. Afterwards, specific trajectories defined a still more restricted 
set of domains towards KETs technology domains established and concentrated 
their links. Nevertheless, the most recent period reveals a new phase of KETs 
technologies characterized by an increasing variety by convergence (unrelated), 
especially in photonics and nanotechnology. As this is a recent path, the tendency 
to diversification by convergence in not still sufficient to alter the total variety of 
the whole knowledge base.
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7. Conclusions

The aim of this work was to analyze the evolution of the knowledge base according 
to different phases of the evolution cycle of the seven technological paradigms in the 
1980s and the Key Enabling Technologies (KETs). The complexity that characterizes 
knowledge bases was studied from its four interconnected properties: variety, 
coherence, cognitive distance and convergence. The article assumes by hypothesis 
that at the initial stage of new paradigms, the knowledge base is characterized by an 
increase in variety, a reduction in coherence and, as a result, a reduction in the density 
of the network in general. To do that, we used patent statistics and graph theory to 
build a network that represent the bases of knowledge in different 10-years periods 
from 1978 to 2016. The network we made is, in this sense, just a representation 
of a technology base knowledge that considers as nodes the technological domains 
corresponding to 4-digits level of aggregation of the IPC Classification. 

The results confirm the hypotheses only partially. The initial period characterized 
by the emergency of new paradigms coexisting with the maturity of the old ones. 
There was an increase in coherence due to the increase of the connections that 
widely offset the effect of the emergence of new domains. From the 1980s on, 
the maturation process advances. The transition from 1988-1997 to 1998-2007 
showed a decrease in variety and in cognitive distance, an increase in coherence, 
which was expected considering the path of knowledge accumulation. With the fall 
of the variety, the network did not integrate in a balanced way, which was revealed 
in the growth of interconnectivity detected by the agglomeration coefficient. The 
maturation was characterized by the emergence of new relationships between IPCs 
within the same area of   knowledge (by increase of related variety or by cumulativity), 
but also, although with less importance, between different areas (by unrelated variety 
or discontinuity). Considering the cumulative and path-dependent character of 
knowledge, these observations reveal that there was continuity in the evolution the 
technological paradigms, but also the disuse of some technological trajectories, as 
certain links have lost their relative importance. 

 The new paradigms demonstrated a tendency to increase interconnectivity, 
which points out towards convergence as the main characteristic of the maturation 
stage of their technological cycles. The 80s paradigms showed a predominant 
expansion and diversification outside the paradigms, that is, the knowledge base 
grew with outwards convergence. Even in the 2008-2016 base when the total variety 
contracted for all the paradigms, the links between the knowledge belonging to the 
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80s paradigms and other dissimilar pieces of knowledge were less volatile, indicating 
persistence of technological trajectories. The KETs’s knowledge bases departed 
from a low degree of diversification associated to an incipient stage characterized 
by the search of applications of a new body-of-knowledge into specific trajectories 
increasing variety by convergence (unrelated). At the most recent period most KETs 
technologies also tended to concentrate their links.

The outward path of convergence reveals also the existence of tradeoffs 
between technological domains that can involve constraints to technical progress. 
For example, the application of photonics and nanotechnology in the development 
of other technologies can mean a strong dependence on the performance of these 
other technological trajectories to their own maturation process. Innovation policies 
should pay attention to this coevolution and expect tradeoffs and spillovers among 
technologies answering this kind of questions: what kind of technologies are in the 
technological frontier? What kind of complementary and dissimilar technological 
domains have to be supported to guarantee the advance of the technological frontier?

Finally, it is necessary to stand up two assessments. Firstly, the results for the 
2008-2016 period in comparison with the others must be considered still provisional, 
given that the period has not completed 10 years yet. Nevertheless, even the data are 
not still available to complete the decade; it seems that the general observed tendency 
will remain unchanged. The contraction of the base of knowledge in the last period 
reveals the disappearance of weak or eventual connections and the concentration on 
the stronger connections, following the eighties-paradigms’ trajectories. At the same 
time, and from the beginning of the 2000s, new micro-paradigms emerged: the 
KETs. This new wave of disruptive technologies also can have played a role towards 
the contraction of the knowledge base. Until very recently, the KETs’ domains 
mainly trended to connect with their similar, which drove more to an endogamic 
concentration than to an exogamic diversification. 

Secondly, the structure of the knowledge base depends on the level of aggregation 
of the IPC classification. The higher the level of aggregation, the greater the number 
of nodes and the relationships between them, which increases the complexity and 
stability of the knowledge base. In this sense, other specificities can emerge carried out 
by a more complex structure that cannot be observed at 4-digit level of aggregation.
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