Resumo
Introdução: O chá Kombucha é uma bebida asiática feita a partir da fermentação de chá açucarado, realizada por bactérias do ácido acético, láctico e leveduras. Embora possa ser adquirido comercialmente, também pode ser produzido em casa, aumentando os riscos de contaminação por agentes físicos, químicos e microbiológicos. Objetivo: Discutir alguns possíveis cenários de contaminação na produção, riscos do consumo por indivíduos portadores de patologias e condições de saúde e casos de relato de toxicidade alimentar. Métodos: Revisão narrativa da literatura com artigos no SciELO, PubMed, ScienceDirect, capítulos de livros/e-books e websites. Resultados: O Kombucha tem nutrientes e compostos bioativos com vantagens terapêuticas. É fundamental considerar a origem, a higiene e o armazenamento da bebida, uma vez que a mesma pode apresentar contaminações físicas, químicas e microbiológicas. É importante avaliar os riscos associados ao estado de saúde dos consumidores, pois o seu consumo inadequado pode estar relacionado a complicações hepáticas e biliares, acidose metabólica, intoxicação, falência renal, e acidose lática em indivíduos com condições de saúde pré-existentes. Conclusão: Recomenda-se optar por consumir o Kombucha produzido industrialmente diante das preparações caseiras, além de obter orientação e instrução de um profissional médico ou nutricionista antes de consumi-lo, para verificar possíveis condições de saúde que possam ser agravadas pelo consumo da bebida que é desaconselhada para mulheres grávidas, crianças e indivíduos com as condições de saúde como os HIV-positivos, acidose láctica e metabólica, doença hepática crônica e cirrose biliar, infecção do trato respiratório superior ou inferior, gastrite, insuficiência renal ou anomalias hepáticas e renais.
Referências
- Goh WN, Rosma A, Kaur B, Fazilah A, Karim AA, Bhat R. Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. Int Food Res J [Internet]. 2012;19(1):109–17. Available from: https://www.researchgate.net/publication/286302669_Fermentation_of_black_tea_broth_Kombucha_I_Effects_of_sucrose_concentration_and_fermentation_time_on_the_yield_of_microbial_cellulose.
- Salafzoon S, Hosseini HM, Halabian R. Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model. JCIM [Internet]. 2018;15(1):20170071. Available from: https://www.degruyter.com/document/doi/10.1515/jcim-2017-0071/html. DOI: https://doi.org/10.1515/jcim-2017-0071.
- Dutta H, Paul SK. 8 - Kombucha drink: production, quality, and safety aspects. The Science of Beverages. 2019;259–88. Available from: DOI: https://doi.org/10.1016/B978-0-12-815260-7.00008-0.
- Cavicchia LOA, Almeida MEF. Health benefits of Kombucha: drink and its biocellulose production. Braz J Pharm Sci [Internet]. 2022;58:e20766. Available from: https://www.sciencedirect.com/science/article/abs/pii/B9780128152607000080?via%3Dihub. DOI: https://doi.org/10.1590/s2175-97902022e20766.
- Cavicchia, LOA, Almeida, MEF. Kombucha - a bebida do futuro. Scienza: São Carlos. 2023;45 p. Available from: https://www.editorascienza.com.br/ebook/kombucha.pdf. DOI: https://doi.org/10.26626/9786556681184.2023B0001.
- Ernst E. Kombucha: A systematic review of the clinical evidence. Forschende Komplementärmedizin und Klassische Naturheilkunde. 2003;10(2):85–7. Available from: https://karger.com/fkm/article-abstract/10/2/85/355085/Kombucha-A-Systematic-Review-of-the-Clinical?redirectedFrom=fulltext. DOI: https://doi.org/10.1159/000071667.
- Jayabalan R, Malbaša RV, Lončar ES, Vitas JM, Sathishkumar M. A review on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf [Internet]. 2014;13(4):538–50. Available from: DOI: https://doi.org/10.1111/1541-4337.12073.
- Greenwalt CJ, Steinkraus KH, Ledford RA. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. Journal of Food Protection. 2000;63(7):976–81. Available from: DOI: https://doi.org/10.4315/0362-028X-63.7.976.
- Pakravan N, Mahmoudi E, Hashemi S-A, Kamali J, Hajiaghayi R, Rahimzadeh M, et al. Cosmeceutical effect of ethyl acetate fraction of Kombucha tea by intradermal administration in the skin of aged mice. J Cosmet Dermatol [Internet]. 2018;17(6):1216–24. Available from: https://onlinelibrary.wiley.com/doi/10.1111/jocd.12453. DOI: https://doi.org//10.1111/jocd.12453.
- Kitwetcharoen H, Phung LT, Klanrit P, Thanonkeo S, Tippayawat P, Yamada M, et al. Kombucha healthy drink-recent advances in production, chemical composition and health benefits. Fermentation [Internet]. 2023;9(1):48. Available from: https://www.mdpi.com/2311-5637/9/1/48. DOI: https://doi.org/10.3390/fermentation9010048.
- Batista P, Penas MR, Pintado M, Oliveira-Silva P. Kombucha: Perceptions and future prospects. Foods [Internet]. 2022;11(13):1977. Available from: https://www.mdpi.com/2304-8158/11/13/1977. DOI: https://doi.org/10.3390/foods11131977.
- Coca-Cola Company (Australia). The Coca-Cola Company adds its first line of kombucha through acquisition of Australian-based Organic & Raw Trading Co. Media Centre, 2018. Available from: https://www.coca-cola.com/au/en/media-center/coca-cola-company-adds-kombucha-acquisition-australian-organic-raw-trading-co.
- Molson Coors (Chicago). Molson Coors acquires Clearly Kombucha. Molson Coors, 2018. Available from: https://www.bizjournals.com/denver/news/2018/06/06/molson-coors-acquires-clearly-kombucha-brand.html.
- Kapp JM, Sumner W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann Epidemiol [Internet]. 2019;30:66–70. Available from: https://www.sciencedirect.com/science/article/pii/S1047279718307385. DOI: https://doi.org/10.1016/j.annepidem.2018.11.001.
- Kim J, Adhikari K. Current trends in kombucha: Marketing perspectives and the need for improved sensory research. Beverages [Internet]. 2020;6(1):15. Available from: https://www.mdpi.com/2306-5710/6/1/15. DOI: https://doi.org/10.3390/beverages6010015.
- Capozzi V, Fragasso M, Russo P. Microbiological safety and the management of microbial resources in artisanal foods and beverages: The need for a transdisciplinary assessment to conciliate actual trends and risks avoidance. Microorganisms [Internet]. 2020;8(2):306. Available from: https://doi.org/10.3390/microorganisms8020306.
- Mukherjee A, Gómez-Sala B, O’Connor EM, Kenny JG, Cotter PD. Global regulatory frameworks for fermented foods: A review. Front Nutr [Internet]. 2022;9:902642. Available from: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.902642/full. DOI: https://doi.org/10.3389/fnut.2022.902642.
- Gaggìa F, Baffoni L, Galiano M, Nielsen DS, Jakobsen RR, Castro-Mejía JL, et al. Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients [Internet]. 2019;11(1):1. Available from: https://www.mdpi.com/2072-6643/11/1/1. DOI: https://doi.org/10.3390/nu11010001.
- Mousavi SM, Hashemi SA, Zarei M, Gholami A, Lai CW, Chiang WH, et al. Recent progress in chemical composition, production, and pharmaceutical effects of kombucha beverage: A complementary and alternative medicine. Evid. Based Complement Alternat Med [Internet]. 2020;4397543. Available from: https://onlinelibrary.wiley.com/doi/10.1155/2020/4397543. DOI: https://doi.org/10.1155/2020/4397543.
- Sharma R, Diwan B, Singh BP, Kulshrestha S. Probiotic fermentation of polyphenols: Potential sources of novel functional foods. FPPN [Internet]. 2022;4:21. Available from: https://fppn.biomedcentral.com/articles/10.1186/s43014-022-00101-4. DOI: https://doi.org/10.1186/s43014-022-00101-4.
- Zhou D-D, Saimaiti A, Luo M, Huang S-Y, Xiong R-G, Shang A, et al. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in kombucha beverages. Antioxidants [Internet]. 2022;11(1):155. Available from: https://www.mdpi.com/2076-3921/11/1/155. DOI: https://doi.org/10.3390/antiox11010155.
- Saeed M, Khan MS, Kamboh AA, Alagawany M, Khafaga AF, Noreldin AE, et al. L-theanine: An astounding sui generis amino acid in poultry nutrition. Poult Sci [Internet]. 2020;99(11):5625–36. Available from: https://www.sciencedirect.com/science/article/pii/S0032579120304855?via%3Dihub. DOI: https://doi.org/10.1016/j.psj.2020.07.016.
- Jakubczyk K, Kałduńska J, Kochman J, Janda K. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants [Internet]. 2020;9(5):447. Available from: https://www.mdpi.com/2076-3921/9/5/447. DOI: https://doi.org/10.3390/antiox9050447.
- Silva Júnior JC, Mafaldo ÍM, Brito IL, Cordeiro AMTM. Kombucha: Formulation, chemical composition, and therapeutic potentialities. Curr Res Food Sci [Internet]. 2022;5:360–5. https://doi.org/10.1016/j.crfs.2022.01.023.
- Bishop P, Pitts ER, Budner D, Thompson-Witrick KA. Chemical composition of kombucha. Beverages [Internet]. 2022;8(3):45. Available from: https://www.mdpi.com/2306-5710/8/3/45. DOI: https://doi.org/10.3390/beverages8030045.
- Oliveira JT, Costa FM, Silva TG, Simões GD, Pereira ES, Costa PQ, et al. Green tea and kombucha characterization: Phenolic composition, antioxidant capacity and enzymatic inhibition potential. Food Chem [Internet]. 2023;408:135206. Available from: https://www.sciencedirect.com/science/article/pii/S0308814622031685?via%3Dihub. DOI: https://doi.org/10.1016/j.foodchem.2022.135206.
- Tapias YAR, Monte MV, Peltzer MA, Salvay AG. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chem [Internet]. 2022;372:131346. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0308814621023529?via%3Dihub. DOI: https://doi.org/10.1016/j.foodchem.2021.131346.
- Leal JM, Suárez LV, Jayabalan R, Oros JH, Escalante-Aburto A. A review on health benefits of kombucha nutritional compounds and metabolites. CYTA - J Food [Internet]. 2018;16(1):390–9. Available from: https://www.tandfonline.com/doi/full/10.1080/19476337.2017.1410499. DOI: https://doi.org/10.1080/19476337.2017.1410499.
- Villarreal-Soto SA, Bouajila J, Pace M, Leech J, Cotter PD, Souchard J-P, et al. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int J Food Microbiol [Internet]. 2020;333:108778. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0168160520302725?via%3Dihub. DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108778.
- Soares MG, Lima M, Schmidt VCR. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends Food Sci Technol [Internet]. 2021;110:539–50. Available from https://www.sciencedirect.com/science/article/abs/pii/S0924224421001187?via%3Dihub. DOI: https://doi.org/10.1016/j.tifs.2021.02.017.
- Kaashyap M, Cohen M, Mantri N. Microbial diversity and characteristics of Kombucha as revealed by metagenomic and physicochemical analysis. Nutrients [Internet]. 2021;13(12):4446. Available from: https://www.mdpi.com/2072-6643/13/12/4446. DOI: https://doi.org/10.3390/nu13124446.
- Wang B, Rutherfurd-Markwick K, Zhang X-X, Mutukumira AN. Kombucha: Production and microbiological research. Foods. 2022;11(21):3456. Available from: https://www.mdpi.com/2304-8158/11/21/3456. DOI: https://doi.org/10.3390/foods11213456.
- Antolak H, Piechota D, Kucharska A. Kombucha tea-a double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants [Internet]. 2021;10(10):1541. Available from: https://www.mdpi.com/2076-3921/10/10/1541. DOI: https://doi.org/10.3390/antiox10101541.
- Tran T, Roullier-Gall C, Verdier F, Martin A, Schmitt-Kopplin P, Alexandre H, et al. Microbial interactions in Kombucha through the lens of metabolomics. Metabolites [Internet]. 2022;12(3):235. Available from: https://www.mdpi.com/2218-1989/12/3/235. DOI: https://doi.org/10.3390/metabo12030235.
- Volschenk H, van Vuuren HJJ, Viljoen-Bloom M. Malo-ethanolic fermentation in Saccharomyces and Schizosaccharomyces. Curr Genet [Internet]. 2003;43:379–91. Available from: https://link.springer.com/article/10.1007/s00294-003-0411-6. DOI: https://doi.org/10.1007/s00294-003-0411-6.
- Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose: Fermentative production and applications. Food Technol Biotech [Internet]. 2009;47(2):107–24. Available from: https://tinyurl.com/3tx6nrnd.
- Raspor P, Goranovič D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol [Internet]. 2008;28(2):101–24. Available from: https://www.tandfonline.com/doi/full/10.1080/07388550802046749. DOI: https://doi.org/10.1080/07388550802046749.
- Mamlouk D, Gullo M. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J Microbiol [Internet]. 2013;53(4):377–84. Available from: https://link.springer.com/article/10.1007/s12088-013-0414-z. DOI: https://doi.org/10.1007/s12088-013-0414-z.
- He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative fermentation of acetic acid bacteria and its products. Front Microbiol [Internet]. 2022;13:879246. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.879246/full. DOI: https://doi.org/10.3389/fmicb.2022.879246.
- Teran MM, LeBlanc AM, Giori GS, LeBlanc JG. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Appl Microbiol Biotechnol [Internet]. 2021;105(5):2097–107. Available from: https://link.springer.com/article/10.1007/s00253-021-11148-7. DOI: https://doi.org/10.1007/s00253-021-11148-7.
- Burgess CM, Smid EJ, Rutten G, van Sinderen D. A general method for selection of riboflavin-overproducing food grade micro-organisms. MIC [Internet]. 2006;5(24). Available from: https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-5-24. DOI: https://doi.org/10.1186/1475-2859-5-24.
- LeBlanc JG, Laiño JE, Valle MJ, Vannini V, van Sinderen D, Taranto MP, et al. B‐Group vitamin production by lactic acid bacteria - current knowledge and potential applications. Journal of Applied Microbiology. 2011;111(6):1297–309. Available from: https://academic.oup.com/jambio/article-abstract/111/6/1297/6715495?redirectedFrom=fulltext. DOI: https://doi.org/10.1111/j.1365-2672.2011.05157.x.
- Hossain KS, Amarasena S, Mayengbam S. B vitamins and their roles in gut health. Microorganisms [Internet]. 2022;10(6):1168. Available from: https://www.mdpi.com/2076-2607/10/6/1168. DOI: https://doi.org/10.3390/microorganisms10061168.
- Nascimento FX, Torres CAV, Freitas F, Reis MAM, Crespo MTB. Functional and genomic characterization of Komagataeibacter uvaceti FXV3, a multiple stress resistant bacterium producing increased levels of cellulose. Biotechnology Reports [Internet]. 2021;30:e00606. Available from: https://www.sciencedirect.com/science/article/pii/S2215017X21000229?via%3Dihub. DOI: https://doi.org/10.1016/j.btre.2021.e00606.
- Avcioglu NH. Bacterial cellulose: Recent progress in production and industrial applications. World J Microbiol Biotechnol [Internet]. 2022;38(86). Available from: https://link.springer.com/article/10.1007/s11274-022-03271-y. DOI: https://doi.org/10.1007/s11274-022-03271-y.
- Singhania RR, Patel AK, Tseng Y-S, Kumar V, Chen C-W, Haldar D, et al. Developments in bioprocess for bacterial cellulose production. Bioresour Technol [Internet]. 2022;344:126343. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0960852421016850?via%3Dihub. DOI: https://doi.org/10.1016/j.biortech.2021.126343.
- Laureys D, Britton SJ, Clippeleer J. Kombucha tea fermentation: A review. J Am Soc Brew Chem [Internet]. 2020;78(3):165–74. Available from: https://www.tandfonline.com/doi/full/10.1080/03610470.2020.1734150. DOI: https://doi.org/10.1080/03610470.2020.1734150.
- Amarasinghe H, Weerakkody NS, Waisundara VY. Evaluation of physicochemical properties and antioxidant activities of Kombucha “Tea Fungus” during extended periods of fermentation. Food sci nutr [Internet]. 2018;6(3):659–65. Available from: https://onlinelibrary.wiley.com/doi/10.1002/fsn3.605. DOI: https://doi.org/10.1002/fsn3.605.
- Ebersole B, Liu Y, Schmidt R, Eckert M, Brown PN. Determination of ethanol in Kombucha products: Single-laboratory validation, First Action 2016.12. J AOAC Int [Internet]. 2017;100(3):732–6. Available from: https://academic.oup.com/jaoac/article/100/3/732/5654223. DOI: https://doi.org/10.5740/jaoacint.16-0404.
- Najafpour A, Khorrami AR, Azar PA, Tehrani MS. Study of heavy metals biosorption by tea fungus in Kombucha drink using Central Composite Design. J Food Compos Anal [Internet]. 2020;86:103359. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0889157519304843?via%3Dihub. DOI: https://doi.org/10.1016/j.jfca.2019.103359.
- Valadez-Vega C, Zúñiga-Pérez C, Quintanar-Gómez S, Morales-González JA, Madrigal-Santillán E, Villagómez-Ibarra JR, et al. Lead, Cadmium and Cobalt (Pb, Cd, and Co) leaching of glass-clay containers by pH effect of food. Int J Mol Sci [Internet]. 2011;12(4):2336–50. Available from: https://www.mdpi.com/1422-0067/12/4/2336. DOI: https://doi.org/10.3390/ijms12042336.
- Fatunsin OT, Adeyeye OF, Olayinka KO, Oluseyi TO. Effect of pH on the leaching of potentially toxic metals from different types of used cooking pots. JNSPS [Internet]. 2022;4:712. Available from: https://journal.nsps.org.ng/index.php/jnsps/article/view/712. DOI: https://doi.org/10.46481/jnsps.2022.712.
- Nunamaker EA, Otto KJ, Artwohl JE, Fortman JD. Leaching of heavy metals from water bottle components into the drinking water of rodents. J Am Assoc Lab Anim Sci [Internet]. 2013;52(1):22–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548197/.
- Cheng X, Shi H, Adams CD, Ma Y. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments. Environ Sci Pollut Res Int [Internet]. 2010;17:1323–30. Available from: https://link.springer.com/article/10.1007/s11356-010-0312-4. DOI: https://doi.org/10.1007/s11356-010-0312-4.
- Wang Y, Qian H. Phthalates and their impacts on human health. Healthcare [Internet]. 2021;9(5):603. Available from: https://www.mdpi.com/2227-9032/9/5/603. DOI: https://doi.org/10.3390/healthcare9050603.
- Annamalai J, Namasivayam V. Determination of effect of pH and storage temperature on leaching of phthalate esters from plastic containers by ultrasound-assisted dispersive liquid-liquid micro-extraction. J Food Meas Charact [Internet]. 2017;11:2222–2. Available from: https://link.springer.com/article/10.1007/s11694-017-9607-1. DOI: https://doi.org/10.1007/s11694-017-9607-1.
- Rastkari N, Jeddi MZ, Yunesian M, Ahmadkhaniha R. The effect of storage time, temperature and type of packaging on release of phthalate ester into packed acidic liquids. Food Technol Biotech [Internet]. 2017;55(4):562–9. Available from: DOI: https://doi.org/10.17113/ftb.55.04.17.5128.
- Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philos Trans R Soc B [Internet]. 2009;364(1526):2097–113. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2008.0268. DOI: https://doi.org/10.1098/rstb.2008.0268.
- Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical review on the presence of phthalates in food and evidence of their biological impact. Int J Environ Res Public Health [Internet]. 2020;17(16):5655. Available from: https://www.mdpi.com/1660-4601/17/16/5655. DOI: https://doi.org/10.3390/ijerph17165655.
- Eales J, Bethel A, Galloway T, Hopkinson P, Morrissey K, Short RE, et al. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ Int [Internet]. 2022;158:106903. Available from: https://www.sciencedirect.com/science/article/pii/S0160412021005286?via%3Dihub. DOI: https://doi.org/10.1016/j.envint.2021.106903.
- Lucas A, Hermann S, Lucas M. The role of endocrine-disrupting phthalates and bisphenols in cardiometabolic disease: the evidence is mounting. Curr Opin Endocrinol Diabetes Obes [Internet]. 2022;29(2):87–94. Available from: https://journals.lww.com/co-endocrinology/fulltext/2022/04000/the_role_of_endocrine_disrupting_phthalates_and.3.aspx. DOI: https://doi.org/10.1097/MED.0000000000000712.
- Mukherjee AG, Wanjari UR, Eladl MA, Eladl MA, El-Sherbiny M, Elsherbini DMA, Sukumar A, et al. Mixed Contaminants: Occurrence, interactions, toxicity, detection, and remediation. Molecules [Internet]. 2022;27(8):2577. Available from: https://www.mdpi.com/1420-3049/27/8/2577. DOI: https://doi.org/10.3390/molecules27082577.
- Vorobyeva VM, Vorobyeva IS, Sarkisyan VA, Frolova YV, Kochetkova AA. Technological features of fermented beverages production using kombucha. Vopr Pitan [Internet]. 2022;91(4):115–20. Available from: https://www.voprosy-pitaniya.ru/ru/jarticles_diet/982.html?SSr=0501348bf712ffffffff27c__07e609130c052c-7994. DOI: https://doi.org/10.33029/0042-8833-2022-91-4-115-120.
- Takamatsu H, Watabe K. Assembly and genetics of spore protective structures. Cell Mol Life Sci [Internet]. 2002;59(3):434–44. Available from: https://link.springer.com/article/10.1007/s00018-002-8436-4. DOI: https://doi.org/10.1007/s00018-002-8436-4.
- Koopman N, Remijas L, Seppen J, Setlow P, Brul S. Mechanisms and applications of bacterial sporulation and germination in the intestine. Int J Mol Sci [Internet]. 2022;23(6):3405. Available from: https://www.mdpi.com/1422-0067/23/6/3405. DOI: https://doi.org/10.3390/ijms23063405.
- Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and germination in clostridial pathogens. Microbiol Spectr [Internet]. 2019;7(6). Available from: https://pubmed.ncbi.nlm.nih.gov/31858953/. DOI: https://doi.org/10.1128/microbiolspec.gpp3-0017-2018.
- Evanowski RL, Kent DJ, Wiedmann M, Martin NH. Milking time hygiene interventions on dairy farms reduce spore counts in raw milk. JDS [Internet]. 2020;103(5):4088–99. Available from: https://www.journalofdairyscience.org/article/S0022-0302(20)30208-3/fulltext. DOI: https://doi.org/10.3168/jds.2019-17499.
- Sadjadi J. Cutaneous anthrax associated with the Kombucha “mushroom” in Iran. JAMA [Internet]. 1998;280(18):1567–8. Available from: https://pubmed.ncbi.nlm.nih.gov/9820255/. DOI: https://doi.org/10.1001/jama.280.18.1567.
- Bromley AL. Food safety and functionality assessment of kombucha systems through bacillus cereus spore and probiotic inoculations. 2021. Available from: https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4556&context=etd.
- Sreeramulu G, Zhu Y, Knol W. Kombucha fermentation and its antimicrobial activity. J Agric Food Chem [Internet]. 2000;48(6):2589–94. Available from: https://pubs.acs.org/doi/10.1021/jf991333m. DOI: https://doi.org/10.1021/jf991333m.
- Kaewkod T, Bovonsombut S, Tragoolpua Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms [Internet]. 2019;7(12):700. Available from: https://www.mdpi.com/2076-2607/7/12/700. DOI: https://doi.org/10.3390/microorganisms7120700.
- Al-Mohammadi AR, Ismaiel AA, Ibrahim RA, Moustafa AH, Zeid AA, Enan G. Chemical constitution and antimicrobial activity of kombucha fermented beverage. Molecules [Internet]. 2021;26(16):5026. Available from: https://www.mdpi.com/1420-3049/26/16/5026. DOI: https://doi.org/10.3390/molecules26165026.
- Ulusoy A, Tamer CE. Determination of suitability of black carrot (Daucus carota L. spp. sativus var. atrorubens Alef.) juice concentrate, cherry laurel (Prunus laurocerasus), blackthorn (Prunus spinosa) and red raspberry (Rubus ideaus) for kombucha beverage production. J Food Meas Charact [Internet]. 2019;13(2):1524–36. Available from: https://link.springer.com/article/10.1007/s11694-019-00068-w. DOI: https://doi.org/10.1007/s11694-019-00068-w.
- Kleschevnikova VV, Zlepkina NA, Skorokhodov EA, Gorbunov AV, Avoyan IA, Chuchunov VA. The kombucha infusion use prospects in as an environmentally friendly food product. IOP Conf Ser Earth Environ Sci [Internet]. 2022;965(1):012040. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/965/1/012040. DOI: https://doi.org/10.1088/1755-1315/965/1/012040.
- Miranda JF, Ruiz LF, Silva CB, Uekane TM, Silva KA, Gonzalez AGM, et al. Kombucha: A review of substrates, regulations, composition, and biological properties. J Food Sci [Internet]. 2022;87(2):503–27. Available from: https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.16029. DOI: https://doi.org/10.1111/1750-3841.16029.
- Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard J-P, Taillandier P. Understanding kombucha tea fermentation: A review. J Food Sci [Internet]. 2018;83(3):580–8. Available from: https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.14068. DOI: https://doi.org/10.1111/1750-3841.14068.
- Tan WC, Muhialdin BJ, Hussin ASM. Influence of storage conditions on the quality, metabolites, and biological activity of soursop (Annona muricata. L.) kombucha. Front Microbiol [Internet]. 2020;4(11):603481. Available from: https://pubmed.ncbi.nlm.nih.gov/33343546/. DOI: https://doi.org/10.3389/fmicb.2020.603481.
- Neffe-Skocińska K, Sionek B, Ścibisz I, Kołożyn-Krajewska D. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CYTA - J Food [Internet]. 2017;15(4):601–7. Available from: https://www.tandfonline.com/doi/full/10.1080/19476337.2017.1321588. DOI: https://doi.org/10.1080/19476337.2017.1321588.
- Jakubczyk K, Kałduńska J, Kochman J, Janda K. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants [Internet]. 2020;9(5):447. Available from: https://www.mdpi.com/2076-3921/9/5/447. DOI: https://doi.org/10.3390/antiox9050447.
- Sun T-Y, Li J-S, Chen C. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. JFDA [Internet]. 2015;23(4):709–18. Available from: https://www.sciencedirect.com/science/article/pii/S1021949815000381?via%3Dihub. DOI: https://doi.org/10.1016/j.jfda.2015.01.009.
- Zubaidah E, Yurista S, Rahmadani NR. Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples. IOP Conf Ser Earth Environ Sci [Internet]. 2018;131:012040. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/131/1/012040. DOI: https://doi.org/10.1088/1755-1315/131/1/012040.
- Abaci N, Deniz FSS, Orhan IE. Kombucha – An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chem: X [Internet]. 2022;14:100302. Available from: https://www.sciencedirect.com/science/article/pii/S2590157522001006?via%3Dihub. DOI: https://doi.org/10.1016/j.fochx.2022.100302.
- Laavanya D, Shirkole S, Balasubramanian P. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. J Clean Prod [Internet]. 2021;295:126454. Available from: Available from: https://www.sciencedirect.com/science/article/abs/pii/S0959652621006740?via%3Dihub. DOI: https://doi.org/10.1016/j.jclepro.2021.126454.
- Perron AD, Patterson JA, Yanofsky NN. Kombucha "mushroom" hepatotoxicity. Ann Emerg Med [Internet]. 1995;26(5):660–1. Available from: https://www.annemergmed.com/article/S0196-0644(95)70028-5/abstract. DOI: https://doi.org/10.1016/s0196-0644(95)70028-5.
- CDC - Centers for Disease Control and Prevention. Unexplained severe illness possibly associated with consumption of kombucha tea-Iowa, 1995. JAMA [Internet]. 1996;275(2):96–8. Available from: https://jamanetwork.com/journals/jama/article-abstract/393707. DOI: https://doi.org/10.1001/jama.1996.03530260010005.
- Srinivasan R, Smolinske S, Greenbaum D. Probable gastrointestinal toxicity of kombucha tea. J Gen Intern Med [Internet]. 1997;12:643–4. Available from: https://link.springer.com/article/10.1046/j.1525-1497.1997.07127.x. DOI: https://doi.org/10.1046/j.1525-1497.1997.07127.x.
- Phan TG, Estell J, Duggin G, Beer I, Smith D, Ferson MJ. Lead poisoning from drinking Kombucha tea brewed in a ceramic pot. Med J Aust [Internet]. 1998;169:644–6. Available from: https://onlinelibrary.wiley.com/doi/abs/10.5694/j.1326-5377.1998.tb123448.x. DOI: https://doi.org/10.5694/j.1326-5377.1998.tb123448.x.
- Kole AS, Jones HD, Christensen R, Gladstein J. A case of kombucha tea toxicity. J Intensive Care Med [Internet]. 2009;24(3):205–7. Available from: https://journals.sagepub.com/doi/10.1177/0885066609332963. DOI: https://doi.org/10.1177/0885066609332963.
- Gamundi R, Valdivia M. The Kombucha mushroom: two different opinions. Sidahora. 1995;34–5.
- Kovacevic Z, Davidovic G, Vuckovic-Filipovic J, Janicijevic-Petrovic MA, Janicijevic K, Popovic A. A toxic hepatitis caused the kombucha tea - case report. Open Access Maced J Med Sci [Internet]. 2014;2(1). Available from: DOI: https://doi.org/10.3889/oamjms.2014.023.
- Holbourn A, Hurdman J. Kombucha: is a cup of tea good for you? BMJ Case Rep [Internet]. 2017: :bcr2017221702. Available from: https://casereports.bmj.com/content/2017/bcr-2017-221702 DOI: http://dx.doi.org/10.1136/bcr-2017-221702.
- Sannapaneni S, Philip S, Desai A, Mitchell J, Feldman M. Kombucha-induced massive hepatic necrosis: a case report and a review of literature. GHA [Internet]. 2023;2(2):196–8. Available from: https://www.ghadvances.org/article/S2772-5723(22)00166-2/fulltext. DOI: https://doi.org/10.1016/j.gastha.2022.09.014.
- Caldwell JP, Kim ND. The response of the Intoxilyzer 5000® to five potential interfering substances. J Forensic Sci [Internet]. 1997;42(6):1080–7. Available from: https://asmedigitalcollection.asme.org/forensicsciences/article-abstract/42/6/1080/1184051/The-Response-of-the-Intoxilyzer-5000R-to-Five?redirectedFrom=fulltext. DOI: https://doi.org/10.1520/JFS14264J.
- Lewis JH, Kleiner DE. 13 - Hepatic injury due to drugs, herbal compounds, chemicals and toxins. MacSween’s Pathology of the Liver (Sixth Edition) [Internet]. 2012;645–760. Available from: https://www.sciencedirect.com/science/article/abs/pii/B9780702033988000131?via%3Dihub. DOI: https://doi.org/10.1016/B978-0-7020-3398-8.00013-1.
- Han D, Matsumaru K, Rettori D, Kaplowitz N. Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol [Internet]. 2004;67(3):439–51. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006295203007688?via%3Dihub. DOI: https://doi.org/10.1016/j.bcp.2003.09.032.
- Seeff L, Stickel F, Navarro VJ. Chapter 35 - Hepatotoxicity of herbals and dietary supplements. Drug-Induced Liver Disease (Third Edition) [Internet]. 2013;631–57. Available from: https://www.sciencedirect.com/science/article/abs/pii/B9780123878175000352?via%3Dihub. DOI: https://doi.org/10.1016/B978-0-12-387817-5.00035-2.
- Sanchez W, Maple JT, Burgart LJ, Kamath PS. Severe hepatotoxicity associated with use of a dietary supplement containing usnic acid. Mayo Clin Proc [Internet]. 2006;81(4):P541–4. Available from: https://www.mayoclinicproceedings.org/article/S0025-6196(11)61903-4/fulltext. DOI: https://doi.org/10.4065/81.4.541.
- Wang H, Xuan M, Huang C, Wang C. Advances in research on bioactivity, toxicity, metabolism, and pharmacokinetics of usnic acid in vitro and in vivo. Molecules [Internet]. 2022;27(21):7469. Available from: https://www.mdpi.com/1420-3049/27/21/7469. DOI: https://doi.org/10.3390/molecules27217469.
- La Torre C, Fazio A, Caputo P, Plastina P, Caroleo MC, Cannataro R, Cione E. Effects of long-term storage on radical scavenging properties and phenolic content of kombucha from black tea. Molecules [Internet]. 2021;26(18):5474. Available from: https://www.mdpi.com/1420-3049/26/18/5474. DOI: https://doi.org/10.3390/molecules26185474.
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Segurança Alimentar e Nutricional