Resumo
Introdução e Objetivo. Este artigo apresenta uma revisão da literatura dos últimos 50 anos da área de Paleobotânica molecular, com o objetivo de investigar a frequência de ocorrência de biomateriais remanescentes no registro fóssil dos vegetais ou de seus subprodutos no tempo profundo. Metodologia e Resultados. Os resultados identificaram 53 artigos que descrevem a recuperação de um amplo espectro de biomoléculas, agrupadas em três classes distintas: biomacromoléculas lábeis, biomacromoléculas estáveis e biomarcadores. Em geral, a presença da composição bioquímica original é considerada geológica, geográfica e taxonomicamente distribuída, nas rochas fanerozoicas, com os grupos taxonômicos Gimnospermae e Angiospermae apresentando a maior quantidade de relatos. Conclusão. O corpus de pesquisa revela ainda que as técnicas predominantes nos estudos são as microscópicas (MEV, TEM) e as de análise química, incluindo as cromatográficas e espectroscópicas (GC-MS, Py-GC/MS, FTIR), sugerindo que, à medida que a tecnologia avança, as descobertas de biomoléculas associadas a fósseis vegetais tenderão a ser mais frequentes.
Referências
Abdelhady, A. A., Seuss, B., Jain, S., Fathy, D., Sami, M., Ali, A., ... & Hussain, A. M. (2024). Molecular technology in paleontology and paleobiology: Applications and limitations. Quaternary International, 685, 24-38. doi: https://doi.org/10.1016/j.quaint.2024.01.006.
Alves, E. F., & Machado, M. F. (2020). Perspectivas atuais sobre tecidos moles não mineralizados em fósseis de dinossauros não avianos. Terræ Didatica, 16, e020028. doi: https://doi.org/10.20396/td.v16i0.8659539.
Alves, E. F., & Machado, M. F. (2021a). Proposta de Plano de Aula sobre Paleontologia Molecular para inserção em disciplina de Paleontologia de cursos de graduação em Ciências Biológicas. Pesquisa e Ensino em Ciências Exatas e da Natureza, 5, e1695. doi: https://doi.org/10.29215/pecen.v5i0.1695.
Alves, E. F., & Machado, M. F. (2021b). Frequência de preservação de biomateriais não mineralizados no registro fóssil de répteis mesozoicos: uma abordagem sobre pterossauros e répteis marinhos. Brazilian Journal of Development, 7(5), 44797-44821. doi: https://doi.org/10.34117/bjdv7n5-076.
Alves, E. F., & Machado, M. F. (2021c). Preservação excepcional de biomateriais não mineralizados em fósseis do clado Avialae. Anuário do Instituto de Geociências, 44. doi: https://doi.org/10.11137/1982-3908_2021_44_37908.
Anderson, K. B., & Winans, R. E. (1991). Nature and fate of natural resins in the geosphere. I. Evaluation of pyrolysis-gas chromatography mass spectrometry for the analysis of natural resins and resinites. Analytical Chemistry, 63(24), 2901-2908. doi: https://doi.org/10.1021/ac00024a019.
Beck, C. W., Wilbur, E., & Meret, S. (1964). Infra-Red Spectra and the Origin of Amber. Nature, 201(4916), 256-257. doi: https://doi.org/10.1038/201256a0.
Benton, M. J., Wilf, P., & Sauquet, H. (2022). The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytologist, 233(5), 2017-2035. doi: https://doi.org/10.1111/nph.17822.
Bomfleur, B., McLoughlin, S., & Vajda, V. (2014). Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science, 343(6177), 1376-1377. doi: https://doi.org/10.1126/science.1249884.
Boon, J. J., Stout, S. A., Genuit, W., & Spackman, W. (1989). Molecular paleobotany of Nyssa endocarps. Acta Botanica Neerlandica, 38(4), 391-404. doi: https://doi.org/10.1111/j.1438-8677.1989.tb01371.x.
Branco, P. M. (2014). Carvão Mineral. Rio de Janeiro: CPRM/SGB. URL: https://www.sgb.gov.br/carvao-mineral. Acesso 19.09.2024.
Briggs, D. E. (1999). Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1379), 7-17. doi: https://doi.org/10.1098/rstb.1999.0356.
Briggs, D. E. G., Evershed, R. P., & Lockheart, M. J. (2000). The Biomolecular Paleontology of Continental Fossils. Paleobiology, 26(4), 169-193. doi: https://doi.org/10.1017/S0094837300026920.
Bunkin, A. F., Pershin, S. M., Artemova, D. G., Gudkov, S. V., Gomankov, A. V., Sdvizhenskii, P. A., Grishin, M.Y., &Lednev, V. N. (2022). Fossil Plant Remains Diagnostics by Laser-Induced Fluorescence and Raman Spectroscopies. Photonics,10(1), 15. doi: https://doi.org/10.3390/photonics10010015.
Colleary, C., O’Reilly, S., Dolocan, A., Toyoda, J. G., Chu, R. K., Tfaily, M. M., ... & Nesbitt, S. J. (2022). Using Macro-and Microscale Preservation in Vertebrate Fossils as Predictors for Molecular Preservation in Fluvial Environments. Biology, 11(9), 1304. doi: https://doi.org/10.3390/biology11091304.
Collins, L. W., Rohar, P. C., Veloski, G. A., Mahlberg, P. G., Haubold, H., & White, C. M. (1995). Identification of polycyclic hydrocarbons in fossilized latex from brown coal. Polycyclic Aromatic Compounds, 7(4), 223-230. doi: https://doi.org/10.1080/10406639508009626.
Collinson, M. E., Van Bergen, P. F., Scott, A. C., & De Leeuw, J. W. (1994). The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plants. Geological Society, London, Special Publications, 77(1), 31-70. doi: https://doi.org/10.1144/GSL.SP.1994.077.01.03.
Corwin, A. H. (1959). Petroporphyrins. In 5th World Petroleum Congress (pp. 119-129, paper V-10). URL: https://onepetro.org/WPCONGRESS/proceedings-abstract/WPC05/All-WPC05/WPC-8410/203399. Acesso 19.09.2024.
Diaz, M. A. L., D'Angelo, J. A., Del Fueyo, G. M., & Carrizo, M. A. (2020). FTIR spectroscopic features of the pteridosperm Ruflorinia orlandoi and host rock (Springhill Formation, Lower Cretaceous, Argentina). Journal of South American Earth Sciences, 99, 102520. doi: https://doi.org/10.1016/j.jsames.2020.102520.
Dilcher, D. L., Pavlick, R. J., & Mitchell, J. (1970). Chlorophyll derivatives in Middle Eocene sediments. Science, 168(3938), 1447-1449. doi: https://doi.org/10.1126/science.168.3938.1447.
Drzewicz, P., Natkaniec-Nowak, L., & Czapla, D. (2016). Analytical approaches for studies of fossil resins. TrAC Trends in Analytical Chemistry, 85, 75-84. doi: https://doi.org/10.1016/j.trac.2016.06.022.
Eglinton, G., & Calvin, M. (1967). Chemical fossils. Scientific American, 216(1), 32-43. URL: https://www.jstor.org/stable/24931372. Acesso 19.09.2024.
Ewbank, G., Edwards, D., & Abbott, G. D. (1996). Chemical characterization of Lower Devonian vascular plants. Organic Geochemistry, 25(8), 461-473. doi: https://doi.org/10.1016/S0146-6380(96)00140-4.
Gaia, G., Ribeiro, V. R., Ghilardi, R. P., Sousa, F. N., Llopart, M. P., & Ricardi-Branco, F. (2023). Chemical and elementary characterization of Spongiophyton nanum: Understanding the phylogeny, paleoenvironment, and fossilization processes of an enigmatic flora. Review of Palaeobotany and Palynology, 316, 104943. doi: https://doi.org/10.1016/j.revpalbo.2023.104943.
Galletti, G. C., & Bocchini, P. (1995). Pyrolysis/gas chromatography/mass spectrometry of lignocellulose. Rapid communications in mass spectrometry, 9(9), 815-826. doi: https://doi.org/10.1002/rcm.1290090920.
Giannasi, D. E., & Niklas, K. J. (1977). Flavonoid and other chemical constituents of fossil Miocene Celtis and Ulmus (Succor Creek Flora). Science, 197(4305), 765-767. doi: https://doi.org/10.1126/science.197.4305.765.
Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., & Zurawski, G. (1990). Chloroplast DNA sequence from a Miocene Magnolia species. Nature, 344(6267), 656-658. doi: https://doi.org/10.1038/344656a0.
Gomes, W. A., Machado, M. F., & Alves, E. F. (2022). Exceptional preservation of nonmineralized biomaterials in Cenozoic fossils of the Mammalia clade. Research, Society and Development, 11(14), e533111436739-e533111436739. doi: http://dx.doi.org/10.33448/rsd-v11i14.36739.
Gupta, N. S. (2015). Plant biopolymer–geopolymer: organic diagenesis and kerogen formation. Frontiers in Materials, 2, 61. doi: https://doi.org/10.3389/fmats.2015.00061.
ICS, International Commission on Stratigraphy, (v2023/04). (2023). International Chronostratigraphic Chart. IUGS. URL: https://stratigraphy.org/ICSchart/ChronostratChart2023-04BRPortuguese.pdf. Acesso 19.09.2024.
Kellner, A. (2015). Apresentação: para onde caminha a paleontologia brasileira?. Ciência e Cultura, 67(4), 20-24. doi: http://dx.doi.org/10.21800/2317-66602015000400009.
Kellner, A. W., & Soares, M. B. (2019). EDITORIAL NOTE: Collection of Paleontology Papers in honor of the Centenary of the Brazilian Academy of Sciences. Anais da Academia Brasileira de Ciências, 91(suppl 2), e20191434. doi: https://doi.org/10.1590/0001-3765201920191434.
Kim, S., Soltis, D. E., Soltis, P. S., & Suh, Y. (2004). DNA sequences from Miocene fossils: an ndhF sequence of Magnolia latahensis (Magnoliaceae) and an rbcL sequence of Persea pseudocarolinensis (Lauraceae). American Journal of Botany, 91(4), 615-620. doi: https://doi.org/10.3732/ajb.91.4.615.
Koller, B., Schmitt, J. M., & Tischendorf, G. (2005). Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber. Proceedings of the Royal Society B: Biological Sciences, 272(1559), 121-126. doi: https://doi.org/10.1098/rspb.2004.2939.
Kumar, D., & Kumar, D. (2016). Evaluation of Coking Coal Resources and Reserves. Management of Coking Coal Resources, 61-112. doi: https://doi.org/10.1016/B978-0-12-803160-5.00003-4.
Langenheim, J. H., & Beck, C. W. (1968). Catalogue of Infrared spectra of fossil resins (ambers): l-North and South America. Botanical Museum Leaflets Harvard University, 22(3), 65-120. doi: https://doi.org/10.5962/p.168367.
Locatelli, E. R. (2014). The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record. The Paleontological Society Papers, 20, 237-258. doi: https://doi.org/10.1017/S1089332600002874.
Liu, F., Bomfleur, B., Peng, H., Li, Q., Kerp, H., & Zhu, H. (2018). 280-my-old fossil starch reveals early plant-animal mutualism. Geology, 46(5), 423-426. doi: https://doi.org/10.1130/G39929.1.
Lönartz, M. I., McCoy, V. E., Gee, C. T., & Geisler, T. (2023). Palaeoenvironmental conditions for the natural vulcanization of the Eocene “monkeyhair” laticifers from Geiseltal, Germany, as elucidated by Raman spectroscopy. Palaeobiodiversity and Palaeoenvironments, 1-13. doi: https://doi.org/10.1007/s12549-022-00566-8.
Marynowski, L., Bucha, M., Lempart-Drozd, M., Stępień, M., Kondratowicz, M., Smolarek-Lach, J., ... & Simoneit, B. R. (2021). Preservation of hemicellulose remnants in sedimentary organic matter. Geochimica et Cosmochimica Acta, 310, 32-46. doi: https://doi.org/10.1016/j.gca.2021.07.003.
Marynowski, L., Bucha, M., Smolarek, J., Wendorff, M., & Simoneit, B. R. (2018). Occurrence and significance of mono-, di-and anhydrosaccharide biomolecules in Mesozoic and Cenozoic lignites and fossil wood. Organic Geochemistry, 116, 13-22. doi: https://doi.org/10.1016/j.orggeochem.2017.11.008.
Marynowski, L., Goryl, M., Lempart-Drozd, M., Bucha, M., Majewski, M., Stępień, M., ... & Simoneit, B. R. (2023). Differences in hemicellulose composition and pectin detection in Eocene and Miocene xylites. Chemical Geology, 624, 121416. doi: https://doi.org/10.1016/j.chemgeo.2023.121416.
Marynowski, L., Otto, A., Zatoń, M., Philippe, M., & Simoneit, B. R. (2007). Biomolecules preserved in ca. 168 million year old fossil conifer wood. Naturwissenschaften, 94, 228-236. doi: https://doi.org/10.1007/s00114-006-0179-x.
Matsumura, W. M., Balzaretti, N. M., & Iannuzzi, R. (2016). Fourier transform infrared characterization of the Middle Devonian non vascular plant S pongiophyton. Palaeontology, 59(3), 365-386. doi: https://doi.org/10.1111/pala.12230.
McCoy, V. E., Boom, A., Wings, O., Wappler, T., Labandeira, C. C., & Gee, C. T. (2021). Fossilization of the Eocene “monkeyhair” laticifer tree from Geiseltal, Germany: A deeper understanding using micro-CT and pyrolysis GC/MS. Palaios, 36(1), 1-14. doi: https://doi.org/10.2110/palo.2020.052.
McLoughlin, S. (2021). Fossil plants: Gymnosperms. Encyclopedia of Geology, 2, 1-26.
Medeiros, P. M. (2018). Gas Chromatography-Mass Spectrometry (GC-MS). In: Encyclopedia of Geochemistry. 530-535.
Mösle, B., Finch, P., Collinson, M. E., & Scott, A. C. (1997). Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. Journal of Analytical and Applied Pyrolysis, 40, 585-597. doi: https://doi.org/10.1016/S0165-2370(97)00039-9.
Mösle, B., Collinson, M. E., Finch, P., Stankiewicz, B. A., Scott, A. C., & Wilson, R. (1998). Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry, 29(5-7), 1369-1380. doi: https://doi.org/10.1016/S0146-6380(98)00080-1.
Niklas, K. J. (1976). Chemical examinations of some non-vascular Paleozoic plants. Brittonia, 28, 113-137. doi: https://doi.org/10.2307/2805564.
Niklas, K. J., & Brown Jr, R. M. (1981). Ultrastructural and paleobiochemical correlations among fossil leaf tissues from the St. Maries River (Clarkia) area, northern Idaho, USA. American Journal of Botany, 68(3), 332-341. doi: https://doi.org/10.1002/j.1537-2197.1981.tb06370.x.
Niklas, K. J., & Gensel, P. G. (1976). Chemotaxonomy of some Paleozoic vascular plants. Part I: Chemical compositions and preliminary cluster analyses. Brittonia, 28, 353-378. doi: https://doi.org/10.2307/2805800.
Niklas, K. J., & Gensel, P. G. (1977). Chemotaxonomy of some Paleozoic vascular plants. Part II: Chemical characterization of major plant groups. Brittonia, 29, 100-111. doi: https://doi.org/10.2307/2805747.
Niklas, K. J., & Giannasi, D. E. (1977). Flavonoids and other chemical constituents of fossil Miocene Zelkova (Ulmaceae). Science, 196(4292), 877-878. doi: https://doi.org/10.1126/science.196.4292.877.
Niklas, K. J., & Gensel, P. G. (1978). Chemotaxonomy of some Paleozoic vascular plants. Part III. Cluster configurations and their bearing on taxonomic relationships. Brittonia, 30, 216-232. doi: https://doi.org/10.2307/2806656.
Niklas, K. J., & Giannasi, D. E. (1978). Angiosperm paleobiochemistry of the Succor Creek flora (Miocene) Oregon, USA. American Journal of Botany, 65(9), 943-952. doi: https://doi.org/10.1002/j.1537-2197.1978.tb06159.x.
Nip, M., Tegelaar, E. W., Brinkhuis, H., De Leeuw, J. W., Schenck, P. A., & Holloway, P. J. (1986). Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new, highly aliphatic and resistant biopolymer. Organic Geochemistry, 10(4-6), 769-778. doi: https://doi.org/10.1016/S0146-6380(86)80014-6.
Otto, A., Simoneit, B. R., & Wilde, V. (2007). Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Botanical Journal of the Linnean Society, 154(1), 129-140. doi: https://doi.org/10.1111/j.1095-8339.2007.00638.x.
Ozerov, I. A., Zhinkina, N. A., Efimov, A. M., Machs, E. M., & Rodionov, A. V. (2006). Feulgen-positive staining of the cell nuclei in fossilized leaf and fruit tissues of the Lower Eocene Myrtaceae. Botanical Journal of the Linnean Society, 150(3), 315-321. doi: https://doi.org/10.1111/j.1095-8339.2006.00471.x.
Ozerov, I. A., Zhinkina, N. A., Torshilova, A. A., Machs, E. M., Myakoshina, Y. A., & Rodionov, A. V. (2020). Use of DNA-specific stains as indicators of nuclei and extranuclear substances in leaf cells of the Middle Eocene Metasequoia from Arctic Canada. Review of Palaeobotany and Palynology, 279, 104211. doi: https://doi.org/10.1016/j.revpalbo.2020.104211.
Pańczak, J., Kosakowski, P., & Zakrzewski, A. (2023). Biomarkers in fossil resins and their palaeoecological significance. Earth-Science Reviews, 242, 104455. doi: https://doi.org/10.1016/j.earscirev.2023.104455.
Pereira, R., Carvalho, I. de S., & Azevedo, D. de A. (2006). Afinidades paleobotânicas de âmbares cretácicos das bacias do Amazonas, Araripe e Recôncavo. Geosciences= Geociências, 25(2), 217-224.
Pereira, R., Carvalho, I. de S., Fernandes, A. C. S., & Azevedo, D. de A. (2009b). Composição molecular e origem paleobotânica de âmbares da Bacia do Araripe, Formação Santana. Química Nova, 32, 1528-1533. doi: https://doi.org/10.1590/S0100-40422009000600032.
Pereira, R., Carvalho, I. de S., Simoneit, B. R. T., & Azevedo, D. de A. (2009a). Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recôncavo basins, Brazil. Organic Geochemistry, 40(8), 863-875. doi: https://doi.org/10.1016/j.orggeochem.2009.05.002.
Pereira, R., Carvalho, I. S., Fernandes, A. C. S., & Azevedo, D. A. (2011a). Composição molecular, aspectos quimiotaxonômicos e origem botânica de âmbares brasileiros. Revista Virtual de Química, 3(3), 145-158. doi: https://doi.org/10.5935/1984-6835.20110020.
Pereira, R., Carvalho, I. S., Fernandes, A. C. S., & Azevedo, D. A. (2011b). Chemotaxonomical aspects of lower Cretaceous amber from Recôncavo Basin, Brazil. Journal of the Brazilian Chemical Society, 22, 1511-1518. doi: https://doi.org/10.1590/S0103-50532011000800015.
Pereira, R., de Lima, F. J., Simbras, F. M., Bittar, S. M. B., Kellner, A. W. A., Saraiva, A. Á. F., ... & Oliveira, G. R. (2020). Biomarker signatures of Cretaceous Gondwana amber from Ipubi Formation (Araripe Basin, Brazil) and their palaeobotanical significance. Journal of South American Earth Sciences, 98, 102413. doi: https://doi.org/10.1016/j.jsames.2019.102413.
Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide (Vol. 1, second ed.). Cambridge university press. doi: https://doi.org/10.1017/CBO9780511524868.
Pico, Y., & Barcelo, D. (2020). Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics. TrAC Trends in Analytical Chemistry, 130, 115964. doi: https://doi.org/10.1016/j.trac.2020.115964.
Poinar, H. N., Cano, R. J., &Poinar Jr, G. O. (1993). DNA from an extinct plant. Nature, 363(6431), 677-677. doi: https://doi.org/10.1038/363677a0.
Rother, E. T. (2007). Revisión sistemática X Revisión narrativa. Acta paulista de enfermagem, 20(2), v-vi. doi: https://doi.org/10.1590/S0103-21002007000200001.
Rudall, P. J., & Bateman, R. M. (2007). Developmental bases for key innovations in the seed-plant microgametophyte. Trends in Plant Science, 12(7), 317-326. doi: https://doi.org/10.1016/j.tplants.2007.06.004.
Runnegar, B. (1986). Molecular palaeontology. Palaeontology, 29(1), 1-24. URL: https://www.palass.org/publications/palaeontology-journal/archive/29/1/article_pp1-24. Acesso 19.09.2024.
Sahil, K., Prashant, B., Akanksha, M., Premjeet, S., & Devashish, R. (2011). Gas chromatography-mass spectrometry: applications. International Journal of Pharmaceutical and Biological Archives, 2(6), 1544-1560.
Saitta, E. (2018). The taphonomy of soft tissues and the evolution of feathers. [Doctoral Thesis, University of Bristol]. Repositório da Universidade de Bristol.URL: https://research-information.bris.ac.uk/en/studentTheses/the-taphonomy-of-soft-tissues-and-the-evolution-of-feathers. Acesso 19.09.2024.
Schoenhut, K., Vann, D. R., & LePage, B. A. (2004). Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian High Arctic. American Journal of Botany, 91(6), 816-824. doi: https://doi.org/10.3732/ajb.91.6.816.
Schweitzer, M. H. (2003). Reviews and Previews: The Future of Molecular Biology. Palaeontologia Electronica, 5(2), 1-11. URL: https://palaeo-electronica.org/2002_2/editor/r_and_p.pdf. Acesso 19.09.2024.
Schweitzer, M. H. (2004). Molecular paleontology: some current advances and problems. Annales de Paléontologie, 90(2), 81-102. doi: https://doi.org/10.1016/j.annpal.2004.02.001
Schweitzer, M. H., Schroeter, E. R., & Goshe, M. B. (2014). Protein molecular data from ancient (> 1 million years old) fossil material: pitfalls, possibilities and grand challenges. Analytical chemistry, 86(14), 6731-6740. doi: https://doi.org/10.1021/ac500803w.
Simoneit, B. R. T. (2004). Biomarkers (molecular fossils) as geochemical indicators of life. Advances in Space Research, 33(8), 1255-1261. doi: https://doi.org/10.1016/j.asr.2003.04.045.
Simoneit, B. R. T. (2005). A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. Mass Spectrometry Reviews, 24(5), 719-765. doi: https://doi.org/10.1002/mas.20036.
Simoneit, B. R. T., Otto, A., & Wilde, V. (2003). Novel phenolic biomarker triterpenoids of fossil laticifers in Eocene brown coal from Geiseltal, Germany. Organic Geochemistry, 34(1), 121-129. doi: https://doi.org/10.1016/S0146-6380(02)00141-9.
Simoneit, B. R. T., Oros, D. R., Otto, A., Hartkopf-Fröder, C., & Wilde, V. (2023). Terpenoids in resinites from middle Cretaceous karst infillings in the Rhenish Massif (Rhineland, Germany): botanical source and preservation. International Journal of Earth Sciences, 1-14. doi: https://doi.org/10.1007/s00531-023-02351-0.
Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. (7th. ed.). New York: Cengage Learning. 992p.
Soltis, P. S., Soltis, D. E., & Smiley, C. J. (1992). An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences, 89(1), 449-451. doi: https://doi.org/10.1073/pnas.89.1.449.
Staccioli, G., McMillan, N. J., Meli, A., & Bartolini, G. (2002). Chemical characterisation of a 45 million year bark from Geodetic Hills fossil forest, Axel Heiberg Island, Canada. Wood Science and Technology, 36(5), 419-427. doi: https://doi.org/10.1007/s00226-002-0144-6.
Stoneman, M. R., McCoy, V. E., Gee, C. T., Bober, K. M., & Raicu, V. (2024). Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants. Communications Biology, 7(1), 53. doi: https://doi.org/10.1038/s42003-024-05763-z.
Tahoun, M., Gee, C. T., McCoy, V. E., Sander, P. M., & Müller, C. E. (2021). Chemistry of porphyrins in fossil plants and animals. RSC advances, 11(13), 7552-7563. doi: https://doi.org/10.1039/D0RA10688G.
Tahoun, M., Gee, C. T., McCoy, V. E., Stoneman, M., Raicu, V., Engeser, M., & Müller, C. E. (2024). Suberin, the hallmark constituent of bark, identified in a 45-million-year-old monkeyhair tree (Coumoxylon hartigii) from Geiseltal, Germany. Scientific Reports, 14(1), 118. doi: https://doi.org/10.1038/s41598-023-50402-y.
Taylor, D. W., Li, H., Dahl, J., Fago, F. J., Zinniker, D., & Moldowan, J. M. (2006). Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology, 32(2), 179-190. doi: https://doi.org/10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2.
Tegelaar, E. W., De Leeuw, J. W., Largeau, C., Derenne, S., Schulten, H.-R., Muller, R., Boon, J. 1., Nip, M., & Sprenkels, J. C. M. (1989). Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. Journal of Analytical and Applied Pyrolysis, 15, 29-54.doi: https://doi.org/10.1016/0165-2370(89)85021-1.
Tewari, A., D'Rozario, A., Bhattacharya, S., Barua, A., Bera, M., Bera, S., & Dutta, S. (2019). Biomarker signatures of the iconic Glossopteris plant. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 108887. doi: https://doi.org/10.1016/j.palaeo.2018.08.001.
Treibs, A. (1934). Chlorophyll‐und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen und Asphalten. Ein Beitrag zur Entstehung des Erdöls. Justus Liebigs Annalen der Chemie, 510(1), 42-62. doi: https://doi.org/10.1002/jlac.19345100103.
Vajda, V., Pucetaite, M., McLoughlin, S., Engdahl, A., Heimdal, J., & Uvdal, P. (2017). Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nature ecology & evolution, 1(8), 1093-1099. doi: https://doi.org/10.1038/s41559-017-0224-5.
van Bergen, P. F., Scott, A. C., Barrie, P. J., de Leeuw, J. W., & Collinson, M. E. (1994a). The chemical composition of Upper Carboniferous pteridosperm cuticles. Organic Geochemistry, 21(1), 107-112. doi: https://doi.org/10.1016/0146-6380(94)90090-6.
van Bergen, P. F., Collinson, M. E., Hatcher, P. G., & de Leeuw, J. W. (1994b). Lithological control on the state of preservation of fossil seed coats of water plants. Organic geochemistry, 22(3-5), 683-702. doi: https://doi.org/10.1016/0146-6380(94)90133-3.
van Bergen, P. F., Collinson, M. E., & De Leeuw, J. W. (1994). Molecular Palaeobotany of ‘propagules’. In Eglinton, G., & Kay, R. L. F. (Eds.). Biomolecular Palaeontology. Lyell Meeting Volume, NERC Earth Sciences Directorate Special Publication, 94(1), 21-24.
van Bergen, P. F., Collinson, M. E., Briggs, D. E. G., De Leeuw, J. W., Scott, A. C., Evershed, R. P., & Finch, P. (1995). Resistant biomacromolecules in the fossil record. Acta Botanica Neerlandica, 44(4), 319-342. doi: https://doi.org/10.1111/j.1438-8677.1995.tb00791.x.
van Bergen, P. F., Collinson, M. E., & Stankiewicz, B. A. (1999). The importance of molecular palaeobotany. Acta Palaeobotany, Supplement2, 653-657. URL: http://maxbot.botany.pl/cgi-bin/pubs/data/article_pdf?id=2112. Acesso 19.09.2024.
Zinniker, D., Moldowan, J. M., Dahl, J., Fago, F. J., Li, H., Hickey, L. J., Rothwell, G. W., & Taylor, D. W. (1998). Techniques and advances in molecular paleobotany: Methods for evaluating hypotheses of plant evolution and phylogeny by molecular fossils. American Journal of Botany, 85(6), 83-84, (Abstract #242). URL: https://www.jstor.org/stable/2446604. Acesso 19.09.2024.
Yang, H., Huang, Y., Leng, Q., LePage, B. A., & Williams, C. J. (2005). Biomolecular preservation of Tertiary Metasequoia fossil lagerstätten revealed by comparative pyrolysis analysis. Review of Palaeobotany and Palynology, 134(3-4), 237-256. doi: https://doi.org/10.1016/j.revpalbo.2004.12.008.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Everton Fernando Alves, Weliton Augusto Gomes