Banner Portal
Ferramenta para o monitoramento dos padrões de teleconexão na América do Sul
PDF

Palavras-chave

Ferramentas visuais e numéricas
Índices
Análise estatística
Previsão Climática Sazonal

Como Citar

SOUZA, Christie Andre de; REBOITA, Michelle Simões. Ferramenta para o monitoramento dos padrões de teleconexão na América do Sul. Terrae Didatica, Campinas, SP, v. 17, n. 00, p. e021009, 2021. DOI: 10.20396/td.v17i00.8663474. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8663474. Acesso em: 20 abr. 2024.

Resumo

As teleconexões são um mecanismo de variabilidade natural do clima. Elas estão associadas a fatores locais que causam anomalias climáticas em setores remotos do globo. Como a previsão climática sazonal depende do conhecimento dos padrões de teleconexão, o objetivo do estudo é apresentar o desenvolvimento de uma ferramenta online que reúne uma enorme quantidade de informações para fácil acesso dos usuários que têm interesse em monitorar os diferentes padrões de teleconexões. Para isso, índices climáticos disponibilizados por diferentes centros de meteorologia são utilizados. Além disso, dois novos índices são implementados. A metodologia conta com o uso de ferramentas de desenvolvimento web para sua implementação e promover a visualização dos índices climáticos, mapas das variáveis atmosféricas, animações, análises estatísticas, bem como outros produtos. Essa ferramenta está disponível em: https://meteorologia.unifei.edu.br/teleconexoes/. Por fim, ressalta-se que essa ferramenta foi projetada para ser atualizada mensalmente automaticamente.

https://doi.org/10.20396/td.v17i00.8663474
PDF

Referências

Andreoli, R.V., Oliveira, S.S., Kayano, M.T., Viegas, J., Souza, R. A. F., & Candido, L. A. (2017). The influence of different El Niño types on the South American rainfall. Int. J. Climatol., 3, 1374-1390. doi: 10.1002/joc.4783.

Baldwin, M. P., Gray L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J, ... Takahashi, M. (2001). The quasi‐biennial oscillation. Reviews of Geophysics, 39(2), 179-229.

Barnston, A. G., & livezey, R. E. (1987). Classification, Seasonality and Persistence of Low Frequency Atmospheric Circulation Patterns. Monthly Weather Review, 115(6), 1083-1126.

Cazes-Boezio, G., Robertson, A. W., & Mechoso, C. R., (2003). Seasonal Dependence of ENSO Teleconnections over South America and Relationships with Precipitation in Uruguay. J. Climate, 16(8), 1159-1176.

Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., & Janowiak, J. E. (2008). Assessing objective techniques for gauge‐based analyses of global daily precipitation, J. Geophys. Res., 113, 1-13.

Coelho, C.A.S., Oliveira, C.P., Ambrizzi, T., Reboita, M. S., Carpenedo, B., Campos, J. L. P. S., … Rehbein, A. (2016). The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim Dyn 46, 3737–3752.

Cozannet, G. L., Lecacheux, S., Delvallee, E., Desramaut, N., Oliveros, C., & Pedreros, R. (2011). Teleconnection Pattern Influence on Sea-Wave Climate in the Bay of Biscay. J. Climate, 24(3), 641–652.

CPTEC/INPE. (2020). El Niño e La Niña. Disponível em: http://enos.cptec.inpe.br/. Acesso 20.11.2020.

Di Luca, A., Camilloni, I., & Barros, V. (2006). Sea-Level Pressure Patterns In South America And The Adjacent Oceans In The Ipcc Ar4 Models. 8 ICSHMO, 235-243.

Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical research letters, 28(10), 7841-7848.

Enfield, D. B., Mestas‐Nuñez, A. M., Mayer, D. A., & Cid‐Serrano, L. (1999). How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?, J. Geophys. Res., 104(4), 7841-7848.

Garbarini, E. M., González, M. H., & Rolla, A. L. (2019). The influence of Atlantic High on seasonal rainfall in Argentina. Int J Climatol, 39(12), 4688-4702.

Hersbach, H., Bell, B., Berrisford, P., Berrisford, P., Hirahara, S., Horányi, A., ... Thépaut, J. (2020). The ERA5 global reanalysis. Q. J. R. Meteorol Soc, 146, 1999-2049.

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G. A., Lawrimore, J. H, … Zhang, H. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30(20), 8179-8205.

Jesus, E. M. (2020). Ciclones e ciclones subtropicais sobre o sudoeste do Oceano Atlântico Sul: projeções climáticas e ventos associados. São Paulo: Universidade de São Paulo. 141p. (Tese Doutorado).

Kutzbach, J. E. (1967). Empirical Eigen vectors of Sea-Level Pressure, Surface Temperature and Precipitation Complexes over North America. Journal of Applied Meteorology, 6(5), 791-802.

Madden, R. A., & Julian, P. R. (1972). Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci., 29(6), 1109-1123.

Mantua, N. J. & Hare, S. R. (2002). The Pacific Decadal Oscillation. Journal of Oceanography, 58, 35-44.

Mantua, N. J., Hare, S., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society, 78(6), 1069-1080.

Morioka, Y., Tozuka, T., & Yamagata, T. (2011). On the Growth and Decay of the Subtropical Dipole Mode in the South Atlantic. J. Climate, 24(21), 5538–5554.

Nnamchi, H. C., Li, J., & Anyadike, R. N. C. (2011). Does a dipole mode really exist in the South Atlantic Ocean?. J. Geophys. Res., 116(15), 442-457.

Reboita M. S., Ambrizzi T., Silva B. A., Pinheiro R. F., & Rocha R. P. (2019). The South Atlantic Subtropical Anticyclone: Present and Future Climate. Frontiers in Earth Science, 7(8). 1-15.

Reboita, M. S., Ambrizzi, T., Crespo, N. M., Dutra, L. M. M., Ferreira, G. W. S., Rehbein, A., Drumond, A., Rocha, R. P., & Souza, C. A. (2020). Impacts of Teleconnection Patterns on South America Climate: a Review, Submetido.

Reboita, M. S., Rocha, R. P., Ambrizzi, T., & Gouveia, C. D. (2015). Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 45, 1929-1944.

Reboita, M. S., Rocha, R. P., Ambrizzi, T., & Sugahara, S. (2010). South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35, 1331-1347.

Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical research letters, 25(9), 1297-1300.

Trenberth, K. E. (1997). The Definition of El Niño. Bulletin of the American Meteorological Society, 78(12), 2771-2778.

Walker, G. T. (1928). World Weather. Quarterly Journal of the Royal Meteorological Society, 54(226), 79-87.

Walker, G.T., & Bliss, E.W. (1932). World Weather V. Memoirs of the Royal Meteorological Society, 4, 53-84.

Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109(4), 784-812.

Wheller, M. C., & Hendon, H. (2004). An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Monthly Weather Review, 132(8), 1917-1932.

Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences. Burlington, MA: Academic Press. 704p.

Wolter, K., & Timlin. M.S. (1993). Monitoring ENSO in COADS with a Seasonally Adjusted Principal Component Index. 17th Climate Diagnostics Workshop, 52-57.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Christie Andre de Souza, Michelle Simões Reboita

Downloads

Não há dados estatísticos.