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Abstract  

Probability is and will continue to be a virtual concept. This specificity requires meta strategies that go far 

beyond the instruction of the mathematical details and ask for a sensible use of simulation. We suggest 

focussing teaching efforts on explicitly exposing the students to the purpose of the concept of probability. The 

purpose shows the character of probability indirectly as the required steps for solving a task make the properties 

appear natural in the context. We elaborate suitable tasks and interactive animations, which are designed to 

overcome learning obstacles. We focus on three aspects of probability: The character of probabilistic statements, 

the transparent use of probability for decisions under risk, and informal inference considerations in the early 

probability education. An essential criterion of teaching is how far it allows learners a more direct access to the 
concepts on an intuitive level. For designing didactic animations, our principles are characterised by the 

following ideas: A dynamic change is explored in comparison to the initial situation. Like watching a video, one 

looks at the different stages of emergence of a relation between the investigated concepts. 

Keywords: Interplay of intuitions; Purpose of concepts; Probabilistic thinking; Dynamic animations. 

Resumo 

La probabilidad es y seguirá siendo un concepto virtual. Esta especificidad requiere meta-estrategias que van 

mucho más allá de la instrucción de los detalles matemáticos y piden un uso sensato de la simulación. 

Sugerimos enfocar los esfuerzos de enseñanza en exponer explícitamente a los estudiantes al propósito del 

concepto de probabilidad. El propósito muestra el carácter de probabilidad indirectamente como los pasos 

requeridos para resolver una tarea hacen que las propiedades parezcan naturales en el contexto. Elaboramos 

tareas adecuadas y animaciones interactivas, que están diseñadas para superar los obstáculos de aprendizaje. 

Nos centramos en tres aspectos de la probabilidad: El carácter de las afirmaciones probabilísticas, el uso 
transparente de la probabilidad para las decisiones bajo riesgo y las consideraciones de inferencia informal en la 

educación temprana de probabilidad. Un criterio esencial de la enseñanza es hasta qué punto permite a los 

alumnos un acceso más directo a los conceptos en un nivel intuitivo. Para el diseño de animaciones didácticas, 

nuestros principios se caracterizan por las siguientes ideas: Se explora un cambio dinámico en comparación con 

la situación inicial. Como si se tratara de ver un vídeo, se observan las diferentes etapas de la emergencia de una 

relación entre los conceptos investigados.  

Palabras clave: Interacción de intuiciones; Propósito de los conceptos; Pensamiento probabilístico; 

Animaciones dinámicas. 
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1 Introduction – Identifying the key concepts 

Despite all educational efforts to materialise the concept of probability through the 

extensive use of simulations to illustrate its impact in repeated applications, probability is and 

remains a virtual concept. Not only Spiegelhalter (2014a, b) addressed probability as a 

metaphor; that is, we need qualitative visual images and conceptions in our mind to talk about 

probability and understand its meaning. An indicator of the difficulties with probability can 

also be seen in the abundance of misconceptions (e. g., Kahneman, Slovic, & Tversky, 1982) 

and paradoxes (Székely, 1986). There are several studies and monographs that reveal the 

complex field of probability as seen from a broader perspective of philosophy; to name but a 

few here: Batanero, Henry and Parzysz (2005), Batanero, Chernoff, Engel, Lee and Sanchez 

(2016), and Bennett (1999). On the diversity of educational responses, the reader can be 

guided by Chernoff and Sriraman (2014), focusing from the general theme on probabilistic 

thinking, and Jones, Langrall, and Mooney (2007), with research on probability compared to 

classroom realities, i. e., the abundant problems known in the teaching of probability.  

The didactic intentions to explain or clarify the nature of probability are multiple. 

Steinbring (1991) develops the idea of probability as a theoretical concept that falls apart and 

is left without a deeper meaning if only specific aspects are handled within a teaching 

approach. Steinbring explicitly referred to the negative implications of focusing too narrowly 

on Laplace’s equiprobability and neglecting the aspect of relative frequencies and vice versa. 

Carranza and Kuzniak (2008) speak of the duality of probability and refer to the inseparable 

aspects of relative frequencies and subjectivist ideas of probability; they outline the serious 

disadvantages of neglecting qualitative (subjectivist) aspects of probability.  

We can use the term complementarity rather than duality to highlight the inseparable 

connection of a concept with its various parts. The term originates from the discussion of 

quantum theory in the 1920s; it has been introduced by Niels Bohr who stated that complete 

knowledge of phenomena in atomic dimensions requires a description of the properties of 

both waves and particles and that it cannot be reduced to a single aspect without completely 

losing meaning (Bohr, 1934/1927). Complementarity has been transferred to the didactics of 

mathematics in the 1980s to describe the didactic dilemma resulting from the inseparable 

aspects of concepts (see Borovcnik, 1992). 

Another complementarity of probability can be seen in its close interrelationship with 

statistical inference. A revolution in stochastic education occurred in the late 1980s, as it 

witnessed the first serious approaches to statistical inference, when researchers recognised the 

strong connection between probability and statistical inference (Borovcnik, 1992): 

Descriptive statistics were no longer considered sufficient to clarify what the role of 

probability should be in teaching; instead, the meaning of probabilistic concepts is expanded 

and clarified within an inferential framework: probability without statistical inference 

methods is void of meaning, while statistical inference cannot be understood without 

probability. The purpose of probability – in this sense – has always been to design statistical 
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inference methods that allow partial knowledge (on a “sample”) to be generalised to a larger 

entity (called a population, which could be described by a probability distribution). 

Gigerenzer (2002) is a milestone in linking probability to risk, which has been a twin 

partner to probability since its early development. The relationship between probability and 

risk is so close that, after a more detailed inspection, its aspects could not be separated, 

indicating once again a complementarity. Borovcnik (2016) even goes so far as to redesign 

probability literacy in the light of risk. Reformulating the purpose of probability as finding or 

inventing methods to find reasonable decisions under risk greatly improves the perception of 

probability. 

In order to overcome the negative impact of unilateral approaches to the teaching of 

probability and statistics (and other disciplines of science and mathematics), Fischbein 

developed his ideas on primary and secondary intuitions (Fischbein, 1975, 1987). For the 

didactic use of developing an interaction between the raw primary intuitions that people have 

before any teaching and the exposure to mathematical tasks that require the application of 

concepts that students have not yet developed, one can return to the work of Fischbein or 

Borovcnik (1992). 

In Borovcnik (2019b), a theoretical framework has been established to identify the 

fundamental ideas with probability and to develop sustainable intuitions. The eminent role of 

the interaction between raw primary intuitions and emerging secondary intuitions that 

students acquire through their continuous work with tasks has been advocated. Secondary 

intuitions are the ultimate goal of teaching efforts: such intuitions not only neutralise 

misleading primary intuitions (which would otherwise be highly resistant to change through 

teaching interventions), but also support a holistic (“ganzheitlich”) understanding of solutions 

through mathematical methods. Such a type of understanding would also work without 

knowing every mathematical detail of how the task was solved. A link between mathematical 

concepts and secondary intuitions can be established by analogies (on the role of analogies, 

see Simons, 1984). 

Making the purpose of the concepts to be learned would also introduce a boost in the 

understanding and acceptance of the new concepts and the methods that are based on them. 

The purpose of a concept (if known) leads to immediately focus on the required learning 

steps; it makes the steps understandable and makes them appear “natural”. The mathematics 

to be learned acquires the character of a tool and one becomes more familiar with the tool, the 

more one uses it. Working with the concept as a tool to serve a purpose also avoids endless 

discussions of how a concept can be understood (which can be really confusing, especially 

for early learners) by showing what the concept can be used for. If the purpose seems 

reasonable to the students, they will be more willing to follow the learning steps required to 

complete their cognitive network for their conceptual understanding of concepts that have 

already been widely used by them. 

This also follows more closely the way in which the concepts have been used at the 

stage of their emergence: they have been applied implicitly for a specific purpose. It is a pity 
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that we have lost the connection with the origin of probability and its conceptualisation 

within physics, since probability genuinely serves the purpose of understanding physical 

phenomena by structuring them through emerging theories, and probability has been a 

cornerstone of the theorisation of physics (see, for example, von Plato, 1994). 

Reviving that high level of concepts, to focus on the purpose of the concepts, can be 

seen as a primary objective of teaching interventions. We use a hermeneutic form of 

argument, and relate the fundamental ideas of probability to their mathematical and 

philosophical background; the aim of this work is to make the purpose of probability 

transparent by developing tasks that are appropriate to that “purpose”. As probability is a 

theoretical concept, we introduce the idea of the purpose of the concept and of several tasks 

that can be handled with it. It may be better to make it clear for what purpose the concept is 

to be used rather than to explain and elaborate on the question what properties the concept 

might have. The ultimate goal of teaching interventions should be to provide students with 

intuitive access to key concepts: 

• Explore the type and quality of probability information (Chapter 2).  

• Purpose of probability – to compare risks and prepare decisions (Chapter 3)  

• Explore a probabilistic model for making better decisions (Chapter 3)  

• Measure or estimate an unknown quantity (Chapter 4).  

• Learning from theory – central theorems.  

• Update of a qualitative probability judgment by data (Bayesian approach). 

The first point touches on the core character of probability statements about which 

there is so much confusion. The second and third points (and the last one as well) refer to 

decision making and a qualitative component of probability and refer to obtaining and 

updating qualitative information on the credibility of statements or events. The fourth point 

establishes an early connection of the concept of probability with statistical inference, which 

is one of the main purposes of probability: to justify decisions between options modelled by 

probability. The fifth point prepares a connection between primary intuitions and secondary 

intuitions (Fischbein, 1975, 1987) and provides a suitable structure for the intuitions that 

should arise from the teaching of parts of the mathematics behind probability and statistics. It 

should also strengthen the connection between probability and statistical inference, which in 

turn revises conceptions of probability in a “last educational step”. 

The last two points in the above list will not be dealt with further in this document. 

The project “Fundamental concepts and their key properties in probability” has other articles 

in preparation on these aspects, which are also contained in Batanero and Borovcnik (2016), 

Borovcnik (1992, 2015a), or Vancsó (2009, 2018). 

In this paper, we address the students or trainees in a generic way. However, we 

definitely target students in the final years of the gymnasium (high school). We have 
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experimented with the ideas presented with non-mathematics students at the college level 

(these students are no more inclined to learn mathematics nor are they more talented or 

capable than the target group). The contexts and tasks discussed here are comparable to those 

of Batanero and Borovcnik (2016), Statistics and Probability in High School. The tasks 

originate from a broader project on Fundamental Ideas in Stochastics. A key objective of this 

project is to develop meta-knowledge for students that can partly replace the sometimes quite 

complex mathematical relations and theorems of the discipline. 

Probability is defined mathematically by means of axioms and the axiomatic basis of 

the concept justifies its interpretation. There are two main interpretations of probability, the 

frequentist (FQT) and the subjectivist (SJT), mathematically put on a solid basis by 

Kolmogorov (1933) or by Finetti (1937/1992). The third relevant interpretation is the concept 

of equiprobability (Laplace, or APT, a priori probability theory), which has been a leading 

idea in the development of physics (especially in thermodynamics) but which has not been 

able to be used for a solid basis of the concept of probability from a mathematical point of 

view. See Borovcnik and Kapadia (2014) for a discussion of these interpretations of 

probability from an educational point of view and for the special notation that is used here 

(FQT, SJT and APT). 

The purpose of probability in the context of a task makes extensive use of one or more 

of these interpretations of probability, which can coexist even in the same situation (making 

probability no easier to understand). Considerations on the quality of probabilistic 

information (Chapter 2) refer to Laplace’s equiprobability (APT); the comparison of risks and 

the search for better decisions refers to utility and the subjectivist interpretation of probability 

(SJT). The visualisations in the tasks about the measurement of an unknown probability are 

more explicitly linked to probability as a frequentist concept (FQT). The work being carried 

out within the framework of the above-mentioned project on fundamental ideas is an 

elaboration on statistical inference, which is openly divided between the frequency-based 

(classical inference) and subjectivist (Bayesian inference) methods. 

As an additional observation, it is important to note that when we use the simulation 

method, we generate frequencies linked to related probabilities that – in the first view – 

connect the illustrations and the interpretation of probability obviously to a frequentist 

concept. However, the simulation method is widely used within the Bayesian-inference 

approach to determine solutions (also in the form of probability distributions). This means 

that despite the view of probability that one has (and this view is qualitative or subjectivist in 

the Bayesian framework), one can take advantage of the simulation method. Applying the 

simulation carries with it the possibility of being misinterpreted by the students, who could 

then associate frequentist aspects with subjectivist concepts. Therefore, the simulation 

method has to be used with care to avoid such a change in the probability connotation to a 

frequency (and therefore biased) interpretation corner. 

With the tasks, which are discussed in the following sections, we cover all aspects of 

probability including the various conceptions and touch on the aspects of probability that 
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build the foundation of the key properties of the concept of probability. As we have stated, 

our aim is for students to understand these key properties, that are arising naturally from the 

context and purpose of the tasks used. 

2 Exploring the type and quality of probability information 

Probability is a theoretical concept and a specific value of the probability of an event 

under scrutiny is simply a descriptive number, an index that should convey a potential. This 

reference information is expressed differently in real situations. It is essential to have a sense 

of how large the size of the variation is; in other words, how large the margin of variation or 

error of the relative frequencies (that are the only instrument available) is so that we can 

materialise the index, which we call probability. 

We show a simulation scenario that improves the notion of margin of error, which 

provides a stable intuition on the effect of the length of a random series: the larger the 

database, the smaller the variation in relative frequencies. While the first experiment is 

situated in the initial phase of teaching probability, the second reveals the variation of a 

sample from a normal distribution. Contrary to general expectations, samples of a distribution 

resemble the population in shape only if the sample size is very large. 

2.1 The margin of error for random events 

A major task in the early stages of probability education is to clarify and support the 

relationship between probabilities and relative frequencies of events in repeated trials of a 

randomised experiment. This relationship is justified later in the course by the Law of Large 

Numbers, which describes a sophisticated connection, which is completely different from 

convergence in calculus, and which always attracts misleading ideas about convergence. We 

explore variation in randomness (not the convergence) to improve understanding of the type 

and quality of probability information rather than to illustrate a law of convergence, which 

cannot be done in any finite series. Our goal is to show a pattern of reduction in the 

variability of relative frequencies. A suitable experiment for this purpose is to select random 

digits from 0 to 9. 

A basic difficulty may be identified in the issue of understanding the type of 

information inherent in a probability statement. What does a probability of ½ really mean? It 

can be linked to a fair decision between two possibilities. On the other hand, a situation 

without preference is too easily linked to equal probabilities; this equiprobability bias of 

Lecoutre (1992) seems more inciting if there are two possibilities. The best way to clarify this 

issue is through open discussion in the form of an empirical interview with varying situations 

(see Borovcnik & Peard, 1996). 

How does this expression relate to repeated experiments? It is vital to avoid a focus, 

which is too strong on the pattern in which the series develops, since if the hypothesis of 

randomness applies, each pattern is equally likely, unless one considers the pattern as a class 

(a group) of outcomes. There is a lot of research on random sequences and judging the 
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probability of such sequences that have to be compared (e. g, Chernoff, 2013, or Borovcnik 

& Bentz, 1991, 1990, 2003). For probability as a concept, speculation on patterns is irrelevant 

as long as the hypothesis of randomness is not considered violated, and if so, it is a rather 

complicated statistical test that has to be applied to a replication of the data (not the same 

data!) to check that assumption. 

In the following experiment, an idea from Freudenthal (1972) is taken up; Freudenthal 

suggested investigating the margin of variation with a fixed sample size instead of illustrating 

an obscure limit of relative frequencies towards the unknown probability by repeating the 

basic random experiment over and over again. For a conceptual understanding of a 

probability statement it is vital to understand that the range of variation is reduced with larger 

series and that, at the same time, individual trials are completely subject to their random 

character. This also means that there is no compensation rule, which is often believed after 

teaching efforts to demonstrate stochastic convergence of relative frequencies towards the 

underlying probability. 

We simulate random digits (0 to 9), each with a probability of 1/10. In the statistical 

laboratory, we can guarantee that this probability is maintained for each individual digit, 

which excludes crude conceptions about favourites (we use random digits from 0 to 9 and not 

the emotionally charged numbers from 1 to 45 of the state lottery). We do not investigate the 

development of relative frequencies with the length of the random sequence. We set two 

snapshots in the random process, after 50 and after 1000 digits are generated. We investigate 

the distribution of the two scenarios and compared them. It has to be explicitly stated that we 

normally do not have such data (although there are some people who read the statistics of the 

numbers recently drawn in the state lottery). 

What can be seen (in Figure 1) is that the digits in the process vary erratically, 

showing that the randomness in the background is working fully. It is enlightening to repeat 

the entire simulation scenarios (with 50 and 1000 digits) – as in a video – to witness that the 

digits that are “at the top” in one simulation, are not necessarily behind in the next, or vice 

versa. The frequencies of the individual digits actually vary without any pattern and once one 

recognises a pattern, it gets lost in the following repetitions of the simulation scenario. 

What we can recognise is that the variation of the frequencies of the individual digits 

remains somewhat within a band (highlighted in Figure 1) that reflects the range – the size – 

of the variation. Rarely does a simulation scenario have frequencies outside this band. We get 

an impression of the margin of random fluctuation. What can also be seen is that this range of 

variation is considerably less with 1000 random digits than with only 50. A stable pattern of 

relative frequencies emerges with a full random fluctuation for each trial, which is not a 

contradiction when viewed from this angle. It also shows that – assuming that the sample is 

in fact taken at random (which is the advantage of our statistical laboratory, where we 

guarantee that the assumptions are met) – the larger the sample size, the lower is the 

variability. 
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As a thought experiment, already in this initial experiment, one can speculate on a 

further shrinking towards the reference line at the level of 1/10 since the probabilities for the 

random digits are the same from the beginning. We show a simulation in Figure 1, but the 

reader should note that the static image is only alive if the replay of the entire simulation 

scenario is played as an animated movie to demonstrate the effect just described. 
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Figure 1 – Margin of the variation of random digits (1, 2, …, 9) with few and many data 

Source: Prepared by the author 

 

2.2 Sampling from a normal distribution 

Random samples are used to estimate unknown parameters of the “population” (or 

parental distribution). Although this method already works for relatively small sample sizes, 

the form of the data generated does not resemble the population distribution unless we have a 

lot of simulated data. Next, we investigate two simulation scenarios (Figure 2): 

• In Scenario 1, we generate 50 data from a normal distribution with a pre-specified 

mean and standard deviation.  

• In Scenario 2, we investigate the same process and generate 1000 data. 
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Figure 2 – Variation of samples from a normal distribution – Left with 50 data; Right with 1000 data 

Source: Prepared by the author 

In both scenarios, we draw a histogram to investigate the empirical distribution of the 

generated data. It is helpful to select other values of the mean value or the standard deviation 

(on the slider) to see the effect on the empirical distribution of the data: one can see that the 

histogram representing the generated data will shift according to the new mean value and will 

show less width if the standard deviation of the model is reduced. What is more important is 

to see the great variety in the shape of the empirical distribution of the data, which is only 

remotely reminiscent of a normal shape. Even for the scenario with 1000 data, the shape 

shows anomalies here (a strong asymmetry on the left) with respect to a normal distribution. 

The scenarios reveal the “range of variation” of a probability model. Even if the main 

distribution is normally distributed (which is guaranteed by our statistical laboratory), the 

data are far from being distributed normally. The repetition of the simulation scenario allows 

students to witness the variation as in a video. As a result, we see the relevance of the sample 

size and that with small samples the conclusions are unstable. We recognise that assumptions 

such as a normal distribution cannot be statistically tested in an adequate manner. Variations 

that do not lead to a rejection of the presumption of normality are too wide and may be 

caused by a different parental distribution. 

However, it is possible to draw conclusions on several population parameters even 

from smaller samples. As a consequence of the Central Limit Theorem, the distribution of 

various statistics extracted from a sample is approximately normal. This turns out to be an 

artificial concept, as we usually only have one sample from the population and therefore 

never experience the sampling distribution of a statistic such as the average of a sample. 

3 Tasks that expose the purpose of probability 

This chapter discusses tasks that reveal the purpose of probability without explicit 

connection to statistical inference. Probability can be used to make decisions under risk 

transparent and to clarify the criteria used to define what a good decision requires and how to 

provide a solution. 
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A basic task refers to a primary purpose of probability, which is to fix the price of 

uncertainty or risk: Whether we play a game of chance or take out an insurance policy, 

structurally the situation is the same: two stakeholders meet and exchange their roles: one 

partner gets rid of an uncertain situation and the other takes over this role from the first, i. e., 

is willing to leave the position of certainty. By introducing an index called probability, which 

“measures” the degree of risk, it is possible to find a price for the exchange of roles (first 

section below). 

If one is willing to refer to the probability of a future outcome, then one may also be 

able to improve a decision that has to be made now. Optimisation criteria without such a 

probability index could lead to inferior conclusions and have a conservative impact on 

behaviour: probability increases the scope of strategies with a high potential for innovation 

but carry an inherent risk – this is a general invariant of using probability even if it can be 

used for an overall advantage (second section below). When using probability as a price for 

uncertainty, there are some basic rules to follow, which seem very natural in the context of 

risk (third section below). 

The following sources contain more information about the key properties of 

probability: Borovcnik (2015a), Batanero and Borovcnik (2016). They cover the aspect of 

dynamic applets that can show – beyond and parallel to mathematical considerations – the 

key properties of the concept of probability. 

3.1 Pricing the Unknown 

Probability serves to exchange the uncertainty and risk involved with money. This is 

part of the insurance contract where the customer faces the possibility (risk) of an accident 

and pays the insurance premium to the insurance company. The client leaves the position of 

uncertainty (about the financial implications of an accident) to enter a position of certainty 

(without risk) but pays in advance for it. The insurance company – on the other hand – leaves 

the position of certainty and assumes the risk of the customer and receives a payment for it. 

The odds are the key to determining the contract price. The example also serves to discuss the 

various interpretations of probability (subjectivist for the client, frequentist for the company) 

and utility of impact (utility for the client, simple money considerations for the company). 

For more details, see Batanero and Borovcnik (2016). 

Probabilities are the key to determining the price of the contract, or the basis for 

decision making if the outcome depends on probabilities, or rather, if outcomes are modelled 

by probabilities. The stakeholders who come together in a decision (as in the insurance 

contract) do not need to use the same model of the situation and if they use the same model, 

they might choose different probabilities; moreover, if they have the same values for the 

probability, they might add a different connotation to it: for the insurance company it is a 

frequentist probability averaged over many contracts in the past, for the policyholder it is a 

personal and qualitative probability over the event in question and the policyholder does not 

have an averaging point of view, since he takes the premium only once. The “risk” lies with 
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the customer with the full range of variability, while the insurance company bears almost no 

risk, as its result is very stable and therefore predictable due to averaging. 

3.2 Optimising a decision in a situation of uncertainty 

We present an example of making decisions about the number of copies to produce 

for a journal if the demand is modelled by probabilities and there is some additional data on 

the cost of copies (see Table 1, reproduced from Borovcnik, 2015b); the price per edition is 

1.60 (€). The options are to produce 1000, 2000, ..., or 5000 copies. Which is the best option?  

Table 1 – Production options, cost of these options, and probabilities of demand for the magazine 

Option 1 2 3 4 5 

Copies to produce 1000 2000 3000 4000 5000 

Cost of production 2000 2200 2400 2600 2800 
      

Demand 1000 2000 3000 4000 5000 

Probabilities 0.40 0.30 0.20 0.06 0.04 

Source: Prepared by the author 

There are different criteria for optimising the number of copies. The maximum loss 

could be minimised, for example, or the expected benefits could be optimised. It is easy to 

see (see Borovcnik, 2015b, p. 128) that the minimax method can lead to strange decisions: 

It is obvious that no one would be willing to decide for option 1,000 as – whatever the 

demand will be – it will lead to a loss of –400. This reminds us to a principle of 
avoiding a sure loss [...]. The option 2,000 delivers a positive expected profit of 360; 

however, it can lead also to an even higher loss of –600 as compared with the decision 

for 1,000 copies. This reflects a basic property of [...] decisions under risk. Rarely can 

one find decisions, which are better throughout [...]. [...] the remaining [...] actions 
cannot be compared to each other without a further criterion and what is the better 

decision depends on the criterion used. To improve a situation in one respect (to have 

a higher expected net profit) is accompanied by the risk of higher potential losses. 
One may even speak of an invariant in human life as seen from a general 

philosophical perspective on risk. The option 3,000, which yields an expected profit 

of 640, is better. However, it bears the risk of a loss of –800 (if demand is only 1,000, 
which has a probability of 0.40). It turns out that option 3,000 yields the maximum 

expected profit (640) and is – in the present model – the best decision. 

The concepts involved range from the frequentist to the subjectivist one, including 

probability and utility, and encompass a discussion of the criteria to be followed when 

optimising a decision. It should be noted that the task of optimising a decision is not well 

defined as long as the decision criterion is not set and each criterion has its own merits and 

drawbacks. 

3.3 The expected value is an additive notion – Dispersion is not always additive 

There are several ways to derive the expected value of a binomial distribution, which 

is the result of a binary experiment repeated n times independently with a probability of p for 

the event in question. It is very easy to recognise that for one judgment the expected value is 

p. If the situation is embedded in a bet – win 0 if the event does not occur and win 1 if the 
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event does occur – the fair price or expected value for this bet amounts to p. If one makes 

such a bet n times, then the price is n times p, which is very easy to accept without any 

further mathematics. However, if the bets are dependent, then this additivity – although 

highly counter-intuitive – is still valid, as can be seen in Batanero and Borovcnik (2016). 

A comparable additivity property for the variance is valid only for independent 

random experiments, as is the assumption for individual trials leading to the binomial 

distribution. This additivity is somehow compared to Pythagoras’ theorem and independence 

becomes an orthogonal relationship for the random variables. This is the reason behind the 

choice and preference for the square of the standard deviation in favour of other measures of 

variability for a random variable and not any consideration concerning the high quality of the 

visual description of the width of a distribution. 

Indeed, for skewed probability distributions, neither the expected value nor the 

dispersion (or standard deviation) provides an adequate description of the location or the 

width of a probability distribution. However, these parameters are used throughout. The 

reason for this lies in the mathematical interrelations, mainly in the fact that the mean of the 

samples as a statistic is – due to the Central Limit Theorem – approximately normally 

distributed. This simplifies statistical inference procedures when conclusions are to be drawn 

from a random sample of the population. 

4 Measuring or estimating an unknown quantity 

In this section, we try to close the gap between probability and statistical inference. 

Already in the early stages of teaching probability, one should introduce informal 

connections for inference so that the purpose of probability is clearer. To do this, we develop 

an analogy between the task of estimating a probability (which is normally unknown) with 

the repeated measurement of a physical quantity. We have to define a measurement 

procedure and clarify how we can conceptualise the quality of our measuring instrument. A 

better instrument would not always provide a better measurement value, but in general it 

would be an advantage if used several times (repeatedly). This means that we have to 

introduce methods to conceptualise the margin of error of the measurement (first section 

below). 

Next, we redefine the repeated coin-tossing experiment (or any other binary 

experiment) in the context of measurement. The relative frequency of Heads in a series of 

coin tosses is considered to be a measure of the unknown probability (second section below). 

Instead of increasing the number of tosses, we investigate three “instruments” for their 

measurement quality, and set their number of tosses to 5, 10, and 20 only. We just want to 

demonstrate that the measuring instrument with the larger series of tosses can be considered 

as more accurate (third section below). And from that we draw our conclusion by 

“extrapolation” and not by a material experiment. This thought experiment can be applied to 

any other task of estimating a parameter, such as the average of a population. 
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Bootstrap is a modern method for estimating an unknown parameter of a population, 

which can be used alternatively to a confidence interval. Bootstrap is one of the methods used 

in “Informal Inference”, a modern approach suggested in research on statistics education, 

which aims to simplify statistical inference (some would even say to replace statistical 

inference; see Borovcnik, 2019a). The measurement context also highlights what is actually 

done in a Bootstrap estimate (fourth section below). 

4.1 Analogy between the measurement of physical and virtual quantities  

Probability as a limit of relative frequencies is a naive perception that has also been 

(and still is) the focus of the definitions of probability. This forms the basis of the frequentist 

view of probability. It is an important task of the introductory phase of probability education 

to clarify this relationship between probability and relative frequencies. The usual experiment 

is to repeat a binary randomised trial very often and show the limiting behaviour of the 

development of the relative frequencies of the event under investigation. Here too, to avoid 

the empirically unattainable phenomenon of convergence, we prefer the Freudenthal variant 

(1972) of the experiment, which investigates the distribution (!) of the experimental result to 

a specific sample size when the scenario is repeated many times (with this sample size). 

This approach relates to an analogy between measuring an unknown probability and 

measuring physical quantities and reveals a key idea of probability – measurement is called 

estimation in probability jargon. 

The measurement of an unknown quantity is a process that is usually performed by a 

well-defined measurement procedure. However, in the context of probability, we deal with 

non-physical quantities that require special methods that differ from physical measurements. 

The average of a population is a virtual quantity that does not really exist, but it can be 

relevant to know it. The same is true for a proportion of people in a population who have a 

given property; this is a virtual number. Or, the unknown expected value of a probability 

model that is used to describe the distribution of a variable (in a finite population or in a data-

generating process). Also, the unknown probability of an event is “measured” by the relative 

frequencies of the underlying random experiment. These all are virtual quantities. However, 

the analogy with the measurement of physical quantities can clarify the purpose and 

properties of such “measurements”. In fact, the measurement of a physical quantity is related 

to measurement errors, measurement bias (a systematic measurement error), and 

measurement accuracy (for the details of the analogy, see Table 2). 

In the theory of physical measurements, it has been recommended to average the 

result of a few measurements to decrease the measurement error and increase the accuracy of 

the measurement procedure. Such recommendations have been established by a connection 

with probability theory. We use the analogy of measuring virtual quantities (such as the mean 

of a population or the proportion of people in a population with a specific property) with the 

measurement of physical quantities to improve the understanding of virtual concepts and their 

probabilistic measurement. 
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4.2 The task of measuring – or estimating – an unknown probability 

The idea is to evaluate the accuracy of various measuring instruments by comparing 

them with each other. In Figure 3, we see how the curve of cumulative relative frequencies 

stabilises with more experiments; after 1000 binary experiments, the relative frequencies 

seem to be very stable. To make it more specific, we investigate three scenarios to analyse the 

1000 data. We could use the coin tossing or any other binary random experiment; we could 

also imagine focusing on one of the nine random digits of the experiment in Figure 1. 

 

Table 2 – Comparison of terms used in measurement theory and in probability 

Category Theory of measurement Probability theory 

Method Measurement of physical quantities Estimation of virtual quantities 

Measurement object 
The true value 

of a physical entity 

Average or proportion (or other 

parameters) of a real or virtual population 

Measuring process 
To measure the object physically, 

use the instrument repeatedly 

From the population, 

simulate data for a random sample 

Measurement result 
Some values  

of the measurement 

Data  

of the random sample 

Measurement value 
The mean value 

of the measurements 

A convenient statistic 

of the sample data 

Naming  

of the outcome 

A measured value of the 

physical entity 

An estimation value of the 

population characteristic 

Error 

of one measurement 

The difference between the true value of 

the entity and the measurement value 

The difference between the population 

parameter and the estimated value 

Feature of one 

measurement / error 

It varies in general due to 

uncontrollable conditions 

It varies due to the randomness 

in the generation of the samples 

Precision  

of the measurement 

Overall 

error size 

Variability of the estimate 

due to randomness 

Margin of  

error 

It is measured in terms of the 

standard deviation 

It is measured in terms of the 

standard deviation 

Quality of the 

measurement procedure 

The smaller the standard error, 

the better the method of measurement 

The smaller the standard error, 

the better the method of measurement 

Source: Prepared by the author 

• Scenario 1: We divide the 1000 data (of 0s and 1s) into blocks of length 5 and use 

the relative frequency in each block (sample) to “measure” (estimate) the 

unknown probability. We get 200 (estimated) measurements, which are signified 

by crosses in Figure 4 (left); the representation shows that – not unexpectedly – 

the measurements vary greatly and quite a few measurements have an error of 

greater than 0.20 (i. e., they are outside the band between 0.30 and 0.70, which is 

marked by thick dashed lines).  
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• Scenario 2: We divide the 1000 data into blocks of 10 in length and obtain 100 

estimates of the unknown probability, which are represented in the central 

diagram in Figure 3. Far fewer values are beyond the band marked for 

measurement errors greater than 0.20.  

• Scenario 3: We divide the 1000 data into blocks of 20 in length and obtain 50 

estimates of the unknown probability, which are shown in the diagram to the right 

of Figure 3. Only two measurements have an error greater than 0.20. 

The crosses representing the individual measurements of the unknown quantity show 

a clear pattern of reduction from left to right in Figure 3 with an increasing number of data 

(length of the measurement series, or sample size). We can also identify the stabilising effect 

of the length of the experiment on the chart of the relative frequencies (in Figure 3) with the 

total influence of randomness to which the individual measurements of the resulting blocks 

are exposed. This emphasizes that there can be no compensatory effect according to which 

the ensuing results would correct an existing deviation in the relative frequencies in the 

direction towards the limit (the probability). This compensation thinking is very popular, as 

can be seen in the ubiquity of the lists of numbers recently drawn in the state lottery, which 

“provide the basis for calculating the current odds” of the numbers for the next drawing. 

4.3 Analysis of the accuracy of the three measuring instruments 

The measurement analogy shows that the measuring instruments differ greatly in the 

quality of the measurements; the errors of Instrument 1 (Scenario 1) tend to be much greater 

than those of Instrument 3 (Scenario 3). We compare these measuring instruments by means 

of a statistical analysis of the measurement errors in our scenario. This means that we 

compare the pattern of the distribution of the unknown probability estimate based on repeated 

data from 5, 10 and 20 with a bar chart (Figure 4). Again, we see the shrinkage effect. The 

larger sample gives a more accurate estimate of the unknown probability. Figures 3 and 4 are 

slightly modified from Borovcnik (2019a). 

Figure 4 especially prepares the idea of the sampling distribution of the proportion for 

a fixed size sample. It is essential to explicitly clarify the artificial character of our simulation 

study of the measuring instruments: we have repeated the measurements to obtain an 

empirical database for the quality of the instruments. In practice, however, we have only one 

sample and one measurement (estimate) of the unknown parameter. We apply the knowledge 

of such artificial studies to transfer the knowledge of quality to this single value and thus we 

can judge its reliability in the sense of the dispersion (measured by the standard deviation) of 

the sampling distribution of the proportion.  
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Figure 3 – “Convergence” of relative frequencies towards the unknown probability for the duration of the series 

of experiments compared with repeated measurements of this probability by different procedures: 

Left: Probability measurement by the relative frequency of the last block with 5 trials. Middle: Measurement by 

the result of the last block with 10 trials. Right: Measured by the last block with 20 trials 

The band within the dashed lines marks those measurements with an error of less than 0.20 

Source: Prepared by the author 
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Figure 4 – Comparison of the accuracy of the three procedures for measuring an unknown probability 

Left: Based on the last block with 5 data. Middle: Based on 10-data blocks. Right: Based on 20-data blocks 

The shaded area signifies a measurement error of less than 0.20 

Source: Prepared by the author 

We explore the accuracy of the measurement procedures rather than investigate a law 

of convergence. This basic experiment avoids obscure limiting behaviour of relative 

frequencies and focuses instead on three snapshots that illustrate the phenomenon: a larger 

sample size allows estimating the unknown probability much more precisely. The experiment 

also shows already in the initial phase what the probabilities are for and how we can link 

probability and statistics and how we can operationalise the concept of statistical information 
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and how we can transfer the sample estimates to the population (finite, or the processes that 

generate the samples). 

Studying in the statistical laboratory ensures that other factors could not blur the 

results, as we have full control over the assumptions. Repetition of the simulation scenario (in 

Figures 3 and 4) is very instructive, as it shows a stable pattern in the reduction effect and 

allows students to experience its variation (when it changes, how it changes, what is 

invariant, what is the range of variation or error if a quantity is measured) rather than 

investigating obscure limits that are not open to scrutiny. 

The analysis of the 1000 data in blocks of different lengths is motivated by a coin-

tossing protocol. In a computer-simulation version we could try to avoid that for size-20 

samples there is much less data (only 50) compared to size-5 samples (where we have 200 

data). The less data one has, the more additional variation the simulation can have, which 

might blur the underlying pattern. In a dynamic simulation, 1000 (or more) size-5 samples 

could be simulated, then size-10, and finally size-20 samples so that the empirical 

distributions are less prone to random-effect artefacts from the simulation and the pattern is 

even more clearly visible. 

The experiment for averages is analogous to the current one. Only the mean rather 

than a proportion of a population should be measured by a sample. Once again, the 

measurement procedure is investigated. How accurate is the measurement of the average of a 

population by the average of a sample? In the statistical laboratory, we can simulate samples 

of the parent distribution (the population) to investigate the used measurement device. It is 

essential to remember that in practice one only has one measurement, as one only has one 

sample. The scenario of simulating repeated samples of the population, determining the mean 

of this sample, and continuing the sampling with the calculation of the mean provides an 

empirical basis for the sampling distribution of the mean. This sampling distribution is 

conceptually not much easier in the simulation scenario although it is materialised in the data 

on the repeated measurements that are generated in this sampling process; it describes the 

quality of the measuring instrument. 

The sampling distribution is usually obtained by mathematical theorems; it is the key 

to statistical inference. We use the introductory experiment to relative frequencies to 

familiarise students with the connection between probability and statistical inference. It is 

also of interest to investigate through a simulation study how fast the convergence is, i. e., 

how much sample data is needed to make the distribution look quite similar to a normal 

distribution. Again, the Central Limit Theorem provides an easy description of the sampling 

distribution of the mean as it is approximately normally distributed. 

4.4 Extension of the repeated-measurement analogy to the Bootstrap method 

It is very interesting that the analogy of repeated measurements gives a natural 

explanation for the Bootstrap method. If we knew the population, we could simulate one 

sample after another, always calculating the parameter of interest; this sample parameter 
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provides a measure of the amount of population we are interested in. In Bootstrap, the 

simulation is performed from an approximation of the population, which is provided by the 

original sample. Normally, a confidence interval would be calculated on the basis of that 

sample. This confidence interval provides information about where the “true” parameter of 

the population should be. 

Apart from the known problems in the interpretation of confidence intervals, the 

method provides rather complicated formulas for the confidence interval for parameters other 

than the population mean. This mathematical complexity might also be the reason for the 

frequent misunderstanding not only of statistical tests but also of confidence intervals. 

Bootstrap intervals are much easier to obtain, as only the data is needed and no further 

assumptions are made. The interval is obtained simply by the repeated simulation of samples 

from the first sample (sampling with replacement). However, the reason why the method 

works can be clarified much better than usually by the analogy with measurements. 

Given: the data of a sample size n with mean and SD for a specific variable. How 

accurate is the sample average as a measure for the whole population? If we have access to 

the population, we could repeatedly take a sample from it and calculate the average value of 

this sample. This mean value represents the first measurement of the “unknown” mean. In the 

statistical laboratory (where the population including its mean is known), we can investigate 

the accuracy of our measurement procedure for the population mean by this method of 

measuring the population mean by the sample mean. 

If we generate 1000 samples (or even more) and calculate the mean, we obtain an 

empirical basis of measurements, which we can analyse statistically as in the case of the task 

of measuring an unknown probability (proportion of a population). Using this simulation 

scenario, we provide an empirical basis for the sampling distribution of the mean and can 

judge the quality of the measurement procedure (the estimation of the “unknown” mean). The 

procedure is exactly the same as in the example of measuring an unknown probability. 

If we do not have access to the population, we cannot sample from it more repeatedly 

and measure (estimate) the unknown average of the population. Yet, the following 

measurement procedure, called Bootstrap, may provide a reasonable way to measure 

(estimate) the unknown population mean. Instead of taking a sample from the population 

(which is no longer possible), we take a new sample from the already existing data (with 

repetition). Since this initial data set is a random sample of the population, there should not 

be too much error in this ‘rough’ sampling procedure. As in the case of the known 

population, we calculate the mean of this Bootstrap sample and “measure” (estimate) the 

unknown mean of the population. 

The quality of this measurement procedure is evaluated by repeating the 

measurement, i. e., repeating to take a Bootstrap sample of the data and calculate its average. 

If the process is repeated 1000 times (or more), an empirical basis for the distribution of the 

mean is obtained (see Figure 6). We can recognise how much these Bootstrap measurements 

vary from sample to sample and find a central interval (of 95 %, for example) of these 
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measurements. This so-called Bootstrap provides an evaluation of the measurement 

procedure. It has properties similar to those of a confidence interval for the mean but has a 

different interpretation. 
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Figure 5 – Bootstrap samples for measuring the unknown mean.  

Left: The first Bootstrap shows that the measurement of the unknown average is very unreliable.  

Right: The Bootstrap distribution produces 95 % of repeated measurements between 3.81 and 16.12 

Source: Prepared by the author 

In fact, it is didactically attractive how simple the interpretation of a 95% Bootstrap 

interval is: it is that central interval, which contains 95% of all Bootstrap measurements of the 

unknown population parameter. If the measurement method has no systematic errors, then the 

repeated measurements should vary around the actual value. And the Bootstrap interval 

indicates the variability of the measurements and is the best that can be obtained with this 

method, which has an inherent margin of error. The analogy with the measurement of 

physical quantities fits perfectly. 

Since the early 1990s there have been suggestions to use the Bootstrap and non-

parametric statistics as a transitional stage for teaching statistical inference in order to 

simplify the first approach to this sophisticated topic. This Bootstrap interval is a naive but 

very interesting imitation of the classical confidence interval although Borovcnik (2019a) 

gives reasons why the Bootstrap interval method is not suitable to replace the classical 

confidence intervals; it could be used as an intermediate phase in teaching until the more 

sophisticated confidence intervals can be taught. Cobb (2007) has suggested completely 

replacing statistical inference with resampling methods, including bootstrapping and 

rerandomisation. In practice, experts would know when to use which method to estimate the 

average of a population. 
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5 Conclusions and perspectives 

In the second chapter, we investigate the probability character of the random-digit 

experiment. The equiprobability of digits and the development of relative frequencies are two 

inseparable parts of the concept and establish a relationship of complementarity for 

probability.  

Rather than following obscure convergence considerations, we show by our 

experiment that the margin of fluctuation of the relative frequencies of the digits is much 

smaller for 1000 random digits than it is for 50. This is an experimental discovery. The rest, 

that the fluctuation margin will continue to shrink in a similar mode from 1000 digits to a 

larger size of simulated digits, is due to a thought experiment. This is typical for our 

animations that we only have simulations for small sizes and we establish a model by a visual 

comparison of the experimental diagrams for various scenarios. Then we repeat the 

simulation to investigate whether the form already found will remain stable. The repetition of 

the simulation can be followed like watching a video. 

In the third chapter, we investigate the complementarity between probability and risk. 

Concentrating on the risk aspect by suitable tasks makes it easier to understand the role of 

probability. In the insurance contract there is a price for the change of a risky position (the 

client at the beginning) and certainty (the insurance company at the beginning), which can 

only be clearly determined if one wants to estimate, presuppose, or subjectively determine the 

potential of the risky event to occur. What number is attributed to this probability may not be 

easy to solve, but a scenario regarding this number makes it clear, which decision is 

preferable: to take out the insurance or not to take it out. 

Interestingly, the example also touches on the complementarity between frequencies 

and the subjectivist aspects of probability since the insurance company can use the 

frequencies of the insured event (e. g, the accident of a car) while the client only has 

qualitative (subjectivist) considerations to find a suitable probability for this event. In the 

journal task, there are mathematical solutions without using probabilities (to search for the 

minimum of the possible maximum loss, for example); yet, such strategies can lead to 

unacceptable solutions as is shown in the example with the copies of the magazine. The 

virtual role of probability in relation to risk is made much clearer by such tasks. 

In the fourth chapter, we introduced informal-inference considerations in the early 

stages of teaching probability. These considerations make the concept of probability much 

more accessible and natural. Instead of “showing” a limit of relative frequencies towards an 

unknown probability, one would analyse the task of estimating the unknown probability by 

the relative frequency of a series of experiments with a fixed size. We then developed the 

analogy with the measurement of physical entities and investigated the accuracy of our 

measuring instrument. 

The analysis of measuring instruments provides the knowledge that the instrument 

with the larger data set is more accurate. The rest is done with a thought experiment: the more 
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data, the more accurate the measuring instrument. The analogy with the measurement of a 

physical quantity also gives an excellent explanation for the Bootstrap method, which has 

been adopted by the school of “Informal Inference” in statistics education. 

Probability is a virtual concept despite all efforts to illustrate its impact by simulating 

the random situation under investigation. The concept has many aspects that may be 

described as a kind of complementarity: Equiprobability and relative frequencies, frequencies 

and subjectivist aspects of probability, probability and risk, and probability and statistical 

inference. Complementarity means that separation of the aspects involved would leave the 

concept with a complete loss of its genuine meaning. As a consequence, simplifying the 

issues with a didactic objective can deform the meaning and bring the education of 

probability into a dilemma. 

Since probability is a theoretical concept, people lack experience in it, which could 

correct inadequate basic intuitions. The interaction between these primary intuitions and 

secondary intuitions becomes relevant to establish stable conceptions in students. Borovcnik 

(2019b) provides a theoretical framework for identifying fundamental ideas of probability 

and how to develop intuitions that are stable. This framework refers to Fischbein’s interaction 

between primary and secondary intuitions. 

Developing secondary intuitions through mathematical tasks is easier if the design of 

the tasks and the expected learning paths are focused on the purpose of probability. This 

helps not only to motivate students to continue their work, but can also convince them that 

the concepts are useful; yet, most importantly, the purpose, once brought out to the open, 

allows the mathematics to be developed with a goal so that the concept begins to make sense. 

Above all it makes sense since it helps to solve the task. It makes sense, then, because in the 

context of the task and in relation to the purpose of the task, the concept can become natural 

with obvious properties, or at least with properties that seem reasonable (and not 

counterintuitive). By working repeatedly on such tasks with an explicit purpose, students can 

complete their cognitive network for that concept and gain a broader understanding. An 

understanding, as it sometimes occurs with engineers: without knowing all the mathematical 

details, they have a good understanding that allows them to draw their conclusions. 
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