
 
 

 

DOI: 10.20396/zet.v30i00.8661730 

Zetetiké, Campinas, SP, v.30, 2022, pp.1-16 – e022031          ISSN 2176-1744 

 

1 

 

 
 

 

 

Untying knots: developing visualization from twisted string experiments 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submetido em: 27/10/2020 – Aceito em: 12/11/2022 – Publicado em: 30/12/2022 

1 PhD in Education from the Federal University of Paraná. Professor at the Franciscan University, Brazil. E-

mail: leivasjc@ufn.edu.br. ORCID: https://orcid.org/0000-0001-6876-1461 

2 PhD in Mathematics from the Federal University of Rio Grande do Sul. Professor at the Federal University of 

Santa Maria, Brazil. E-mail: carmen@ufsm.br. ORCID: https://orcid.org/0000-0001-5667-159X 

Desatando nós: desenvolvendo a visualização a partir de experimentos com cordas

  torcidas

José Carlos Pinto Leivas1

  Carmen Vieira Mathias2

Abstract

This paper presents the results of a qualitative research, whose design fits the strategic principle experiments and 
quasi-experiments,  carried  out  in  2019,  with  the aim  of  investigating  how  participants  in  a  geometry  research 
group would construe in a intuitive, imaginative and creative way knots in ropes randomly dropped onto a flat 
surface. Through a rhetorical analysis of the group participants records, taking into consideration the proposed 
activities, it was possible to conclude that visual skills can be explored in both initial and continuous action with 
the  group  participants,  starting  from  the  imagination  and  intuition  when raising  a  hypothesis.  Using  the  cords 
available the participants could prove or reject their hypotheses. We conclude that even more advanced content, 
such as homotopy alongside with knot theory, can be explored at different levels of education, which can be a 
facilitating element not only in geometry studies but also in different fields of mathematical knowledge.

Keywords: Knots theory; Ropes; Geometry.

Resumo

Este  artigo  apresenta  resultados  de  uma  pesquisa  de  cunho  qualitativo,  cujo  delineamento  se  enquadra  no 
princípio  estratégico por  experimentos  e  quase  experimentos,  realizada  no  ano  de  2019,  com  o  objetivo  de 
investigar como participantes de um grupo de estudos e pesquisa em Geometria interpreta intuitiva, imaginativa 
e criativamente nós obtidos por cordões ao serem soltos aleatoriamente sobre uma superfície plana. Por meio de 
uma análise retórica dos registros dos participantes do grupo, ante às atividades propostas, foi possível concluir 
que  habilidades  visuais  podem  ser  exploradas  tanto  na  formação  inicial  quanto  em  ação  continuada  com  os 
participantes  do  grupo,  partindo  da  imaginação  e  da  intuição  no  levantamento  de  hipóteses.  A  partir  de 
barbantes  disponibilizados  os  participantes  puderam  comprovar  ou  rejeitar  suas  hipóteses.  Concluímos  que, 
mesmo conteúdos mais avançados, como homotopias junto à teoria de nós, podem ser exploradas em diversos 
níveis de ensino, o que pode ser um elemento facilitador não somente na formação geométrica dos indivíduos, 
como em outras áreas do conhecimento matemático.

Palavras-chave: Teoria de Nós; Cordões; Geometria.

Introduction and Rationale

  The Study and Research Group in Geometry – GEPGEO, led by the first author, has 
been searching, together with the Graduate Program of Sciences and Mathematics Teaching
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of the Franciscana University for theoretical and methodological alternatives for teaching and 

learning Geometry at different educational stages. We understand that it is not enough to 

advance Geometry disciplines, either in Mathematics degree, bachelor’s degree or even in 

continuous action, that do not keep up connections with school practice.  

When teaching mathematics at any stage, it is possible to work with students 

differently than traditional. One way to do so is by connecting with the basic intuitions 

students already have. These connections can occur in two ways. First way, students should 

be encouraged to make assumptions and produce mathematical knowledge on their own, 

without the aid of standard strategies or via teacher. A second way is to delineate teaching in 

order to nurture connections to students pre-existing knowledge through manipulative 

materials and or experiments.  

 According to Fischbein (1987), experience plays a fundamental role in shaping 

intuitions because, under certain circumstances, it shapes stable expectations. It is observed 

that by doing classroom experiments, students are allowed to contextualize or concretize 

abstract concepts and to connect with essential elements in mathematics in a more intuitively 

way. 

Regarding geometry teaching, the same author states that intuition, together with 

visualization, is one of the main components of our cognitive efforts.” It seems that 

formally based qualities of certainty, coherence, consistency, necessity, etc., do not 

possess the same kind of stimulating, convincing, and productive capacity as intrinsic 

credibility, intrinsic structurality and the richness of real phenomena. This is what 

Hilbert, one of the great founders of axiomatic himself, clearly stated: Who does not 

always use, together with the double inequality a> b> c, the image of three points 

following each other in a straight line like the geometric image of the 'in between' 

concept?” (Fischbein, 1987, p.17). 

This way, one may observe that, in mathematics, the popular saying: “a picture is 

worth a thousand words” is specially true where a picture or some other kind of experiment 

can be a handy tool in describing a concept.  

Being aware of the significance of visualization and experimentation, we justify the 

present article, that we started from Conway et al. (1991), which starts exploring bicycles, 

pedals and belts in a very intuitive and creative way. From there, the group discussed, 

analyzed and performed activities, justifying the present article, which aims to investigate 

how participants in a geometry research group construe intuitively, imaginatively and 

creatively knots that comes into view when ropes are randomly dropped onto a flat surface. 

Theoretical foundation 

Initially, we will discuss some considerations about creativity and imagination in 

geometry and then discuss knots. Granger (1998) already addressed imaginative creation as 

experience expressing that it “does not consist in a state of passive visualization, but of active 

experience” (p.11). This, taken to geometry teaching, seems to to be fundamental to achieve 

the desired changes in this field, specially due to its rejection in school environments and 
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teacher education as indicated by Leivas (2009). In turn, the author continues his speech as 

follows:  

[...] even in mathematics, the imagery quantity was introduced by Descartes in his 

geometry to designate the roots of the irreducible cubic equation, which cannot be 

calculated by Cardano's formula because they would require the extraction of square 

roots from complex numbers. Such entities do not correspond, therefore, to objects of 

ordinary arithmetic. But the operation then possible proves out in a new object 

system, the 'complex' numbers. [...] (Granger, 1998, p.11). 

Yet invoking Descartes, we take back creative imagination concept by enlarging the 

dimensions of the Euclidean geometric entities: point, straight line and space, perceptible in 

the real world, to dimensions larger than 3, existing only in the theory of ideas, through 

ordered n-tuplets.  

Prior to this, Hilbert and Cohn-Vossen (1999) associated geometry with imagination 

as follows: 

 [...] it is our goal to present geometry, as it stands today, in its visual and intuitive 

aspects. With the help of visual imagination, we can illuminate the variety of facts 

and problems of geometry and, furthermore, it is possible, in many cases to portray 

the geometric outline of research and demonstration methods, without necessarily 

going into details related to the strict definition of concepts and with real calculations 

(Hilbert & Cohn-Vossen, 1999, p. iii). 

Regarding the theory of ideas, Leivas (2009, p.111) portrays imagination “as a form 

of mental conception of a mathematical concept, which may come to be represented by a 

symbol, a visual, algebraic, verbal layout or a combination thereof, with the purpose of 

communicating the concept to oneself or to another person” (). The author goes further by 

defining visualization “as a process of forming mental images, with the purpose of 

constructing and communicating a certain mathematical concept, with a view to assisting in 

analytical or geometrical problems resolution” (Idem, p.111). Apparently the author goes 

against Hilbert and Cohn-Vossen, as well as Galton in approaching the visual creative 

imagination. 

As for the influence of creativity in teaching-learning mathematics, Segura (2012, 

p.70) wonders about resorting to creativity in this field. She states that “An education can be 

said to be creative when the teacher who carries it out encourages and empower the students 

so they can investigate and rediscover their own knowledge, induce co-working, set up their 

own knowledge”.  

According to Moreno & Azcárate (2003) traditional teaching methods that involve 

definition, demonstration, and activities with closed problems with predetermined answers, 

produces ill-prepared students in mathematics. Teachers, by teaching this subject without 

creativity, do not allow students to appreciate its beauty. 

Regarding excessive stringency of formulas, Carvajal (1981) states that it is 

necessary, among other aspects, to exercise imagination, stimulate mental activity, not giving 
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priority to hard-lines techniques in learning, and that this has been the case, for a long time, in 

teaching of drawing, and what we agree to be still present in teaching of mathematics, in 

general, and with a greater intensity in geometry, in which, almost exclusively, the Euclidean 

is known both in primary education and in math teachers training.  

In addressing visualization, Cunningham (1991) refers to this ability, in a very broad 

sense, even in ancient Greece, when geometers sketched their diagrams in the sand. For this 

author, mathematics began to move beyond intuitive areas. However, visuals were considered 

weaknesses. For example, deficiencies in Euclid's axiomatic were hard to be eliminated since 

standardized flat figures made Euclidean axioms self-evident. For him, “[...] restoring the 

visual and intuitive side of mathematics opens new possibilities for mathematical work, 

especially nowadays when computing has enough power to support it with accurate 

representations of problems and their solutions.” (Cunningham, 1991, p.70). Going a little 

further, Cunningham (ibid.) states that “[...] adding visualization to mathematics education 

promotes intuition and understanding and allows a wider range of coverage of mathematics 

subjects. But it provides more than this.” 

But what are knots? Obviously, this questioning, out of context, can lead to several 

different answers. It is our interest, especially in this article, to approach such concept in 

mathematical context and, more directly, in teaching of Geometry, in a visual, imaginative 

and creative way, without a mathematical deepening that, in our view, does not apply to the 

context that we're working on.  

It is related to topology, perhaps one of the most complex topic in Mathematics, 

which is generally not addressed or studied in education programs, but in bachelor’s degree 

programs, concerning to research on pure and applied mathematics field. It plays an 

important role in fundamental group and covering spaces, therefore, the possibility of 

verifying when two or more spaces are homeomorphs, that is, finding a continuous bijective 

inverse function that transforms into each other. In undergraduate courses, this can be 

explored geometrically, in a simple way, in elementary disciplines of Differential and Integral 

Calculus, since the study of functions and continuity is part of this area. We can illustrate this 

as follows.  

A closed range [a, b] of real numbers cannot be homeomorphic to an open range  

(a, b), for instance, because there is no bijection between both. One way is to verify the first 

one is a compact set while the second one is not, and this is a subject of real analysis branch, 

usually included in the Mathematics education programs curriculum. A second example can 

be explored in algebra courses, the absence of homeomorphisms between the straight line (R 

as a numeric set) and the plane (R2 as a set of ordered pairs). Removing a point from the 

plane (a pair in R2) this space remains connected while removing a point from the line (an R 

element) it becomes disconnected, so these two sets are not homeomorphs. 

Let [0,1] be the range of real numbers, X is any set and f: [0,1]→X is a continuous 

function so that f(0) = x0 and f(1) = x1. According to Munkres (1975), the function f is called 

a path in X from x0 to x1. A smoother way to approach this subject is through flat diagrams, 
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i.e., starting with what are called pathways. If f and f’ are two paths in X, then there is a 

stronger relationship between them than simple homotopy.  

If f and f’ have the same start and end points, where I = [0,1] and if there is a 

continuous function F: I X I → X so that 

F(s,0) = f(s) and F(s,1) = f’(s)  

F(0,t) = xo and F(1,t) = x1, s  I e t  I,  the function F is called path homotopy 

(Figure 1). 

 

Figure 1 – Homotopy of ways.  

Source: adapted from Munkres (1975, p.319) by the authors. 

Let the space X be taken as R2- (0,0), geometrically, the perforated plane and the 

functions f(s)= (cos(s), 2sin(s)), s [0, π], whose graphic representation is a semi-ellipse in 

the upper semiplane; g(s)= (cos(s), sin(s)), s [0, π], whose representation in the upper 

semiplane is a semicircle; and h (s) = (cos(s), -sin(s)), s [0, π] which is the semicircle in the 

lower semiplane. 

In Figure 2, we illustrate the four representations of the paths. In it we observe that f 

and g are homotopic paths in R2- (0,0) as well as with the vertical axis. However, the vertical 

axis does not represent a homotopic path with semicircle in the lower semiplane given by h 

(s) since there is no image at R2- (0,0) for all points of this axis.  

 

Figure 2 –  Homotopy and non-homotopy in the perforated plane. 

Source: adapted from Munkres (1975, p.321) by the authors. 
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According to Conway et al. (1991) we can take an extension cord, and connect one 

end to the other, which will produce a loop (a knot in mathematical sense). This makes one 

wonder whether or not it can be untied without disconnecting or breaking the cord. Another 

intuitive loop (knot) test can be peformed using a thin chain necklace. We can throw it 

loosely in a crowded drawer, then pick it up without any care and place it on a flat table. We 

will see that it is all curled up or entangled when we try to make it in a flat closed curve 

representation. The third experiment is to take a string about 1m long and do the same as with 

the necklace and the cord. 

In these hands-on experiments we will be able to find that the loops (knots) obtained 

may or may not be undone and, if they may, without a cutting or crossing them with 

themselves, they are considered 'false knots'. By this, we come to equivalent loops (knots), 

that is, if it is possible to rearrange each other without cutting and without allowing a passing 

through itself to which we mathematically associate to the homotopy of paths. (Figure 1). 

In the case of loosening the cord on the table, overlapping it and subsequently trying 

to rearrange it, we will verify the fewest possible crosses that will occur with the cord (Figure 

3). 

 

Figure 3 – Two points self-intersected rope.  

Source: group collection. 

From the experimental, intuitive and visual aspects illustrating loops (knots and 

paths), in what follows, we delineate the concept. Munkres (1975, p.326) defines it as 

follows: “Let X be a space and x0 a point in X. A path in x0 that starts and ends in x0 is called 

a loop based in x0”.  

Methodological procedures  

This article aims to investigate how participants in a geometry research group 

intuitively, imaginatively and creatively interpret 'knots' in ropes randomly dropped onto a 

flat surface. This is a qualitative research whose design fits the strategic principle 

‘experiments and quasi-experiments’ according to Bauer and Gaskell (2015). Regarding the 

instruments for data collection, we took into account researches’ observation and documents 

surveyed, whilst the analytical treatment of data was carried out trhough   rhetorical analysis, 

from the perspective of Dittrich (2016). As for knowledge interests, the experiment was 

based on a consensus building approach and research subjects emancipation. These four 
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factors are summarized in Table 1. 

Table 1 – The four dimensions of research process 

Design principles  Data generation  Data analysis Knowledge 

Interests 

Experiment  Audiovisual 

Records (photos) 

Content analysis Emancipation 

and 

empowerment 

                                     Source: adapted from Bauer and Gaskell (2015, p.19) 

As it is an experimental register, we understand that collecting experment images and 

analyzing them according to the theory, provides possibilities of interpretations in locus, 

which is presented as possibilities for a work group. To Penn (2015, p.319), “[...]Semiology 

provides the analyst with a set of conceptual instruments for a systematic approach to sign 

systems in order to discover how they produce meaning. Much of its accuracy comes from a 

series of theoretical distinctions that are captured through a specific vocabulary”.  

Thus, exploring the photographic records of participants and experiment, in natural 

language may help the researcher to interpret them based on the conceptual theoretical 

foundations of the subject under consideration. 

Regarding to content analysis, Bauer (2015) claims that it is just a method for 

analyzing text within empirical social sciences and, as Barker (1964) states, empiricism needs 

experience, consisting of experimental rather than rational thinking leading to inductive 

method. This kind of knowledge needs experiment justification, and this is would be the main 

focus of the study and research group in question. 

Ten individuals took part in the activity. At first, researchers randomly distributed a 

data entry sheet containing two activities, which will be described and analyzed in the next 

item. The sheets were identified with one of the letters: A, B, C, D, E, F, G, H, I and Y, not 

sequenced, in order to preserve participants' identities.  

Using arguments, narratives, records and comments, each activity had an initial part 

with alternatives to choose from and a second part with its justification, as well as 

photographic records all sent to the researcher. Thus, we will have the research text corpus, 

which, for Bauer (2015, p. 192), “[...] is the representation and expression of a writing 

community. Based on this, the result of a content analysis is the dependent variable, the thing 

to be explained.” The data collected will be analyzed next. 

Data analysis 

Initially, using a multimedia projector, researchers displayed the image (Figure 4) and 

instructed students to observe the trivial knot: a closed loop with zero knots forming a circle, 

and the trefoil knot: a closed loop with three knots forming a trefoil.  
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Figure 4 – Projected image.  

Source: group collection. 

Students were asked then to indicate in the record sheet the answer to the following 

question. 

 

This activity aimed to verify whether the participants would choose criteria to 

determine whether or not the knots observed were equivalent. 

The data collected showed that none of the participants answered yes, maybe or I 

can’t even imagine to the first question (Chart 1). Only one participant answered no; six 

answered I’d like to try and the other three, indicated both no and I’d like to try. 

 

 

 

Chart 1 –  Answers distribution to activity 1.  

Source: research data. 

Then, in the same activity, they were asked: If you also answered I’d like to try take 

the rope provided by the teacher and confront your initial hypothesis. We observed that the 

rope provided by the teacher was apparently a trivial rope (Figure 4A), there was already a 

knot previously made on it. Thus, participants should try to turn a trefoil knot (Figure 4B) 

into a trivial knot without untying the rope. The participant G who was the only one to 

Can you imagine the transformation from one knot to another without breaking the rope:    

(  ) yes        (  ) no      (..) maybe         (  ) I can’t even imagine          (  ) I’d like to try 
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answer just no, expressed: 

G: When teacher handed me the rope, it had already a knot, i.e. it was not circular 

(trivial knot). As it was possible to create the trefoil knot, we believe that it will not be 

possible the transformation from one into another without breaking it. 

Among those who answered no and I’d like to try, we find the following records: 

A: The transformation could not be performed. 

D: I figured it wouldn't be possible, because we have knots on different sides and 

when we try to untie them, we get back to the “initial” situation. In other words, when you 

undo the knot on top, it comes underneath and vice versa. 

E: [...]There is no such possibility, since one of the knot lines passes above and the 

other one passes below. By trial and error, we get to the point of having a knot with another 

one inside. The following figure confirmed my hypothesis (figure 5). 

 

Figure 5 –  Answer from Student E.  

Source: research data. 

In these records, we can observe that, even without knowing knot theory, the 

participants realized something very important and well-grounded in scientific literature, the 

well-known Reidemeister move that are local transformations (moves) of knots that 

transform one into another equivalent. There are 3 types of moves as illustrated in Figure 6. 

 

Figure 6 – Reidemeister moves.  

Source: authors. 
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The others answered simply I’d like to try without risking to figure it out. 

B: When moving the top which passes over, we find the following figures (Figure 7): 

 

Figure 7 –  Answer from Student B.  

Source: research data. 

C: It was impossible to undo the knot without breaking the rope. 

F: I could not untie the knots either by passing over or trying to untwist it. Always go 

back to the starting position or the knots overlap and there are two circles, or there is only 

one knot and a circle. 

H: I could only move into two overlapping circles, but couldn't make one with zero 

knots (figure 8). 

 

Figure 8 – Drawing by Student H.  

Source: research data. 

We observed that all participants had the same kind of perception. We may call this 

intuition in the same sense treated by Hirza et al. (2014) that puts intuition as an immediate 

effort without reference use and the results considered as truth, so that the person using their 

intuition feels that there is no need to prove or justify their thinking. In this sense, 

mathematical knowledge and the justification for such statements is important. Such concern 

is reflected in the records of participants I and Y. 

I: I’m afraid it is not possible. We had to 'pass' the top line to the other side, which is 

not possible at this knot. 

Y: I believe it is impossible to undo the knots this way, because in every attempt I 

returned to the same knot. 
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According to Fischbein (1987, p.90), “experience plays a fundamental role in shaping 

our intuitions, and this at least partially explains its impact on any productive, theoretical or 

practical endeavor. On the other hand, experience is always restricted to a limited system of 

circumstances and this contributes to limiting the domain of the reliability and effectiveness 

of intuitions”. 

These participants used the words “I’m afraid” and “I believe” in their records, which 

shows that intuition alone was not enough to determine the possibility of turning one knot 

into another. But by experimenting and visualizing, they were able to argue. Therefore, from 

discussions held in the group, it was possible to realize that, from the experienced situations, 

the participants could intuit that it was impossible to undo the knot just by rearranging the 

rope. That is, the discussions corroborate Janos (2009) in stating that if we have a trefoil knot 

on a rope, it will not be possible to undo it, that is, to turn it into a trivial knot. However, this 

does not necessarily constitute proof that these two nodes are not topologically equivalent, as 

perhaps there was not enough skill to turn one knot into another.  

We observed in this experiment that the objective was not to prove the impossibility 

of transforming one knot into another, but to verify whether individuals would choose criteria 

to determine whether or not the two given curves were equivalent. After the discussions, we 

came to the conclusion that the given knots were not equivalent, because only by cutting the 

rope it would be possible to transform one knot into another, as shown in Figure 9. 

 

Figure 9 –  Knot transformation.  

Source: authors. 

In order to prove that two knots are topologically distinct, it is necessary, according to 

Stewart (2012), to find certain invariants, that is, properties that do not change with 

equivalence. The first and simplest of these properties is the tricolorability that allows us to 

distinguish trivial knot from trefoil knot. We observe that a knot is tricolorable if the arcs in 

its diagram can be colored with exactly 3 different colors, so that each intersection would be 

the meeting of 3 different colors or the same color, as illustrated in Figure 10. Obviously, 

trivial knots are not tricolorable. 
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Figure 10 –  Knot tricolorability.  

Source: authors. 

In the second activity, the researchers projected once more the trefoil knot image and 

the inverted or reflected trefoil: same number of trefoil knots (or as denominated in topology, 

left-handed trefoil and right-handed trefoil). 

Similarly to the previous activity, in this experiment the objective was to investigate if 

participants could construe / intuit if the given knots would be equivalent. We emphasize that 

at no time the participants were given the name inverted knot. 

Students were asked to record on the sheet provided an answer to the following 

question with alternatives, in which more than one could be chosen. 

 

Chart 2 shows answers distribution.  

Are the knots represented (figure 11) equal to each other? 

 

Figure 11 –  Trefoil knots.  

Source: research data. 

(  ) yes    (  ) no     (..) maybe (  ) I can’t even imagine       (  ) I’d like to 

try 
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Chart 2 –  Answers distribution to activity 2.  

Source: research data. 

We reiterate that none of them answered yes, as was the case in activity 1. Only two 

answered no, in contrast to only one in the first activity, and one answered no and I’d like to 

try, unlike in the first case when three of them had answered that way. The others answered 

I’d like to try. From this response, the following request was made: 

If you have also answered 'I’d like to try' take the rope given and confront your initial 

hypothesis. What was the result? Is it possible to pass each other without breaking the rope? 

 Participant A, who have answered no and I’d like to try, offered both 

alternatives as follows: 

A: Could not perform the transformation without breaking the rope. 

It is not possible to verifiy if this participant did not see or understand what would 

happen or was unsure of offering the answer since she could have explored the material 

resource to ponder over her answer. 

 The two participants who only answered no made the following entries: 

D: As the knots are reflected, when trying to transform them into each other, the same 

problem occurred as in the previous activity. 

G: The knots are opposite to each other, in the same arrangement, the knot that is 

above one, is below the other. 

Unlike the previous participant, it seems that both explored visualization as a mental 

construct (Leivas, 2009) and intuition (Fischbein, 1987) to provide answers to researchers. 

The others, who had only opted for the alternative I’d like to try, expressed 

themselves as follows. 

B: When moving the part of a reflective knot, we have the following figures and either 

by rotation or translation, we do not get to the figure, so it is not possible to transform the 

reflected knot into a trefoil knot (figure 12). 
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Figure 12–  Drawing by Student B.  

Source: research data. 

C: Again, knot number two could not be transformed into knot zero. Knots 1 and 2 are 

reflected. 

E: It resulted in the same structure as the previous knot, but all knots are inverted, 

using rotation, translation among others moves, knots located in the same place of knot 1 and 

node 2, are always inverted to each other, no matter other's location. 

F: The rose-colored seems to be the inverse of the green-colored, but I can't move 

from one to the other, nor turn it all backwards. 

H: No, it seems that the knots are inverted "horizontally". 

I: I’m afraid it is not possible. 

Y: They are inverted, and it is also impossible to move from knot to knot. 

We verify, since most students chose to explore the didactic resource available to 

draw their conclusions and this does not mean that they did not intuit from visual skills, what 

could possibly be happening. In this sense, it is important that the investigator also explore, in 

some situations, the resource of the interview, in order to elucidate participants thinking. 

There are actually two trefoil knots, right-handed and left-handed, which are mirror 

images of each other, as illustrated in figure 13. 

 

Figure 12–  Right-handed and left-handed.  

Source: authors. 

It was demonstrated by Max Dehn, using group theory in 1914, that trefoil knots are 

not equivalent to each other. 
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Final considerations  

This article presented a qualitative research, carried out with a geometry study and 

research group with teachers in continuous action aiming to investigate how the participants 

would interpret intuitively, imaginatively and creatively 'knots' obtained by loosening ropes 

randomly on a flat surface. 

Activities adapted from Conway et al. (1991) were proposed exploring knots 

originating from the release of a bicycle belt at random after being removed. These works 

aimed at geometry and imagination solely, to which the authors of this article added intuition. 

Initially the group focused on its own belt and, later on, used strings as a didactic 

resource in an attempt to search for answers to the questions raised. Moreover, we came 

across the mathematical concepts involved in the process which led us to some aspects of 

knot theory; the pathway from topology; homotopic spaces and cover theory. However, 

However, we do not delve into theoretical-mathematical concepts since it is an investigation 

with teachers who work at different educational stages. The intention was to adapt activities 

of these advanced contents, not always studied in initial training courses, in a way that can be 

directed to elementary students, in an intuitive and visual exploratory way. 

Research results initially showed that individuals have difficulty following intuition as 

a process that can evidence knowledge. This issue, however, needs proof of what 

visualization may contribute to the help people imagine situations that can occur concretely. 

Initially, it was asked if the participants had the mental construct (visualization) of 

what was indicated in a certain situation; what they could intuit (conjecture) about what they 

had envisioned and, finally, exploit the educational resource provided by the researchers to 

prove or reject the hypothesis raised. 

The results showed that it is possible to explore creativity and imagination to develop 

visual skills, since the theme approached is not often explored in the early years of math 

teachers training courses. Therefore, we consider that the research objective was achieved.  
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