Resumo
Como mensurar fenômenos que não podem ser diretamente observados? O principal objetivo desse artigo é demonstrar por que a análise fatorial é a resposta mais adequada para responder a essa pergunta. Metodologicamente, utilizamos um banco de dados com diferentes medidas de democracia para ilustrar como a técnica de análise fatorial de componentes principais pode ser utilizada para medir as duas dimensões da poliarquia propostas por Robert Dahl (1971): contestação e inclusividade. Em termos substantivos, esperamos facilitar a compreensão dessa técnica nas Ciências Sociais em geral e na Ciência Política em particular.
Abstract:
How do we measure phenomena that cannot be directly observed? The principal aim of this paper is to demonstrate why factor analysis technique is the best answer to this question. Methodologically, we use a database with different indicators of democracy to show how principal component analysis can be employed to measure the two polyarchy dimensions proposed by Robert Dahl (1971): contestation and inclusiveness. On substantive grounds, we hope to facilitate the understanding of factor analysis technique in Social Sciences in general and in Political Science in particular.
Keywords: factor analysis; democracy; polyarchy; measurement; quantitative methods
Referências
ASHER, H. B. Causal Modeling. Beverly Hills, CA: Sage, 1983.
BAKER, E. K. Polyarchy Plus: Measuring the Quality of Democracy within Thirteen Eastern European Countries. Trabalho apresentado na American Political Science Association, São Francisco, CA, 30 de Agosto - 2 de setembro, 2001.
BARTHOLOMEW,D.J. The foundations of factor analysis, Biometrika, 71, 221-232, 1984.
BLALOCK, H. M. Measurement in the social sciences: Theories and strategies. Chicago, Illinois: Aldine Publishing Company, 1974.
BLALOCK, H. M. Basic Dilemmas in the Social Sciences. Beverly Hills, CA: Sage, 1984.
BOLLEN , K. A.; ARMINGER, G. Observational Residuals in Factor Analysis and Structural Equation Models. Sociological Methodology, 21, 235-262, 1991.
BOLLEN, K. A. Structural Equations with Latent Variables. Wiley Series in Probability and Mathematical Statistics. Nova York: Wiley, 1989.
BOLLEN, K.A.; CURRAN, P. J. Latent Curve Models: A Structural Equation Perspective. Wiley Series in Probability and Mathematical Statistics. Nova York: Wiley, 2006.
BOLLEN, K.A.; LONG, J.S. Testing Structural Equation Models. Newbury Park, CA: Sage, 1993.
BOLLEN, K. A.; GRANDJEAN, B. D. “The Dimension(s) of Democracy: Further Issues in the Measurement and Effects of Political Democracy.” American Sociological Review, 46, 5, 651-59, 1981.
BONJEAN, C. M.; BROWNING, H. L. Toward Comparative Community Research: A Factor Analysis of United States Counties. The Sociological Quarterly, 10, 2, 157-176, 1969.
BONJEAN, C. M.; BROWNING, H. L. “The Scree Test for the Number of Factors.” Multivariate Behavioral Research, 1(2), 245-276, 1966.
CATTELL, R. B. The Scientific Use of Factor Analysis in Behavioral and Life Sciences. Nova York: Plenum, 1978.
COLLIER, D; SEAWRIGHT; J, MUNCK; GERARDO, L. Sources of Leverage in Causal Inference: Toward an Alternative View of Methodology. In: BRADYM, H. e COLLIER, D. (orgs), Rethinking Social Inquiry: Diverse Tools, Shared Standards. Lanham, MD: Rowman and Littlefield, 2004.
COOPER, J. C.B. Factor Analysis: An Overview. The American Statistician, 37, 2, 141- 147, 1983.
COPPEDGE, M. “Two Persistent Dimensions of Democracy: Contestation and Inclusiveness.” Journal of Politics, 70, 3, 1-45, 2008.
COSTELLO, A. B; OSBORNE, J. W. “Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis.” Practical Assessment Research & Evaluation, 10, 7, 13-24, 2005.
DAHL, R. Poliarquia: Participação e Oposição. São Paulo: Edusp, 1971.
DANCEY, C; REIDY, J. Estatística Sem Matemática para Psicologia: Usando SPSS para Windows. Porto Alegre: Artmed, 2006.
DECOSTER, J. Overview of Factor Analysis. [Online] Disponível em: <http://www.stathelp.com/notes.html> Acesso em: [22 jan. 2010].
DUNN, M. J.; SCHNECK, R.; LAWSON, J. “A Test of the Uni-Dimensionality of Various Political Scales through Factor Analysis: A Research Note.” Canadian Journal of Political Science / Revue Canadienne de Science Politique, 6, 4, 664-669, 1973.
DUNTEMAN, G. H. Principal Components Analysis. Newbury Park: Sage, 1989.
FIELD, A. Discovering Statistics Using SPSS. Londres: Sage, 2005.
GARSON, G. D. Statnotes: Topics in Multivariate Analysis. [Online] Disponível em? <http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm> Acesso em: [22 jan.2010].
GRUMM, J. G. “A Factor Analysis of Legislative Behavior.” Midwest Journal of Political Science, 7, 4, 336-356, 1963.
HAIR, Jr; BLACK, W. C; BABIN, B. J; ANDERSON, R. E e TATHAM, R. L. Multivariate Data Analysis. 6ª edição. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.
HARMAN, H.H. Modern Factor Analysis. 2ª edição. Chicago: University of Chicago Press, 1967.
HO, R. Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS. North Carolina: Chapman and Hall, 2006.
ISOGAWA, Y; OKAMOTO, M. “Linear Prediction in the Factor Analysis Model.” Biometrika, 67, 2, 482-484, 1980.
KAPLUNOVSKY, A.S. Why using factor analysis? (dedicated to the centenary of factor analysis). [Online] Disponível em: <http://www.magniel.com/fa/kaplunovsky.pdf> Acesso em: [22 jan. 2010].
KIM, J; MUELLER, C. W. Factor analysis: Statistical methods and practical issues. Beverly Hills, CA: Sage, 1978a.
KIM, J; MUELLER, C. W. Introduction to factor analysis - what it is and how to do it. Beverly Hills, CA: Sage, 1978b.
KING, G. How not to lie with statistics [Online] Disponível em: <http://gking.harvard.edu/files/mist.pdf> Acesso em: [22 jan. 2010].
KLINE, R. B. Principles and Practice of Structural Equation Modeling. Nova York: Guilford, 2004.
LAWLEY, D. N; MAXWELL, A. E. “Regression and Factor Analysis.” Biometrika, 60, 2, 331-338, 1973.
LIGNY, C. L; NIEUWDORP, G. H. E; BREDERODE, W. K; HAMMERS, W. E; HOUWELINGEN, J. C. van. An Application of Factor Analysis with Missing Data. Technometrics, 23, 1, 91-95, 1981.
MACKELPRANG, A. J. “Missing Data in Factor Analysis and Multiple Regression.” Midwest Journal of Political Science, 14, 3, 493-505, 1970.
MOONEY, C. Z. “Bootstrap Statistical Inference: Examples and Evaluation For Political Science.” American Journal of Political Science, 40, 570-602, 1996.
PALLANT, J. SPSS Survival Manual. Open University Press, 2007.
ROBERTS, B. R. “A Confirmatory Factor-Analytic Model of Alienation.” Social Psychology Quarterly, 50, 4, 346-351, 1987.
RUMMEL, R. J. “Understanding Factor Analysis.” The Journal of Conflict Resolution, 11, 4, 444-480, 1967.
RUMMEL, R.J. Applied Factor Analysis. Evanston: Northwestern University Press, 1970.
SANTOS, M. H; COUTINHO, M. “Política comparada: estado das artes e perspectivas no Brasil.” BIB, 5 4, 3-146, 2000.
SCHAWB, A.J. Eletronic Classroom.[Online] Disponível em: <http://www.utexas.edu/ssw/eclassroom/schwab.html> Acesso em: [22 jan.2010].
SLATIN, G. T. “A Factor Analytic Comparison of Ecological and Individual Correlations: Some Methodological Implications.” The Sociological Quarterly, 15, 4, 507-520, 1974.
SOARES, G. “O calcanhar metodológico da ciência política no Brasil.” Sociologia, 48, 27-52, 2005.
SPEARMAN, C. General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201-293, 1904.
TABACHNICK, B.; FIDELL, L. Using multivariate analysis. Needham Heights: Allyn & Bacon, 2007.
THURSTONE, L. L. The vector of mind. Chicago: University of Chicago, 1935.
VALLE E SILVA, N. Relatório de Consultoria sobre Melhoria do Treinamento em Ciência Social Quantitativa e Aplicada no Brasil. Rio de Janeiro, Laboratório Nacional de Computação Científica, 1999.
VERMUNT, J. K; MAGIDSON, J. Factor Analysis with categorical indicators: A comparison between traditional and latent class approaches. In: VAN DER ARK, A.
CROON, M.A. and SIJTSMA, K. New Developments in Categorical Data Analysis for the Social and Behavioral Sciences. Mahwah: Erlbaum, 2005.
WERNECK VIANNA, L. et al. “Doutores e teses em ciências sociais.” Dados, 41, 3, 453-515, 1998.
YALCIN, I; AMEMIYA, Y. Nonlinear Factor Analysis as a Statistical Method. Statistical Science, 16, 3, 275-294, 2001.
ZELLER, R. A; CARMINES, E. G. Measurement in the social sciences: The link between theory and data. Cambridge: Cambridge University Press, 1980.
A Opinião Pública utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.