Banner Portal
Effect of elevated atmospheric CO2 on spectral reflectance of coffee leaves of plants cultivated at face facility
PDF (English)

Palavras-chave

Café
CO2
Cafeicultura

Como Citar

Ponzoni, F. J., Hamada, E., Gonçalves, R. R. do V., & Pazianotto, R. A. A. (2023). Effect of elevated atmospheric CO2 on spectral reflectance of coffee leaves of plants cultivated at face facility. Labor E Engenho, 17(00), e023023. https://doi.org/10.20396/labore.v17i00.8674473

Resumo

Climate change impacts are stressing many economic sectors worldwide, including agriculture, increasingly hindering efforts to meet human needs. Dioxide carbon is one of the main greenhouse gases and it affects directly the crop production. The objective of this study was to evaluate if established remote sensing indices could detect the effects of elevated atmospheric CO2 on the leaves of coffee (Coffea arabica L.) plantation growing under field conditions. Plots of coffee plants were exposed to ambient air (~390 µmol CO2 mol-1) and elevated CO2 (~550 µmol CO2 mol-1) at the free air CO2 enrichment (FACE) experiment. The statistical design was the completely randomized blocks with six replicates per treatment (ambient CO2 and elevated CO2), with 10m-diameter plots. Coffee leaves were spectrally characterized by reflectance spectra on their adaxial surfaces and seven vegetation indices were calculated from reflectance data: chlorophyll normalized difference index (Chl NDI), normalized difference nitrogen index (NDNI), normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), pigment specific simple ration indices for chlorophyll a (PSSRa) and chlorophyll b (PSSRb), and structural independent pigment index (SIPI). NDNI was a sensitive indicator of the atmospheric CO2 effects on coffee leaves. NDVI, PSSRa and PSSRb were sensitive to estimate the effect of elevated CO2 only under drought conditions. These indices identify the effect of CO2 when a long period with high precipitation deficit stressing the leaves occurred. Chl NDI, PRI and SIPI were not sensitive to atmospheric CO2.

https://doi.org/10.20396/labore.v17i00.8674473
PDF (English)

Referências

Ainsworth, E. A., & Long, S. P. (2021). 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27(1), 27-49.

Bishop, K. A., Leakey, A. D. B., & Ainsworth, E. A. (2014). How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: a global analysis of open top chamber and free air CO2 enrichment studies. Food Energy Security, 3(1), 33-45.

Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing, 19, 657-675.

Camargo, A. P., & Camargo, M. B. P. (2001). Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia, 60, 65-68.

Campbell, P. K. E., Middleton, E. M., McMurtrey, J. E., Corp, L. A., & Chappelle, E. W. (2007). Assessment of vegetation stress using reflectance or fluorescence measurements. Journal of Environmental Quality, 36, 832-845.

Carter, G. A., Bahadur, R., & Norby, R. J. (2000). Effects of elevated atmospheric CO2 and temperature on leaf optical properties in Acer saccharum. Environmental and Experimental Botany, 43, 267-273.

Coelho, C. A. S., Cardoso, D. H. F., & Firpo, M. A. F. (2015). Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil. Theoretical and Applied Climatology, 125, 769–784.

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229-239.

Fox, J., & Weisberg, S. (2011). Robust regression in R. In: J. Fox & S. Weisberg (Eds.). An R companion to applied regression. Thousand Oaks, CA: SAGE Publications.

Gamon, J. A., Peñuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35-44.

Ghini, R., Torre-Neto, A., Dentzien, A. F. M., Guerreiro-Filho, O., Iost, R., Patrício, F. R. A., Prado, J. S. M., Thomaziello, R. A., Bettiol, W., & Damatta, F. M. (2015). Coffee growth, pest and yield responses to free-air CO2 enrichment. Climate Change, 132, 307-320.

Gray, S. B., Dermody, O., & DeLucia, E. H. (2010). Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3. Journal of Experimental Botany, 61(15), 4413-4422.

Intergovernmental Panel on Climate Change – IPCC. (2021). Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 40 p.

Iost, R., Ghini, R., Nechet, K. L., & Bettiol, W. (2022). Effect of elevated atmospheric CO2 concentration on the incidence of rust and leaf miners, and growth of coffee. Australasian Plant Pathology, 51, 507–517.

Kumar, R. (1974). Radiation from plants-reflection and emission: a review. Purdue Research Foundation, Lafayette.

Lakkaraju, V. R., Zhou, X., Apple, M. E., Cunningham, A., Dobeck, L. M., Gullickson, K., & Spangler, L. H. (2010). Studying the vegetation response to simulated leakage of sequestered CO2 using spectral vegetation indices. Ecological Informatics, 5, 379-389.

Peñuelas, J., Filella, I., & Gamon, J. A. (1995). Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytologist, 131(3), 291-296.

Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3, 151-156.

Peñuelas, J., & Inoue, Y. (1999). Reflectance indices indicative of changes in water and pigments contents of peanut and wheat leaves. Photosynthetica, 36, 355-360.

Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-Plu. New York, NY: Springer-Verlag.

Pinheiro, J., Bates, D., Debroyu, S., & Sarkar, D. (2016). R Core Team - nlme: linear and nonlinear mixed effects models. R package version 3.1-128, Recovered from https://CRAN.R-project.org/package=nlme.

Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B., & Travasso, M. I. (2014). Climate change 2014: food security and food production systems. In: IPCC. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 485-533.

R Core Team. (2016). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153, 185-194.

Serrano, L., Peñuelas, J., & Ustin, S. L. (2002). Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sensing of Environment, 81, 355-364.

Smith, M. R., & Myers, S. S. (2018). Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change, 8(9), 834-839.

Thomas, S. C. (2005). Increased leaf reflectance in tropical trees under elevated CO2. Global Change Biology, 11, 197-202.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150.

Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martin, P., Cachorro, V., González, M. R., & Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99, 271-287.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Flávio Jorge Ponzoni, Emilia Hamada, Renata Ribeiro do Valle Ribeiro do Valle Gonçalves, Ricardo Antônio Almeida

Downloads

Não há dados estatísticos.