Banner Portal
The urban vegetation as thermal comfort service
PDF (Português (Brasil))

Keywords

City forestation planning
Vegetation cover
Local temperature
Green infrastructure
Heat island
Urban ecological succession.

How to Cite

Souza, C. M. de, Leite, L. P., Perini, P., & Karzmierczak, L. (2019). The urban vegetation as thermal comfort service: a proposal for a metropolitan neighborhood in Sao Paulo, Brazil. Labor E Engenho, 13, e019014. https://doi.org/10.20396/labore.v13i0.8654619

Abstract

Cities have been highlighted for its contribution to global warming whereas the lack of green areas is one of the main factors. Vegetation promotes environmental improvement and supports local thermal control, therefore, greening projects are important for urban planning. This project aims to present an urban forestation proposal for a neighborhood in Sao Paulo metropolitan region, Brazil focusing on thermal amelioration. Our methods involved green cover index measurement using geoprocessing tools and an urban forestation project proposal using mapping and drawing tools to increase the green cover area. As results, the area presented 18% of vegetation cover by the study time. The urban forestation planning utilized free public spaces and proposed new spaces throughout mobility changes. They were used tree species from a range of successional ecological stages to promote shading for paved surfaces over time. Tree allocation planning reached 37% of green cover, more than doubling the present green cover area in a homogeneous and well-distributed way. Other researches have been addressing the use of urban forestation process as
an important approach for urban planning regarding local temperature mitigation. We conclude that forestation as urban green planning is a functional approach to address climate regulation in urban areas.

https://doi.org/10.20396/labore.v13i0.8654619
PDF (Português (Brasil))

References

Akbari, H. (1992). Cooling our Communities. A Guidebook on Tree Planting and Light-Colored Surfacing. (H. Akbari, S. Davis, S. Dorsano, J. Huang, & S. Winnett, Orgs.). Washington, D.C.: U.S. Environmental Protection Agency. Recuperado de https://escholarship.org/uc/item/98z8p10x.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

Andreatta, V., Chiavari, M., & Rego, H. O. (2009). Rio de Janeiro e a sua orla: história, projetos e identidade carioca. Coleção Estudos Cariocas, 12(1), 1–16. Recuperado de http://portalgeo.rio.rj.gov.br/estudoscariocas/download/2418_O Rio de Janeiro e sua orla.pdf.

Armson, D., Stringer, P., & Ennos, A. R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11(3), 245–255. https://doi.org/10.1016/J.UFUG.2012.05.002.

Ballinas, M., & Barradas, V. L. (2016). The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model. Journal of Environment Quality, 45(1), 157. https://doi.org/10.2134/jeq2015.01.0056.

Barros, H. R., & Lombardo, M. A. (2016). A ilha de calor urbana e o uso e cobertura do solo em São Paulo-SP. Geousp – Espaço e Tempo, 20(1), 160–177. https://doi.org/10.1111/j.1744-7429.2009.00583.x.

Benedict, M. A., & McMahon, E. T. (2006). Green Infrastructure - Linking Landscapes and Communities. Washington, D.C.: Island Press.

Bonzi, R. S. (2015). O Zoneamento Ambiental Geomorfológico como Método para Planejar a Infraestrutura Verde em Áreas Densamente Urbanizadas. Revista Labverde, 10, 62–82.

Burgess, J., Harrison, C. M., & Limb, M. (1988). People, Parks and the Urban Green: A Study of Popular Meanings and Values for Open Spaces in the City. Urban Studies, 25(6), 455–473. https://doi.org/10.1080/00420988820080631.

Centro Regional de Informação das Nações Unidas. (2018). Relatório da ONU mostra população mundial cada vez mais urbanizada, mais de metade vive em zonas urbanizadas ao que se podem juntar 2,5 mil milhões em 2050. Recuperado 20 de dezembro de 2018, de https://www.unric.org/pt/actualidade/31537-relatorio-da-onu-mostra-populacao-mundial-cada-vez-mais-urbanizada-mais-de-metade-vive-em-zonas-urbanizadas-ao-que-se-podem-juntar-25-mil-milhoes-em-2050.

Gartland, L. (2008). Heat Island - Understanding and mitigating heat in urban areas. London: Earthscan.

Grey, G. W., & Deneke, F. J. (1978). Urban Forestry. New York: John Wiley.

Isaac, M., & van Vuuren, D. P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37(2), 507–521.

Kageyama, P. Y., & Castro, C. F. de A. (1989). Sucessão secundária, estrutura genética e plantações de espécies arbóreas nativas. Instituto de Pesquisas e Estudos Florestais, 42, 83–93.

Li, X., Zhang, C., Li, W., Ricard, R., & Meng, Q. (2015). Assessing street-level urban greenery using Google Street View and a modified green view index. Urban Forestry & Urban Greening, 14(3), 675–685. https://doi.org/10.1016/j.ufug.2015.06.006.

Livesley, S. J., McPherson, G. M., & Calfapietra, C. (2016). The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environment Quality, 45(1), 119. https://doi.org/10.2134/jeq2015.11.0567.

Locatelli, M. M., Arantes, B. L., Polizel, J. L., Silva-Filho, D. F. da, & Franco, M. de A. R. (2018). Panorama atual da cobertura arbórea da cidade de São Paulo. Revista Labverde, 9(1), 29–48.

Lombardo, M. A. (1990). O Processo de Urbanização e a Qualidade Ambiental: Efeitos Adversos do Clima. Revista Brasileira de Geografia, 52(4), 161–166.

Lopes, W., Matos, K., Leal Junior, J., Vieira, G., & Costa, N. (2014). A presença de Roberto Burle Marx na cidade de Teresina, Piaui. Cadernos de Arquitetura, 21(29), 79–101. https://doi.org/10.5752/P.23161752.2014v21n29p62.

Marengo, J. A. (2014). O futuro clima do Brasil. Revista USP, (103), 25. https://doi.org/10.11606/issn.2316-9036.v0i103p25-32.

McPherson, E. G., Nowak, D., Heisler, G., Grimmond, S., Souch, C., Grant, R., & Rowntree, R. (1997). Quantifying urban forest structure, function, and value: the Chicago urban forest project. Urban Ecosystems, 1, 49–61. https://doi.org/10.1023/A:1014350822458.

Milano, M. S., & Dalcin, E. C. (2000). Arborização de vias públicas. Rio de Janeiro: Light.

MIT Senseable Lab. (2017). Treepedia. Recuperado 20 de novembro de 2018, de http://senseable.mit.edu/treepedia.

Pinheiro, M. B. (2017). Plantas para Infraestrutura Verde e o Papel da Vegetação no Tratamento das Águas Urbanas de São Paulo: Identificação de Critétios para Seleção de Espécies. Universidade de São Paulo.

Pon, B. (1999). Pavement Albedo. Recuperado 20 de novembro de 2018, de https://web.archive.org/web/20070829153207/http://eetd.lbl.gov/HeatIsland/Pavements/Albedo/.

São Paulo. Portaria SVMA N° 61 de 2011, Pub. L. No. N. 61 de 2011, 49 (2011). Secretaria do Verde e Meio Ambiente de São Paulo.

São Paulo. (2015). Manual Técnico de Arborização Urbana (3°). São Paulo. Recuperado de https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/meio_ambiente/MARBOURB.pdf.

Schatz, J., & Kucharik, C. J. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371–2386. https://doi.org/10.1175/JAMC-D-14-0107.1.

Schubert, T. H. (1979). Trees for urban use in Puerto Rico and the Virgin Islands. Institute of Tropical Forestry (1o ed, Vol. 2). Porto Rico: U.S. Department of Agriculture. https://doi.org/10.1002/aheh.19740020603.

Seiferling, I., Naik, N., Ratti, C., & Proulx, R. (2017). Green streets − Quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning, 165, 93–101. Recuperado de https://doi.org/10.1016/j.landurbplan.2017.05.010.

Silva, W. M., Zorzanelli, J. P. F., Moreau, J. S., Abreu, K. M. P. de, & Kunz, S. H. (2017). Estrutura e sucessão ecológica de uma comunidade florestal urbana no sul do Espírito Santo. Rodriguesia, 68(2), 301–314. https://doi.org/10.1590/2175-7860201768202.

Taha, H., Akbari, H., & Rosenfeld, A. (1989). Vegetation Canopy Micro-Climate: A Field-Project in Davis, California. Journal of Climate and Applied Meteorology, 12. https://doi.org/10.1007/978-3-319-46448-0.

Trowbridge, P. J., & Bassuk, N. L. (2004). Trees in the Urban Landscape: Site Assessment, Design, and Installation. Hoboken: Wiley & Sons.

Yang, L., Qian, F., Song, D. X., & Zheng, K. J. (2016). Research on Urban Heat-Island Effect. Procedia Engineering, 169, 11–18. https://doi.org/10.1016/j.proeng.2016.10.002.

A Labor e Engenho utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Downloads

Download data is not yet available.