Banner Portal
Green roofs in environmental policies and as a mitigation measure for urban floods
PDF (Português (Brasil))

Keywords

Hydrological modeling
SUDS
Ecoroof

How to Cite

Roberta Morais, B., David Méndez Quintero, J. ., Rodrigues Macedo, D., & Antônio Nero, M. . (2021). Green roofs in environmental policies and as a mitigation measure for urban floods: a systematic review. Labor E Engenho, 15(00), e021018. https://doi.org/10.20396/labore.v15i00.8663910

Abstract

This article aims to report a history of studies and the state of the art regarding the concept of green roofs in environmental public policies and research related to the mitigation of urban flooding. Therefore, a historical bibliographic review of the techniques and studies used in the last 15 years in the management and planning process for the implementation of green roofs as a measure to mitigate urban flooding was carried out. Three search repositories were used: Scopus, Capes Periodicals, and Scielo. The search was performed using a set of selected keywords and their combinations in Portuguese, Spanish, and English. After processing and analyzing the information contained in the documents found, 33 works were obtained, in which applications and practical examples are reported, as well as the evolution due to technological innovation. In the selected documents, it was possible to observe that there are laws in force on the subject and that green roofs are efficient in the management of urban rainwater, contributing not only to the mitigation of flooding in cities but also to other environmental factors such as heat islands. Furthermore, it was observed that the performance in arresting and reducing runoff is increased when more than one sustainable rainwater management technique is used, such as the use of green roofs and permeable pavements.

https://doi.org/10.20396/labore.v15i00.8663910
PDF (Português (Brasil))

References

Alamy Filho, J. E., Barcelos e Manna, I. B. C., Melo, N. A. de, & Caixeta, A. C. M. (2016). Eficiência hidrológica de telhados verdes para a escala de loteamentos residenciais. Sociedade & Natureza, 28(2), https://doi.org/10.1590/1982-451320160206

Bai, Y., Li, Y., Zhang, R., Zhao, N., & Zeng, X. (2019). Comprehensive Performance Evaluation System Based on Environmental and Economic Benefits for Optimal Allocation of LID Facilities. Water, 11(2), 341. https://doi.org/10.3390/w11020341

Barszcz, M. (2015). Influence of Applying Infiltration and Retention Objects to the Rainwater Runoff on a Plot and Catchment Scale – Case Study of Służewiecki Stream Subcatchment in Warsaw. Polish Journal of Environmental Studies, 24, 57-65. https://doi.org/10.15244/pjoes/29197

Belo Horizonte. (2020). Decreto municipal n° 17.273 de 04 de fevereiro de 2020. Disponível em: https://www.cmbh.mg.gov.br/atividadelegislativa/pesquisarlegislacao/decreto/17273/202. Acesso em: 03 fev. 2021.

Berardi, U., Ghaffarianhoseini, A. H., & Ghaffarianhoseini, A. (2014). State-of-the-art analysis of the environmental benefits of green roofs. Applied energy, v. 115, p. 411-428. https://doi.org/10.1016/j.apenergy.2013.10.047

Burszta-Adamiak, E. (2012). Analysis of the retention capacity of green roofs. Journal of Water and Land Development, 16(1), pp. 3-9. https://doi.org/10.2478/v10025-012-0018-8

Canoas. (2014). Lei Municipal nº 5.840, de 27 de maio de 2014. https://www.lexml.gov.br/urn/urn:lex:br;rio.grande.sul;canoas:municipal:lei:2014-05-27;5840. Acesso em: 27 de agosto de 2020.

Carter, T. L., & Rasmussen, T. C. (2006). Hydrologic Behavior of Vegetated Roofs 1. Journal of the American Water Resources Association, 42(5), pp. 1261-1274. https://doi.org/10.1111/j.1752-1688.2006.tb05299.x

Carter, T., & Jackson, C. (2007). Rhett. Vegetated roofs for stormwater management at multiple spatial scales. Landscape and urban planning, 80(1-2), pp. 84-94. https://doi.org/10.1016/j.landurbplan.2006.06.005

Castro, A. S., et al., Goldenfum, J. A., da Silveira, A. L., DallAgnol, A. L. B., Loebens, L., Demarco, C. F., ... & Quadro, M. S. (2020). The analysis of green roof's runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-06777-5

Chow, M. F., Bakar, M. F., Roslan, M. A., Fadzailah, F. A., Idrus, M. F., Ismail, N. F., ... & Basri, H. (2015). Hydrological performance of native plant species within extensive green roof system in Malaysia. ARPN J. Eng. Appl. Sci, 10(15), 6419-6423.

Chow, M. F., Bakar, M. F. A., Sidek, L. M., & Basri, H. (2017). Effects of substrate types on runoff retention performance within the extensive green roof. Journal of Engineering and Applied Sciences, 12(21): 5379-5383.

De-Ville, S., Menon, M., Jia, X., Reed, G., & Stovin, V. (2017). The impact of green roof ageing on substrate characteristics and hydrological performance. Journal of Hydrology, 547, 332-344. https://doi.org/10.1016/j.jhydrol.2017.02.006

Ercolani, G., Chiaradia, E. A., Gandolfi, C., Castelli, F., & Masseroni, D. (2018). Evaluating performances of green roofs for stormwater runoff mitigation in a high flood risk urban catchment. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.09.050

Goiânia. (2012). Lei complementar n° 235, de 28 de dezembro de 2012. Disponível em: https://www.goiania.go.gov.br/html/gabinete_civil/sileg/dados/legis/2012/lc_20121228_000000235.htm. Acesso em: 27 ago. 2020.

Guarulhos. (2010). Lei Municipal n° 6.793, de 28 de dezembro de 2010. Disponível em: https://leis.guarulhos.sp.gov.br/06_prefeitura/leis/leis_download/06793lei.pdf. Acesso em: 27 ago. 2020.

Guarulhos. (2012). Lei Municipal n° 7031, de abril de 2012. Disponível em: https://leismunicipais.com.br/a/sp/g/guarulhos/lei-ordinaria/2012/703/7031/lei-. Acesso em: 27 ago. 2020.

Hakimdavar, R., Culligan, P. J., Finazzi, M., Barontini, S., & Ranzi, R. (2014). Scale dynamics of extensive green roofs: Quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance. Ecological Engineering, 73, pp. 494-508. https://doi.org/10.1016/j.ecoleng.2014.09.080

Hilten, R. N., Lawrence, T. M., & Tollner, E. W. (2008). Modeling stormwater runoff from green roofs with HYDRUS-1D. Journal of hydrology, 358 (3-4), pp. 288-293. https://doi.org/10.1016/j.jhydrol.2008.06.010

Jiménez, A., Russo, B., Ruiz, O., & Acero, A. (2021). Eficiencia hidráulica y ambiental de cubiertas verdes en un clima mediterráneo continental seco. Aplicación a una nueva urbanización en la ciudad de Zaragoza (España). Ingeniería Del Agua, 25(2), 127. https://doi.org/10.4995/ia.2021.14112

Li, Y., & Babcock, R. W. (2016). A Simplified Model for Modular Green Roof Hydrologic Analyses and Design. Water, 8, 343. https://doi.org/10.3390/w8080343

Loc, H. H., Duyen, P. M., Ballatore, T. J., Lan, N. H. M., & Gupta, A. D. (2017). Applicability of sustainable urban drainage systems: an evaluation by multi-criteria analysis. Environment Systems and Decisions, 37(3), pp. 332-343. https://doi.org/10.1007/s10669-017-9639-4

Loiola, C., Mary, W., & Da Silva, L. P. (2019). Hydrological performance of modular-tray green roof systems for increasing the resilience of mega-cities to climate change. Journal of Hydrology, 573, pp. 1057-1066. https://doi.org/10.1016/j.jhydrol.2018.01.004

Masseroni, D., & Cislaghi, A. (2016). Green roofbenefits to reduce the risk of flooding in the catchment scale. Environmental Earth Sciences, 75(7), pp. 1-11. https://doi.org/10.1007/s12665-016-5377-z

Mendonça, T. N. M. de, & Melo, A. B. de. (2017). Telhado verde modular extensivo: biodiversidade e adaptação das plantas aos Blocos TEVA. PARC Pesquisa em Arquitetura e Construção, 8 (2), pp. 117-126. https://doi.org/10.20396/parc.v8i2.8649606

Mentens, J., Raes, D., & Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century?. Landscape and urban planning, 77(3), pp. 217-226. https://doi.org/10.1016/j.landurbplan.2005.02.010

Mora-Melià, D., López-Aburto, C., Ballesteros-Pérez, P., & Muñoz-Velasco, P. (2018). Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile. Sustainability, 10(4), 1130. https://doi.org/10.3390/su10041130

Nunes, D. M., Da Silva, L. P., & Da Fonseca, P. L. (2017). Avaliação do papel dos telhados verdes no desenho e desenvolvimento urbano de baixo impacto ambiental e no controle de enchentes na Cidade do Rio de Janeiro. Labor & Engenho, 11(3), pp. 374-393. https://doi.org/10.20396/labore.v11i3.8648820

Ohnuma Jr, A. A., & Mendiondo, E. M. (2015). Metodologia para cálculo de eficiência de técnicas compensatorias em lote urbano. Revista Internacional de Ciências, 5(1), pp. 29-41. https://doi.org/10.12957/ric.2015.16582

Palermo, S. A., Turco, M., Principato, F., & Piro, P. (2019). Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate. Water, 11(7), 1378. https://doi.org/10.3390/w11071378

Pappalardo, V., La Rosa, D., Campisano, A., & La Greca, P. (2017). The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosystem Services, 26, 345-354. https://doi.org/10.1016/j.ecoser.2017.04.015

Qin, H., Li, Z., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of environmental management, 129, pp. 577-585. https://doi.org/10.1016/j.jenvman.2013.08.026

Raimondi, A., & Becciu, G. (2021). Performance of Green Roofs for Rainwater Control. Water Resources Management, 35(1), 99-111. https://doi.org/10.1007/s11269-020-02712-3

Rio de Janeiro. (2012). Decreto Municipal n° 35.745, de 06 de junho de 2012. Disponível em: http://smaonline.rio.rj.gov.br/legis_consulta/42362Dec%2035745_2012.pdf. Acesso em: 27 ago. 2020.

Rio de Janeiro. (2012). Lei Estadual n° 6.349, de 30 de novembro de 2012. Disponível em: https://gov-rj.jusbrasil.com.br/legislacao/1033548/lei-6349-12. Acesso em: 27 ago. 2020.

Recife. (2015). Lei nº 18.112 de 12 de janeiro de 2015. Disponível em: https://www.normasbrasil.com.br/norma/lei-18112-2015-recife_280138.html. Acesso em: 27 ago. 2020.

Rosatto, H., Moyano, G., Cazorla, L., Laureda, D., Meyer, M., Gamboa, P., ... & Kohan, D. (2015). " Extensive" green roof systems, efficiency in the retention capacity rainwater of the vegetation implanted. Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, 47(2), pp. 123-134.

Salvador. (2017). Decreto Municipal n° 29.100, de 06 de novembro de 2017. Disponível em: http://iptuverde.salvador.ba.gov.br/downloads/Decreto.pdf. Acesso em: 27 ago. 2020.

Santos, P. T. D. S., Santos, S. M. D., Montenegro, S. M. G. L., Coutinho, A. P., Moura, G. S. S. D., & Antonino, A. C. D. (2013). Telhado verde: desempenho do sistema construtivo na redução do escoamento superficial. Ambiente Construído, 13(1), pp. 161-174. https://doi.org/10.1590/S1678-86212013000100011

Santos. (2015). Lei complementar n° 913, de 21 de dezembro de 2015. https://egov.santos.sp.gov.br/legis/document/?code=5727&tid=98. Acesso em: 27 ago. 2020.

Squier-Babcock, M., & Davidson, C. I. (2020). Hydrologic Performance of an Extensive Green Roof in Syracuse, NY. Water, 12(6), p. 1535. https://doi.org/10.3390/w12061535

Sartor, J., Mobilia, M., & Longobardi, A. (2018). Results and findings from 15 years of sustainable urban storm water management. International Journal of Safety and Security Engineering, 8(4), pp. 505-514. https://doi.org/10.2495/SAFE-V8-N4-505-514

Tabares-Catimay, J., Gallo-Martínez L. M. & Mancipe-Muñoz, N. A. (2019). Modelación del desempeño hidrológico de techos verdes en ciudades andinas tropicales usando SWMM. Producción+ Limpia, 14(1), pp. 46-60. https://doi.org/10.22507/pml.v14n1a2

Tassi, R., Tassinari, L. C. D. S., Piccilli, D. G. A., & Persch, C. G. (2014). Telhado verde: uma alternativa sustentável para a gestão das águas pluviais. Ambiente Construído, 14(1), pp. 139-154. https://doi.org/10.1590/S1678-86212014000100012

Vanwoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., & Xiao, L. (2005). Green roof stormwater retention. Journal of environmental quality, 34(3), pp. 1036-1044. https://doi.org/10.2134/jeq2004.0364

Versini, P.A., Ramier, D., Berthier, E., & De Gouvello, B. (2015). Assessment of the hydrological impacts of green roof: From building scale to basin scale. Journal of Hydrology 524, pp. 562-575. https://doi.org/10.1016/j.jhydrol.2015.03.020

Versini, P. A., Gires, A., Tchinguirinskaia, I., & Schertzer, D. (2016). Toward an operational tool to simulate green roof hydrological impact at the basin scale: A new version of the distributed rainfall-runoff model Multi-Hydro. Water Science & Technology, 74(8), 1845-1854. https://doi.org/10.2166/wst.2016.310

Vijayaraghavan, K. (2016). Green roofs: A critical review on the role of components, benefits, limitations and trends. Renewable and sustainable energy reviews, 57, pp. 740-752. https://doi.org/10.1016/j.rser.2015.12.119

Viola, F., Hellies, M., & Deidda, R. (2017). Retention performance of green roofs in representative climates worldwide. Journal of Hydrology, 553, 763-772. https://doi.org/10.1016/j.jhydrol.2017.08.033

Zhou, D., Liu, Y., Hu, S., Hu, D., Neto, S., & Zhang, Y. (2019). Assessing the hydrological behaviour of large-scale potential green roofs retrofitting scenarios in Beijing. Urban Forestry & Urban Greening, 40, pp. 105-113. https://doi.org/10.1016/j.ufug.2017.12.010

Watrin, V. da R., Blanco, C. J. C., & Gonçalves, E. D. (2019). Thermal and hydrological performance of extensive green roofs in Amazon climate, Brazil. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 173(3), pp. 125-134. Thomas Telford Ltd. https://doi.org/10.1680/jensu.18.00060

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Labor e Engenho

Downloads

Download data is not yet available.