Chateaubriand. Frege. Inference license. Logical truth. Mathematical intuition. Peirce.


A principal aim of Chateaubriand’s Logical Forms II: Logic, Language, and Knowledge is to clarify and defend what Chateaubriand describes as the ontological conception of logic against the standard model-theoretic or “linguistic” view. Both sides to the debate accept that if logic is a science then there must be logically necessary facts that this science discovers, Chateaubriand arguing that because logic is a science, there must be logically necessary facts, and his opponent that because there are no logically necessary facts, logic cannot be a science. I argue that we can go between the horns of this dilemma by showing that, although logic is a science, it does not follow, as Chateaubriand assumes, that there are logically necessary facts. There are truths of (the science of) logic; there are no “logical truths”.


Resumo: Um dos objetivos principais de Logical Forms II: Logic, Language and Knowledge de Chateaubriand é clarificar e defender o que ele descreve como a concepção ontológica da lógica, contra a visão predominante, modelo-teórica ou “lingüística”. Os dois lados do debate aceitam que, se a lógica é uma ciência, então deve haver fatos logicamente necessários que esta ciência descobre; Chateaubriand argumenta que, porque a lógica é ciência, deve haver fatos necessários que ela descobre, enquanto seus oponentes argumentam que, porque não há fatos logicamente necessários, a lógica não pode ser uma ciência. Eu argumento que podemos tomar uma via intermediária entre estes dois lados do dilema mostrando que, ainda que a lógica seja uma ciência, não se segue, como Chateaubriand assume, que existem fatos logicamente necessários. Existem verdades da (ciência da) lógica; não existem “verdades lógicas”.

Palavras chave: Chateaubriand. Frege. Permissão para inferência. Verdade lógica. Intuição matemática. Peirce.


Não há dados estatísticos.

Biografia do Autor

Danielle Macbeth, Department of Philosophy/Haverford College

I grew up in Edmonton, Canada, and completed a Bachelor of Science degree in Biochemistry at the University of Alberta in 1977. I then earned a Bachelor of Arts degree in Philosophy and Religious Studies at McGill University in Montreal in 1980, and a Ph.D. in Philosophy from the University of Pittsburgh in 1989. I taught in the philosophy department of the University of Hawaii from 1986 to 1989, and joined the faculty at Haverford College in the fall of 1989. My primary research and teaching interests are in core areas of analytic philosophy: the philosophy of language, the philosophy of mind, metaphysics, epistemology, and the philosophy of logic. For the past ten years I have also been exploring issues in the history and philosophy of mathematics.


BENACERRAF, P., PUTNAM, H. (eds.). Philosophy of Mathematics: Selected Readings, 2nd edition. London/New York: Cambridge University Press, 1983.

BLACK, M. (ed.). Philosophical Analysis: A Collection of Essays. Ithaca, NY: Cornell University Press, 1950.

CARROLL, L. “What the Tortoise Said to Achilles”. Mind, 4, pp. 278-280, 1895.

CHATEAUBRIAND, O. Logical Forms. Part I: Truth and Descriptions. Campinas: Unicamp, Centro de Lógica, Epistemologia e História da Ciência, 2001. (Coleção CLE, v. 34) –———. Logical Forms. Part II: Logic, Language, and Knowledge. Campinas: Unicamp, Centro de Lógica, Epistemologia e História da Ciência, 2005. (Coleção CLE, v. 42) FREGE, G. The Basic Laws of Arithmetic: Exposition of the System. Translated by M. Furth. Berkeley/Los Angeles: University of California Press, 1964.

GÖDEL, K. “What is Cantor’s Continuum Problem?”. Repr. in P. Benacerraf and H. Putnam (1983), pp. 483-484.

HARDY, G. A. “Mathematical Proof”. Mind, 38, pp. 1-25, 1929.

MACBETH, D. Frege’s Logic. Cambridge, Mass.: Harvard University Press, 2005.

MACBETH, D. “Pragmatism and Objective Truth”. In: C. Misak (ed.) (2007), pp. 169-192.

MISAK, C. (ed.). New Pragmatists. Oxford: Clarendon Press, 2007.

PEIRCE, C.S. Collected Papers of Charles Sanders Peirce, v. III. Edited by C. Hartshorne, P. Weiss, and A. Burke. Cambridge, Mass.: Harvard University Press, 1931.

MACBETH, D. Reasoning and the Logic of Things: The Cambridge Conference Lectures of 1898. Edited by K.L. Ketner and with an introduction by K.L. Ketner and H. Putnam. Cambridge, Mass.: Harvard University Press, 1992.

QUINE, W.V. “Two Dogmas of Empiricism” [1951]. Repr. in From a Logical Point of View. Cambridge, Mass.: Harvard University Press, 1953. (Second edition in 1961) RYLE, G. “‘If’, ‘So’, and ‘Because’”. In: M. Black (ed.) (1950), pp. 323-340.

VAN HEIJENOORT, J. “Logic as Calculus and Logic as Language”. Synthese, 17, pp. 324-330, 1967.




Como Citar

MACBETH, D. THE TRUTHS OF LOGIC AND LOGICAL TRUTH. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 31, n. 1, p. 51–67, 2015. Disponível em: Acesso em: 8 dez. 2022.