Banner Portal
A coherence theory of truth


Teoria coerentista da verdade
Estruturas parciais

Como Citar

COSTA, NewtonC. A. da; BUENO, Otávio; FRENCH, Steven. A coherence theory of truth. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 30, n. 2, p. 539–568, 2007. Disponível em: Acesso em: 13 jun. 2024.


In this paper, we provide a new formulation of a coherence theory of truth using the resources of the partial structures approach − in particular the notions of partial structure and quasi-truth. After developing this new formulation, we apply the resulting theory to the philosophy of mathematics, and argue that it can be used to develop a new account of nominalism in mathematics. This application illustrates the strength and usefulness of the proposed formulation of a coherence theory of truth.



Arruda, A.I., Chuaqui, R., and Da Costa, N.C.A. (eds.). Mathematical Logic in Latin America. Amsterdam: North-Holland, 1980.

Ayer, A.J. (ed.). Logical Positivism. New York: The Free Press, 1959.

Bosanquet, B. Knowledge and Reality. London: Routledge and Kegan Paul, 1885.

Bourbaki, N. Theory of Sets. Boston, MA: Addison-Wesley, 1968. Translated from the French edition.

Bradley, F.H. Essays on Truth and Reality. Oxford: Clarendon Press, 1914. Reprinted in 1962.

Bueno, O. Empirical Adequacy: A Partial Structures Approach. Studies in History and Philosophy of Science, 28, pp. 585-610, 1997.

Bueno, O. What is Structural Empiricism? Scientific Change in an Empiricist Setting. Erkenntnis, 50, pp. 59-85, 1999a.

Bueno, O. Empiricism, Conservativeness and Quasi-Truth. Philosophy of Science, 66 (Proceedings), pp. S474-S485, 1999b.

Bueno, O., and De Souza, E. The Concept of Quasi-Truth. Logique et Analyse, 153-154, pp. 183-199, 1996.

Chihara, C.S. Constructibility and Mathematical Existence. Oxford: Clarendon Press, 1990.

Churchland, P.M., and Hooker, C.A. (eds.). Images of Science: Essays on Realism and Empiricism, with a Reply by Bas C. van Fraassen. Chicago: The University of Chicago Press, 1985.

Cohen, P.J. Set Theory and the Continuum Hypothesis. New York: Benjamin, 1966.

Da Costa, N.C.A. A Model-theoretic Approach to Variable Binding Term Operators. In: A.I. Arruda, R. Chuaqui, and N.C.A. da Costa (eds.) (1980), pp. 133-162.

Da Costa, N.C.A. Pragmatic Probability. Erkenntnis, 25, pp. 141-162, 1986.

Da Costa, N.C.A. Logiques classiques et non classiques: Essai sur les fondements de la logique. Paris: Masson, 1997.

Da Costa, N.C.A., Béziau, J.-Y., and Bueno, O. Aspects of Paraconsistent Logic. Bulletin of the Interest Group in Pure and Applied Logics, 3, pp. 597-614, 1995.

Da Costa, N.C.A., Bueno, O., and French, S. The Logic of Pragmatic Truth. Journal of Philosophical Logic, 27, pp. 603-620, 1998.

Da Costa, N.C.A., and French, S. Pragmatic Truth and the Logic of Induction. British Journal for the Philosophy of Science, 40, pp. 333-356, 1989.

Da Costa, N.C.A., and French, S. The Model-Theoretic Approach in the Philosophy of Science. Philosophy of Science, 57, pp. 248-265, 1990.

Da Costa, N.C.A., and French, S. Towards an Acceptable Theory of Acceptance: Partial Structures and the General Correspondence Principle. In: S. French and H. Kamminga (eds.) (1993), pp. 137-158.

Da Costa, N.C.A., and French, S. Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford: Oxford University Press, 2003.

Field, H. Science without Numbers: A Defense of Nominalism. Princeton, N.J.: Princeton University Press, 1980.

Field, H. Realism, Mathematics and Modality. Oxford: Basil Blackwell, 1989.

Flannagan, T.B. On an Extension of Hilbert’s Second ε-Theorem. Journal of Symbolic Logic, 40, pp. 293-397, 1975.

French, S., and Kamminga, H. (eds.). Correspondence, Invariance and Heuristics: Essays in Honour of Heinz Post. Dordrecht: Reidel, 1993.

Fuhrmann, A. An Essay on Contraction. Stanford: CSLI Publications, 1997.

Gillies, D. Philosophy of Science in the Twentieth Century: Four Central Themes. Oxford: Blackwell, 1993.

Guillaume, M. Sur une propriété remarcable du système de Bourbaki. Comptes Rendus de l’Académie des Sciences de Paris, 250, pp. 1776-1777, 1960.

Guillaume, M. Recherches sur le symbole de Hilbert. Thèse, Clermont-Ferrand, France, 1964.

Haack, S. Evidence and Inquiry. Oxford: Blackwell, 1993.

Hellman, G. Mathematics without Numbers: Towards a Modal-Structural Interpretation. Oxford: Clarendon Press, 1989.

Hellman, G. Structuralism without Structures. Philosophia Mathematica, 4, pp. 100-123, 1996.

Hilbert, D., and Bernays, P. Grundlagen der Mathematik. Berlin: Springer. Vol. I (1934) and vol. 2 (1939).

Leisering, A.C. Mathematical Logic and Hilbert’s ε-symbol. London: MacDonald, 1969.

Malament, D. Review of Field [1980]. Journal of Philosophy, 79, pp. 523-534, 1982.

Mikenberg, I., Da Costa, N.C.A., and Chuaqui, R. Pragmatic Truth and Approximation to Truth. Journal of Symbolic Logic, 51, pp. 201-221, 1986.

Neurath, O. Protokollsätze. Erkenntnis, 3, pp. 204-214, 1932-1933. (An English translation can be found in A.J. Ayer (ed.) (1959), pp. 199-208.).

Novak, I.L. Construction of Models for Consistent Systems. Fundamenta Mathematica, 37, pp. 87-110, 1951.

Putnam, H. Mathematics without Foundations. Journal of Philosophy, 64, pp. 5-22, 1967.

Putnam, H Realism and Reason, 1976. In: H. Putnam (1978), pp. 123-140.

Putnam, H Meaning and the Moral Sciences. London: Routledge and Kegan Paul, 1978.

Putnam, H Models and Reality. Journal of Symbolic Logic, 45, pp. 464-482, 1980.

Russell, B. The Problems of Philosophy. Oxford: Oxford University Press, 1912.

Shapiro, S. Modality and Ontology. Mind, 102, pp. 455-481, 1993.

Shoenfield, J.R. Mathematical Logic. Reading, MA: Addison-Wesley Publishing Company, 1967.

Van Fraassen, B.C. The Scientific Image. Oxford: Clarendon Press, 1980.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2007 Manuscrito: Revista Internacional de Filosofia


Não há dados estatísticos.