Banner Portal
A COHERENCE THEORY OF TRUTH
PDF

Palavras-chave

Coherence theory of truth. Partial structures. Quasi-truth

Como Citar

COSTA, Newton C. A. da; BUENO, Otávio; FRENCH, Steven. A COHERENCE THEORY OF TRUTH. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 28, n. 2, p. 263–290, 2016. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8643794. Acesso em: 12 set. 2024.

Resumo

In this paper, we provide a new formulation of a coherence theory of truth using the resources of the partial structures approach − in particular the notions of partial structure and quasi-truth. After developing this new formulation, we apply the resulting theory to the philosophy of mathematics, and argue that it can be used to develop a new account of nominalism in mathematics. This application illustrates the strength and usefulness of the proposed formulation of a coherence theory of truth.

 

PDF

Referências

ARRUDA, A.I., CHUAQUI, R., and DA COSTA, N.C.A. (eds.). Mathematical

Logic in Latin America. Amsterdam: North-Holland, 1980.

AYER, A.J. (ed.). Logical Positivism. New York: The Free Press, 1959.

BOSANQUET, B. Knowledge and Reality. London: Routledge and Kegan Paul, 1885.

BOURBAKI, N. Theory of Sets. Boston, MA: Addison-Wesley, 1968. Translated from the French edition.

BRADLEY, F.H. Essays on Truth and Reality. Oxford: Clarendon Press, 1914. Reprinted in 1962.

BUENO, O. “Empirical Adequacy: A Partial Structures Approach”. Studies

in History and Philosophy of Science, 28, pp. 585-610, 1997.

———. “What is Structural Empiricism? Scientific Change in an Empiricist

Setting”. Erkenntnis, 50, pp. 59-85, 1999a.

———. “Empiricism, Conservativeness and Quasi-Truth”. Philosophy of

Science, 66 (Proceedings), pp. S474-S485, 1999b.

BUENO, O., and de SOUZA, E. “The Concept of Quasi-Truth”. Logique et

Analyse, 153-154, pp. 183-199, 1996.

CHIHARA, C.S. Constructibility and Mathematical Existence. Oxford: Clarendon Press, 1990.

CHURCHLAND, P.M., and HOOKER, C.A. (eds.). Images of Science: Essays on Realism and Empiricism, with a Reply by Bas C. van Fraassen. Chicago: The University of Chicago Press, 1985.

COHEN, P.J. Set Theory and the Continuum Hypothesis. New York: Benjamin, 1966.

DA COSTA, N.C.A. “A Model-theoretic Approach to Variable Binding Term Operators”. In: A.I. Arruda, R. Chuaqui, and N.C.A. da Costa (eds.) (1980), pp. 133-162.

———. “Pragmatic Probability”. Erkenntnis, 25, pp. 141-162, 1986.

———. Logiques classiques et non classiques: Essai sur les fondements de la logique. Paris: Masson, 1997.

DA COSTA, N.C.A., BÉZIAU, J.-Y., and BUENO, O. “Aspects of Paraconsistent Logic”. Bulletin of the Interest Group in Pure and Applied Logics, 3, pp. 597-614, 1995.

DA COSTA, N.C.A., BUENO, O., and FRENCH, S. “The Logic of Pragmatic

Truth”. Journal of Philosophical Logic, 27, pp. 603-620, 1998.

DA COSTA, N.C.A., and FRENCH, S. “Pragmatic Truth and the Logic of

Induction”. British Journal for the Philosophy of Science, 40, pp. 333-356,

———. “The Model-Theoretic Approach in the Philosophy of Science”.

Philosophy of Science, 57, pp. 248-265, 1990.

———. “Towards an Acceptable Theory of Acceptance: Partial Structures

and the General Correspondence Principle”. In: S. French and H.

Kamminga (eds.) (1993), pp. 137-158.

———. Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning. Oxford: Oxford University Press, 2003.

FIELD, H. Science without Numbers: A Defense of Nominalism. Princeton, N.J.: Princeton University Press, 1980.

———. Realism, Mathematics and Modality. Oxford: Basil Blackwell, 1989.

FLANNAGAN, T.B. “On an Extension of Hilbert’s Second ε-Theorem”.

Journal of Symbolic Logic, 40, pp. 293-397, 1975.

FRENCH, S., and KAMMINGA, H. (eds.). Correspondence, Invariance and

Heuristics: Essays in Honour of Heinz Post. Dordrecht: Reidel, 1993.

FUHRMANN, A. An Essay on Contraction. Stanford: CSLI Publications,

GILLIES, D. Philosophy of Science in the Twentieth Century: Four Central Themes. Oxford: Blackwell, 1993.

GUILLAUME, M. “Sur une propriété remarcable du système de Bourbaki”.

Comptes Rendus de l’Académie des Sciences de Paris, 250, pp. 1776-1777, 1960.

———. Recherches sur le symbole de Hilbert. Thèse, Clermont-Ferrand, France, 1964.

HAACK, S. Evidence and Inquiry. Oxford: Blackwell, 1993.

HELLMAN, G. Mathematics without Numbers: Towards a Modal-Structural Interpretation. Oxford: Clarendon Press, 1989.

———. “Structuralism without Structures”. Philosophia Mathematica, 4, pp. 100-123, 1996.

HILBERT, D., and BERNAYS, P. Grundlagen der Mathematik. Berlin:

Springer. Vol. I (1934) and vol. 2 (1939).

LEISERING, A.C. Mathematical Logic and Hilbert’s ε-symbol. London: MacDonald, 1969.

MALAMENT, D. “Review of Field [1980]”. Journal of Philosophy, 79, pp. 523-534, 1982.

MIKENBERG, I., DA COSTA, N.C.A., and CHUAQUI, R. “Pragmatic

Truth and Approximation to Truth”. Journal of Symbolic Logic, 51, pp.

-221, 1986.

NEURATH, O. “Protokollsätze”. Erkenntnis, 3, pp. 204-214, 1932-1933. (An English translation can be found in A.J. Ayer (ed.) (1959), pp. 199-

)

NOVAK, I.L. “Construction of Models for Consistent Systems”. Fundamenta Mathematica, 37, pp. 87-110, 1951.

PUTNAM, H. “Mathematics without Foundations”. Journal of Philosophy, 64, pp. 5-22, 1967.

———. “Realism and Reason”, 1976. In: H. Putnam (1978), pp. 123-140.

———. Meaning and the Moral Sciences. London: Routledge and Kegan Paul, 1978.

———. “Models and Reality”. Journal of Symbolic Logic, 45, pp. 464-482, 1980.

RUSSELL, B. The Problems of Philosophy. Oxford: Oxford University Press, 1912.

SHAPIRO, S. “Modality and Ontology”. Mind, 102, pp. 455-481, 1993.

SHOENFIELD, J.R. Mathematical Logic. Reading, MA: Addison-Wesley Publishing Company, 1967.

VAN FRAASSEN, B.C. The Scientific Image. Oxford: Clarendon Press, 1980.

Downloads

Não há dados estatísticos.