Resumo
From generalized quantifiers we move to modulated logic. So with this motivation we show ways for the construction of some modal logics. With the translations between logics we show some inter-relations between modal logics. Finally, we introduce some opportune concepts for a type of classification of deontic logic.Referências
BARWISE, J., COOPER, R. “Generalized quantifiers and natural language”. Linguistics and Philosophy, 4, pp. 159-219, 1981.
CAICEDO, X., MONTENEGRO, C.H. (eds.) Models, algebras and proofs.
New York: Marcel Dekker, 1999. (Lectures Notes in Pure and Applied Mathematics, v. 203)
CARNIELLI, W.A., VELOSO, P.A.S. “Ultra filter logic and generic reasoning”. In: Proceedings of Kurt Gödel Colloquium, 5, 1997, Berlin.
Berlin: Springer-Verlag, pp. 34-53, 1997.
CHELLAS, B. Modal logic: an introduction. Cambridge: Cambridge University Press, 1980.
D’OTTAVIANO, I.M.L., FEITOSA, H.A. “Conservative translations and model-theoretic translations”. Manuscrito, XXII, n. 2, pp. 117-132, 1999.
DA SILVA, J.J., D’OTTAVIANO, I.M.L., SETTE, A.M., “Translations between logic”. In: X. Caicedo, C.H. Montenegro (eds.), 1999, pp. 435-448.
FEITOSA, H.A. Conservative translations (in Portuguese). Doctoral Dissertation. Campinas: UNICAMP, 1997.
FEITOSA, H.A., D’OTTAVIANO, I.M.L. “Conservative translations”. Annals of Pure and Applied Logic, 108, pp. 205-227, 2001.
FUHURKEN, G. “Skolem-type normal forms for first order languages with
generalized quantifier”. Fund. Math., 54, pp. 291-302, 1964.
GARAVAGLIA, S. “Model theory of topological structures”. Annals of Mathematical Logic, 14, pp. 13-37, 1978.
GRÁCIO, M.C.C. Modulated Logic and Reasoning under Uncertainty (in Portuguese). Doctoral dissertation. Campinas: UNICAMP, 1999.
HUGHES, G., CRESSWELL, M. A New Introduction to Modal Logic. Third
reprint. London/New York: Routledge, 2003.
KANT, I. “On the form and principles of the sensible and the intelligible
world” [1770]. In: Walford, D. (ed.) Theoretical Philosophy 1755-1770.
Cambridge: Cambridge University Press, 1992.
KEISLER, H.J. “Logic with the quantifier ‘there are uncountably many’ ”.
Annals of Mathematical Logic, 1, pp. 1-93, 1970.
KIELKOPF, C.F. “Kant’s deontic logic”. Reports on Mathematical Logic, 5, pp. 43-51, 1975.
LINDSTROM, P. “First order logic and generalized quantifiers”. Theoria, 32, pp. 187-195, 1966.
————. “On extensions of elementary logic”. Theoria, 35, pp. 1-11, 1969.
MONTAGUE, R. “Formal Philosophy”. In: Thomason, R.H. (ed.) Formal
Philosophy. Selected Papers. New Haven: Yale University Press, 1974.
MOSTOWSKI, A. “On a generalization of quantifiers”. Fund. Mathematical,
, pp. 12-36, 1957.
REITER, R. “A logic for default reasoning”. Artificial Intelligence, 13, pp. 81-132, 1980.
RESCHER, N. “Plurality-quantification”. The Journal of Symbolic Logic, 27, pp.
-4, 1962.
SAUTTER, F.T. Gödel’s ontological argument for god’s existence (in Portuguese). Doctoral dissertation. Campinas: UNICAMP, 2000.
SETTE, A.M., CARNIELLI, W.A., VELOSO, P. “An alternative view of
default reasoning and its logic”. In: Hauesler, E.H., Pereira, L.C. (eds.) Pratica: Proofs, types and categories. Rio de Janeiro: PUC, pp. 127-158, 1999.
SGRO, J. “Completeness theorems for topological models”. Annals of
Mathematical Logic, 11, pp. 173-193, 1977.
VAUGHT, R. “The completeness of logic with the added quantifier ‘there
are uncountably many’ ” . Fund. Math., 54, pp. 303-304, 1964.
VELOSO, P. A. S. “On ultra filter logic as a logic for ‘almost all’ and ‘generic reasoning’ “. Res. Rept. ES - 488/98, COPPE – UFRJ, Rio de
Janeiro, 1998.
WESTERSTAHL, D. “Some results on quantifiers”. Notre Dame Journal of
Formal Logic, 25, n. 2, pp. 152-170, 1984.
————. “Logical constants in quantifier language”. Linguistics and Philosophy, 8, pp. 387-413, 1985.