Resumo
We give a version of L´os’ ultraproduct result for forcing in Kripke structures in a first-order language with equality and discuss ultrafilters in a topology naturally associated to a partial order. The presentation also includes background material so as to make the exposition accessible to those whose main interest is Computer Science, Artificial Intelligence and/or Philosophy.Referências
BALBES, R., DWINGER, Ph. Distributive Lattices. Columbia, Missouri:
University of Missouri Press, 1974.
BRUNNER, A. O M´etodo das Constantes para Feixes sobre uma Algebra de Heyting Completa. PhD thesis. São Paulo: University of São Paulo, May 2000.
BELL, J., SLOMSON, A. Models and Ultraproducts: an Introduction.
Amsterdam: North Holland Publ. Co, 1971.
BUSHAW, D. Elements of General Topology. New York: John Wiley and Sons, 1963.
CHANG, C.C., KEISLER, H.J. Model Theory. Amsterdam: North Holland Publ. Co., 1990 (third edition).
ELLERMAN, D.P. “Sheaves of Structures and Generalized Ultraproducts”’.
Annals of Pure and Applied Logic, 7, pp. 165-195, 1974.
ENGELKING, R. General Topology. Sigma Series in Pure Mathematics,
(revised and completed edition). Berlin: Helderman Verlag, 1989.
FEFERMAN, S., VAUGHT, R. “First Order Properties of Products of Algebraic Systems”. Fund. Math., 47, pp. 57-103, 1959.
FITTING, M.C. Intuitionistic Logic, Model Theory and Forcing. Amsterdam:
North-Holland Publ. Co., 1969.
FOURMAN, M., SCOTT, D.S. “Sheaves and Logic”. In: M. Fourman, C.J. Mulvey, D.S. Scott, Applications of Sheaves (eds.). Lecture Notes in Mathematics, 753. Berlin: Springer Verlag, pp. 302-401, 1979.
HODGES, W. Model Theory. Encyclopedia Of Mathematics and its Applications, 42. Cambridge: Cambridge University Press, 1993. Repr.
in 1997.
KELLEY, J.L. General Topology. New York: Van Nostrand Reinhold Publ. Co., 1955.
KLEENE, S.C. Mathematical Logic. New York: John Wiley and Sons, Inc., 1967.
KLEENE, S.C. Introduction to Metamathematics. Amsterdam: orthHolland and Noordhoff, 1952.
KLEENE, S.C., VESLEY, R.E. The Foundations of Intuitionistic Mathematics. Amsterdam: North-Holland Publ. Co., 1965.
KUNEN, K. Set Theory: An Introduction to Independence Proofs. Amsterdam: North Holland Publ. Co., 1980. Studies in Logic Series, vol.
LEVY, A. Basic Set Theory. Berlin: Springer-Verlag, 1990.
MIRAGLIA, F. “The Downward Lowenheim-Skolem Theorem for structures in Ω-sets”. Contemporary Math., 69, AMS, 1988.
MIRAGLIA, F. An Introduction to Partially Ordered Structures and
Sheaves. Milan: Polimetrica Scientific Editors, 2006.
MIRAGLIA, F. Teoria dos Conjuntos: um m´ınimo. São Paulo: EDUSP, 1990.
PRAWITZ, D. Natural Deduction. Stockholm: Almqvist and Wiksell, 1965.
RASIOWA, H., SIKORSKI, R. The Mathematics of Metamathematics.
Polish Academy of Science Publications, vol. 41, second edition, Warsaw, 1968.