Banner Portal
LOGIC, PARTIAL ORDERS AND TOPOLOGY
PDF

Palavras-chave

Kripke structures. Partial orders. Topological ultrafilters. Generalized ultraproducts

Como Citar

MARIANO, Hugo; MIRAGLIA, Francisco. LOGIC, PARTIAL ORDERS AND TOPOLOGY. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 28, n. 2, p. 449–545, 2016. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8643895. Acesso em: 14 set. 2024.

Resumo

We give a version of L´os’ ultraproduct result for forcing in Kripke structures in a first-order language with equality and discuss ultrafilters in a topology naturally associated to a partial order. The presentation also includes background material so as to make the exposition accessible to those whose main interest is Computer Science, Artificial Intelligence and/or Philosophy.
PDF

Referências

BALBES, R., DWINGER, Ph. Distributive Lattices. Columbia, Missouri:

University of Missouri Press, 1974.

BRUNNER, A. O M´etodo das Constantes para Feixes sobre uma Algebra de Heyting Completa. PhD thesis. São Paulo: University of São Paulo, May 2000.

BELL, J., SLOMSON, A. Models and Ultraproducts: an Introduction.

Amsterdam: North Holland Publ. Co, 1971.

BUSHAW, D. Elements of General Topology. New York: John Wiley and Sons, 1963.

CHANG, C.C., KEISLER, H.J. Model Theory. Amsterdam: North Holland Publ. Co., 1990 (third edition).

ELLERMAN, D.P. “Sheaves of Structures and Generalized Ultraproducts”’.

Annals of Pure and Applied Logic, 7, pp. 165-195, 1974.

ENGELKING, R. General Topology. Sigma Series in Pure Mathematics,

(revised and completed edition). Berlin: Helderman Verlag, 1989.

FEFERMAN, S., VAUGHT, R. “First Order Properties of Products of Algebraic Systems”. Fund. Math., 47, pp. 57-103, 1959.

FITTING, M.C. Intuitionistic Logic, Model Theory and Forcing. Amsterdam:

North-Holland Publ. Co., 1969.

FOURMAN, M., SCOTT, D.S. “Sheaves and Logic”. In: M. Fourman, C.J. Mulvey, D.S. Scott, Applications of Sheaves (eds.). Lecture Notes in Mathematics, 753. Berlin: Springer Verlag, pp. 302-401, 1979.

HODGES, W. Model Theory. Encyclopedia Of Mathematics and its Applications, 42. Cambridge: Cambridge University Press, 1993. Repr.

in 1997.

KELLEY, J.L. General Topology. New York: Van Nostrand Reinhold Publ. Co., 1955.

KLEENE, S.C. Mathematical Logic. New York: John Wiley and Sons, Inc., 1967.

KLEENE, S.C. Introduction to Metamathematics. Amsterdam: orthHolland and Noordhoff, 1952.

KLEENE, S.C., VESLEY, R.E. The Foundations of Intuitionistic Mathematics. Amsterdam: North-Holland Publ. Co., 1965.

KUNEN, K. Set Theory: An Introduction to Independence Proofs. Amsterdam: North Holland Publ. Co., 1980. Studies in Logic Series, vol.

LEVY, A. Basic Set Theory. Berlin: Springer-Verlag, 1990.

MIRAGLIA, F. “The Downward Lowenheim-Skolem Theorem for structures in Ω-sets”. Contemporary Math., 69, AMS, 1988.

MIRAGLIA, F. An Introduction to Partially Ordered Structures and

Sheaves. Milan: Polimetrica Scientific Editors, 2006.

MIRAGLIA, F. Teoria dos Conjuntos: um m´ınimo. São Paulo: EDUSP, 1990.

PRAWITZ, D. Natural Deduction. Stockholm: Almqvist and Wiksell, 1965.

RASIOWA, H., SIKORSKI, R. The Mathematics of Metamathematics.

Polish Academy of Science Publications, vol. 41, second edition, Warsaw, 1968.

Downloads

Não há dados estatísticos.