Einstein’s physical chronogeometry

Autores

  • Mario Bacelar Valente University of Seville

Palavras-chave:

Physical geometry. Einstein. Synchronization of clocks.

Resumo

In Einstein’s physical geometry, the geometry of space and the uniformity of time are taken to be non-conventional. However, due to the stipulation of the isotropy of the one-way speed of light in the synchronization of clocks (or definition of simultaneity), as it stands, Einstein’s views do not seem to apply to the whole of the Minkowski spacetime. In this work we will see how Einstein’s views can be applied to the Minkowski space-time. In this way, when adopting Einstein’s views, chronogeometry is a physical chronogeometry

Downloads

Não há dados estatísticos.

Biografia do Autor

Mario Bacelar Valente, University of Seville

Department of Philosophy, Logic and Philosophy of Science, University of Seville, Spain

Referências

ANDERSON, R., Vetharaniam, I., and Stedman, G.E. Conventionality of synchronization, gauge dependence and test theories of relativity. PHYSICS REPORTS 295, 93-180, 1998.

ARTHUR, R. Time, inertia and the relativity principle, 2007. Phil-Sci Archive, url: http://philsci-archive.pitt.edu/3660/

ARTHUR, R. Minkowski’s proper time and the status of the clock hypothesis. In, V. Petkov (ed.), Space, time and spacetime, pp. 159-180. Berlin: Springer-Verlag, 2010.

BACELAR VALENTE, M. Proper time and the clock hypothesis in the theory of relativity. European Journal for Philosophy of Science 6, 191207, 2016.

BACCETTI, V., TATE, K., and VISSER, M. Inertial frames without the relativity principle. Journal of High Energy Physics 2012: 119, 2012.

BARBOUR, J. The discovery of dynamics. Cambridge: Cambridge University Press, 1989.

BARBOUR, J. Einstein and Mach’s principle. In, J. RENN (ed.), The genesis of general relativity, Vol. 3., pp. 569-604. Berlin: Springer, 2007.

BARBOUR, J. The nature of time, 2009. arXiv: 0903.3489

BERZI, V., and GORINI, V. Reciprocity principle and the Lorentz transformation. Journal of Mathematical Physics 10, 1518-1524, 1969.

BOGOSLOVSKY, G. Y. Lorentz symmetry violation without violation of relativistic symmetry. Physical Letters A 350, 5-10, 2006.

BONDI, H. Relativity and common sense. A new approach to Einstein. London: Heinemann, 1965.

BROWN, H. Physical relativity: spacetime structure from a dynamical perspective. Oxford: Oxford University Press, 2005.

BROWN, H. R., and MAIA, A. Light-speed constancy versus light-speed invariance in the derivation of relativistic kinematics. British Journal for the Philosophy of Science 44, 381-407, 1993.

BUDDEN, T. A star in the Minkowskian sky: anisotropic special relativity. Studies in History and Philosophy of Modern Physics 28, 325-361, 1997.

COELHO, R. L. The law of inertia: how understanding its history can improve physics teaching. Science and Education 16, 955-974, 2007.

DARRIGOL, O. The genesis of the theory of relativity. In, T. Damour, O. Darrigol, B. Duplantier, V. Rivasseau (eds.), Einstein, 1905-2005. Basel: Birkhäuser, 2005.

DIEKS, D. The adocescence of relativity: Einstein, Minkowski, and the philosophy of space and time. In, V. Petkov (Ed.), Minkowski spacetime: a hundred years later, pp. 225-245. Berlin: Springer, 2010.

DISALLE, R. Conventionalism and the origins of the inertial frame concept. Proceedings of the biennial meeting of the philosophy of science association, vol 2, 139-147, 1990.

DISALLE, R. Space and time: inertial frames. Stanford Encyclopedia of Philosophy, 2009. Plato.Stanford.edu/entries/spacetie-frames/ (accessed on August 2016)

EDWARDS, W. F. Special relativity in anisotropic space. American Journal of Physics 31, 482-489, 1963.

EINSTEIN, A. On the electrodynamics of moving bodies. In, The collected papers of Albert Einstein (English translation), Vol. 2, pp. 140- 171. Princeton: Princeton University Press, 1989 [1905].

EINSTEIN, A. On the relativity principle and the conclusions drawn from it. In, The collected papers of Albert Einstein (English translation), Vol. 2, pp. 252-311. Princeton: Princeton University Press, 1989 [1907].

EINSTEIN, A. The principle of relativity and its consequences in modern physics. In, The collected papers of Albert Einstein (English translation), Vol. 3, pp. 117-142, 1993 [1910]. Princeton: Princeton University Press.

EINSTEIN, A. The theory of relativity. In, The collected papers of Albert Einstein (English translation), Vol. 3, pp. 340-350. Princeton: Princeton University Press, 1993 [1911].

EINSTEIN, A. Manuscript on the special theory of relativity. In, The collected papers of Albert Einstein (English translation), Vol. 4, pp. 3-88. Princeton: Princeton University Press, 1996 [1912-1914].

EINSTEIN, A. On the present state of the problem of gravitation. In, The collected papers of Albert Einstein (English translation), Vol. 4, pp. 198222. Princeton: Princeton University Press, 1996 [1913a].

EINSTEIN, A. Outline of a generalized theory of relativity and of a theory of gravitation. In, The collected papers of Albert Einstein (English translation), Vol. 4, pp. 151-188. Princeton: Princeton University Press, 1996 [1913b].

EINSTEIN, A. The formal foundations of the general theory of relativity. In, The collected papers of Albert Einstein (English translation), Vol. 6, pp. 30-84. Princeton: Princeton University Press, 1997 [1914].

EINSTEIN, A. Theory of relativity. In, The collected papers of Albert Einstein (English translation), Vol. 4, pp. 246-263. Princeton: Princeton University Press, 1996 [1915].

EINSTEIN, A. Letter to Hermann Weyl. 15 April 1918. The collected papers of Albert Einstein (English translation), Vol. 8, p. 529. Princeton: Princeton University Press, 1998 [1918a].

EINSTEIN, A. Letter to Hermann Weyl. 19 April 1918. The collected papers of Albert Einstein (English translation), Vol. 8, pp. 532- 534. Princeton: Princeton University Press, 1998 [1918b].

EINSTEIN, A. Geometry and experience. In, The collected papers of Albert Einstein (English translation), Vol. 7, pp. 208- 222. Princeton: Princeton University Press, 2002 [1921a].

EINSTEIN, A. On a natural addition to the foundation of the general theory of relativity. In, The collected papers of Albert Einstein (English translation), Vol. 7, pp. 224- 228. Princeton: Princeton University Press, 2002 [1921b].

EINSTEIN, A. Four lectures on the theory of relativity, held at Princeton University on may 1921. In, The collected papers of Albert Einstein (English translation), Vol. 7, pp. 261-368. Princeton: Princeton University Press, 1922.

EINSTEIN, A. Fundamental ideas and problems of the theory of relativity. In, The collected papers of Albert Einstein (English translation), Vol. 14, pp. 74-81. Princeton: Princeton University Press, 2015 [1923].

EINSTEIN, A. Review of Albert C. Elsbach, Kant und Einstein. In, The collected papers of Albert Einstein (English translation), Vol. 14, pp. 322- 327. Princeton: Princeton University Press, 2015 [1924].

EINSTEIN, A. South American travel diary: Argentina, Uruguay, Brazil. In, The collected papers of Albert Einstein (English translation), Vol. 14, pp. 447457. Princeton: Princeton University Press, 2015 [1925].

EINSTEIN, A. Autobiographical notes. In, P. A. Schilpp (ed.), Albert Einstein: Philosopher-Scientist, pp. 1-94. New York: MJF Books, 1970 [1949a].

EINSTEIN, A. Remarks Concerning the Essays Brought together in this Cooperative Volume. In P. A. Schilpp (ed.), Albert Einstein: Philosopher-Scientist, pp. 665–688. New York: MJF Books, 1970 [1949b].

FEINGEBAUM, M. J. The theory of relativity – Galileo’s child, 2008. arXiv: 0806.1234v1

FLETCHER, S. C. Light clocks and the clock hypothesis. Foundations of Physics 43, 1369-1383, 2015.

FRIEDMAN, M. Foundations of space-time theories: relativistic physics and philosophy of science. Princeton: Princeton University Press, 1983.

FRIEDMAN, M. Geometry as a branch of physics: background and context for Einstein’s ‘geometry and experience’. In D. B. Malament (ed.), Reading natural philosophy. Essays in the history and philosophy of science and mathematics. Chicago: Open Court, pp. 193–229, 2002.

GIACOMO, P. The new definition of the meter. American Journal of Physics 52, 607-613, 1984.

GIANNONI, C. Relativistic mechanics and electrodynamics without oneway velocity assumptions. Philosophy of science 45, 17-46, 1978.

GIOVANELLI, M “But one must not legalize the mentioned sin”: phenomenological vs. dynamical treatments of rods and clocks in Einstein’s thought. Studies in History and Philosophy of Modern Physics 48, 20-44, 2014.

GOENNER, H.F.M. On the history of unified field theories. Living Reviews in Relativity 7, 2, 2004.

GRÜNBAUM, A. Geometry and chronometry in philosophical perspective. Minneapolis: University of Minnesota Press, 1968.

HOWARD, D. Einstein and the development of twentieth-century philosophy of science. In, M. Janssen and C. Lehner (eds.), The Cambridge Companion to Einstein, Vol. 1, pp. 354-376. New York: Cambridge University Press, 2014.

JAMMER, M. Concepts of Simultaneity. From Antiquity to Einstein and Beyond. Baltimore: Johns Hopkins University Press, 2006.

JANIS, A. Conventionality of simultaneity. Stanford Encyclopedia of Philosophy, 2014. Url: plato.stanford.edu/entries/spacetimeconvensimul/ (accessed on August 2016).

JESPERSEN, J., and FITZ-RANDOLPH, J. From sundials to atomic clocks: understanding time and frequency. New York: Dover, 1999.

LEE, A.R., and KALOTAS, T.M. Lorentz transformations from the first postulate. American Journal of Physics 43, 434-437, 1975.

LÉVY-LEBLOND, J.M. One more derivation of the Lorentz transformation. American Journal of Physics 44, 271-277, 1976.

MERMIN, N. D. Relativity without light. American Journal of Physics 52, 119-124, 1984.

NORTON, J. Philosophy of space and time. In, M. Salmon (ed.), Introduction to the philosophy of science, pp. 179-231. New Jersey: Prentice Hall, 1992.

OHANIAN, H.C. Gravitation and spacetime. New York: W. W. Norton & Company, 1976.

PATY, M. Physical geometry and special relativity: Einstein and Poincaré. In, L. boi, D. flament et J.M. Salanski (Eds.), 1830-1930: un siècle de géométrie, de C.F. Gauss et B. Riemann à H. Poincaré et E. Cartan. Epistémologie, histoire et mathématiques. pp. 126-149. Berlin: Springer. Retrived from Halshs.archives-ouvertes, 2007 [1992].

PATY, M. Einstein philosophe. Paris: Presses Universitaires de France, 1993.

POINCARE, H. La mesure du temps. Revue de métaphysique et de morale 6, 113, 1898.

POINCARE, H. La science et l’hypothèse. Paris: Flammarion, 1902.

REICHENBACH, H. The philosophy of space and time. New York: Dover publications, 1957 [1927].

RYCKMAN, T. The reign of relativity: philosophy in physics 1915–1925. New York: Oxford University Press, 2005.

RYNASIEWICZ, R. Simultaneity, convention, and gauge freedom. Studies in History and Philosophy of Modern Physics 43, 90-4, 2012.

SALMON, W. C. The Philosophical Significance of the One-Way Speed of Light. Noûs 11 (3), 253-292, 1977.

SARDELIS, D. A. Unified derivation of the Galileo and the Lorentz transformations. European Journal of Physics 3, 96-99, 1982.

SCHWARTZ, H. M. Axiomatic deduction of the general Lorentz transformations. American Journal of Physics 30, 697707, 1962. TORRETTI, R. Relativity and geometry. Oxford: Pergamon Press, 1983.

UNGAR, A. The Lorentz transformation group of the special theory of relativity without Einstein’’s isotropy convention. Philosophy of Science 53, 395-402, 1986.

WALD, R. M. General relativity. Chicago: University of Chicago Press, 1984.

WEINGARD, R. Remark on ‘‘The special theory of relativity and the oneway speed of light’’. American Journal of Physics 53, 492, 1985.

WHEELER, J. A., and TAYLOR, E. Spacetime physics. San Francisco: Freeman, 1963.

WINNIE, J. A. Special relativity without one-way velocity assumptions. Philosophy of science 37, 81-99 and 223-238, 1970.

Downloads

Publicado

2017-04-24

Como Citar

VALENTE, M. B. Einstein’s physical chronogeometry. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 40, n. 1, p. 241–278, 2017. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8648832. Acesso em: 26 set. 2022.

Edição

Seção

Artigos