Book review

CARNIELLI, Walter & MALINOWSKI, Jacek (eds.). Contradictions, from consistency to inconsistency (Trends in Logic 47, Springer International Publishing, 2018, VI+322 pages)

Autores

Palavras-chave:

Consistency, Paraconsistency, Principle of non-contradiction, Foundations of reasoning.

Resumo

In this review I briefly analyse the main elements of each chapter of the book centred in the general areas of logic, epistemology, philosophy and history of science. Most of them are developed around a fine-grained investigation on the principle of non-contradiction and the concept of consistency, inquired mainly into the broad area of paraconsistent logics. The book itself is the result of a work that was initiated on the Studia Logica conference "Trends in Logic XVI: Consistency, Contradiction, Paraconsistency and Reasoning – 40 years of CLE", held at the State University of Campinas (Unicamp), Brazil, between September 12-15, 2016.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rafael Rodrigues Testa, Universidade Estadual de Campinas

Doutor em Filosofia pela Universidade Estadual de Campinas (IFCH-Unicamp); Mestre e Bacharel pela mesma instituição.

Referências

ARISTOTLE: Metaphysics. In: The Complete Works of Aristotle, ed. J Barnes (vol. 2). Princeton N.J.: Princeton University Press, 1984.

BLOK, W. J. and D. PIGOZZI. Algebraizable logics. Memoirs of the AMS. 396, American Mathematical Society, Providence, USA, 1989.

BROWN, B. and PRIEST, G. Chunk and permeate, a paraconsistent inference strategy. part I: the infinitesimal calculus. Journal of Philosophical Logic 33 (4): 379–388. August, 2004.

CARNIELLI, W. and CONIGLIO, M. Paraconsistent logic: consistency, contradiction and negation. Dordrecht: Springer, 2016.

CARNIELLI, W. and MARCOS, J. A taxonomy of C-systems. Paraconsistency: the logical way to the inconsistent. Lecture Notes in Pure and Applied Mathematics 228, 1-93, 2002.

DA COSTA, N.C.A. Logiques classiques et non classiques. Essai sur les fondements de la logique. Paris: Masson, 1997.

DE FINETTI, B. Theory of probability, a critical introductory treatment. Translated by Antonio Machí and Adrian Smith. Chichester, UK: Wiley, 2017.

GÖDEL, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38: 173–198, 1931.

KOJMAN, M. Singular cardinals: from Hausdorff’s gaps to Shelah’s pcf theory. In: Sets and Extensions in the Twentieth Century ed. by Dov M. Gabbay, Akihiro Kanamori, and John Woods, vol. 6 of Handbook of the History of Logic, pp. 509–558. Elsevier, 2011.

PRIEST, G., TANAKA, K. and WEBER, Z. Paraconsistent logic. In: The Stanford Encyclopedia of Philosophy, Winter 2016 ed, ed. Edward Zalta. Stanford University, 2016. Disponível em: http://plato.stanford.edu/archives/win2016/entries /logic-paraconsistent/.

RIPLEY, D. Paraconsistent logic. Journal of Philosophical Logic, 44 (6): 771–780, 2015.

Downloads

Publicado

2019-09-03

Como Citar

TESTA, R. R. Book review: CARNIELLI, Walter & MALINOWSKI, Jacek (eds.). Contradictions, from consistency to inconsistency (Trends in Logic 47, Springer International Publishing, 2018, VI+322 pages). Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 42, n. 1, p. 219–228, 2019. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8656535. Acesso em: 29 set. 2022.

Edição

Seção

Book Review