Banner Portal
Conservative translations and model-theoretic translations


Tradução conservadora

Como Citar

D’OTTAVIANO, I. M. L.; FEITOSA, H. de A. Conservative translations and model-theoretic translations. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 22, n. 2, p. 117–132, 1999. Disponível em: Acesso em: 22 mar. 2023.


In previous papers the authors introduced the concept of conservative translation between logics and presented several conservative translations involving classical logic, the many-valued logics of Lukasiewicz and Post and several paraconsistent logics. The aim of this pape ris to study the relationship between this concept of conservative translation between logics and the model-theoretic concept of translation.



Caicedo, X. (1992). Continuous Operations on Spaces of Structures, Apuntes Mathemáticos v. 16 (Bogotá, Universidade de los Andes).

Carnielli, W.A. & D’Ottaviano, I.M.L. (1997). Translations Between Logical Systems: a Manifesto, Logique et Analyse, v. 40, n. 157, pp. 67-81.

Costa, N.C.A. da (1963a). Sistemas Formais Inconsistentes (Inconsistent Formal Systems). (Curitiba, Universidade Federal do Paraná), Thesis.

Costa, N.C.A. da (1963b). Calculs Propositionels pour les Systèmes Formels Incosistants, Comptes Rendus de l’Académie de Sciences de Paris, 257, pp. 3790-3793.

D’Ottaviano, I.M.L. (1982). Sobre uma Teoria de Modelos Trivalentes (On a three-valued Model Theory). (Campinas, Universidade Estadual de Campinas), Doctoral Thesis.

D’Ottaviano, I.M.L. (1985). The Completeness and Compactness of a Three-valued First-order Logic, Revista Colombiana de Matemáticas, v. 19, pp. 77-94.

D’Ottaviano, I.M.L. & Costa, N.C.A da (1970). Sur um Problème de Jaskowski, Comptes Rendus de l’Académie de Sciences de Paris, 270A, pp. 1349-1353.

D’Ottaviano, I.M.L. & Feitosa H.A. (1999). Many-valued Logics and Translations, The Journal of Applied Non-Classical Logics v. 9, n. 1, pp. 121-140.

D’Ottaviano, I.M.L. & Feitosa H.A. (s.d). Paraconsistent Logics and Translations. To appear in the Festchrift in honour of N.C.A. da Costa.

Epstein, R.L. (1990). The Semantic Foundations of Logic. Volume 1: Propositional Logics. (Dordrecht, Kluwer Academic Publishers).

Epstein, R.I. & d’OTTAVIANO, I.M.L. (1988). A Many-valued Paracosistent Logic ” , Reports on MAthematical Logic, v. 22, pp. 89-103.

Feitosa, H.A. (1997). Traduções Conservativas (Conservative Translations). (Campinas, Universidade Estadual de Campinas), Doctoral Thesis.

Feitosa, H.A. & D’Ottaviano, I.M.L. (s.d). Conservative Translation. In Annals of Pure and Applied) Logic.

Gentzen, G. (1969). On the Relation Between Intuitiomistic and Classical Arithmetic. In: Szabo, M.E. (Ed.) The Collected Papersof Gerhard Gentzen. (Amsterdam, North-Holland),pp 53-67.

Glivenko, V. (1929). Sur Quelques Points de la Logique de M. Brouwer, Académie Royale de Belgique. Bulletins de la de M. Brouwer, Académie Royale de Belgique, Bulletins de la Classe de Sciences, Séries 5, v. 15, pp. 183-188.

Gödel, K. (1986). On Intuitionistic Arithmetic and Number Theory (1993a). In: Feferman, S. et al. (Ed.) Kurt Gödel, Collected Works. (Oxford University Press), pp. 287-295.

Gödel, K. (1986). An Interpretation of the Intuitionistic Propositional Calculus. (1993b). In: Feferman, S. et al. (Ed.) Kurt Gödel, Collected Works. (Oxford University Press), pp. 301- 303.

Kolmogoroff, A.N. (1977). On the Principle of Excluded Middle (1925). In: Heijennoort, J. (Ed.) From Frege to Gödel: a source book in mathematical logic, 1879-1931. (Cambridge, Mass., Harvard University Press), pp. 414-437.

Prawitz, D., Malmnãs, P.E. (1968). A Survey of Some Connections Between Classical, Intuitionistic and Minimal Logic. In: Schmidt, H. et al. (Ed.) Contributions to Mathematical Logic. (Amsterdam, North-Holland), pp. 215-229.

Rasiowa, H. (1974). Na Algebraic Appoach to Non-Classical Logics. (Amsterdam, North-Holland).

Sette, A.M. (1973). On the Propositional Calculus P, Mathematica Japonica, v. 18, pp. 173-180.

Sette, A.M. & Carnielli, W.A. (1995). Maximal Weakly-intuitionistic Logic, Studia Logica, v. 55, pp. 181-203.

Silva, J.J. da, D’Ottaviano, I.ML. & Sette, A.M. (1999). Translations Between logics. In: Caicedo, X., Montenegro, C.H. (Ed.) Models, Algebras and Proofs. (New York, Marcel Dekker, Inc.) (Lecture Notes in Pure and Applied Mathematics, v. 203, pp. 435-448).

Szabo, M.E. (Ed.) (1969). The Collected Papers of Gehard Gentzen. (Amsterdam, North Holland Publishing Company.) (Studies in Logic and the Foundations of Mathematics).

Wójcicki, R. (1988). Theory of Logical Calculi: basic theory of consequence operations. (Dordrecht, Kluwer Academic Publishers) (Synthese Library, v.199).

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 1999 Manuscrito: Revista Internacional de Filosofia


Não há dados estatísticos.