Banner Portal
The status of arguments in abstract argumentation frameworks. A tableaux method
PDF (English)

Palavras-chave

Estruturas de argumentação
Semântica de extensão
Quadros

Como Citar

BODANZA, Gustavo A.; HERNÁNDEZ-MANFREDINI, Enrique. The status of arguments in abstract argumentation frameworks. A tableaux method. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 46, n. 2, p. 66–108, 2023. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8674116. Acesso em: 20 abr. 2024.

Resumo

As estruturas de argumentação de Dung são formalismos amplamente utilizados para modelar a interação entre argumentos. Embora seu estudo tenha sido profusamente desenvolvido no campo da Inteligência Artificial, não é comum ver seu tratamento entre aqueles menos ligados à ciência da computação dentro da comunidade lógico-filosófica. Neste artigo, propomos levar a esse público uma teoria de prova para justificação de argumentos baseada em tableaux, muito semelhante àquela com a qual os estudantes de lógica estão familiarizados. Os tableaux permitem calcular se um argumento ou subconjunto de argumentos é aceito ou rejeitado de acordo com a semântica baseada em extensão preferida e fundamentada de Dung. São fornecidos resultados de solidez e integridade relativos a essa semântica.

PDF (English)

Referências

ARIELI, O., AND STRASSER, C. Sequent-Based Logical Argumentation. Argument and Computation 6, 1 (2015), 73-99.

BARONI, P., GABBAY, D., GIACOMIN, M., AND VAN DER TORRE, L., Eds. Handbook of Formal Argumentation. College Publications, 2018.

BARONI, P., AND GIACOMIN, M. On principle-based evaluation of extension-based argumentation semantics. Artificial Intelligence 171, 10 (July 2007), 675-700.

BESNARD, P., AND HUNTER, A. A logic-based theory of deductive argumentation. Artificial Intelligence 128, 1-2 (May 2001), 203-235.

BESNARD, P., AND HUNTER, A. Argumentation based on classical logic. In Argumentation in artificial intelligence, I. Rahwan and G. Simari, Eds. Springer, 2009, pp. 133-152.

BETH, E. W. Semantic entailment and formal derivability. Mededelingen van de Konin-klijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde 18, 13 (1955), 309-342.

CAMINADA, M. On the issue of reinstatement in argumentation. In Logics in Artificial Intelligence (Berlin, Heidelberg, 2006), M. Fisher, W. van der Hoek, B. Konev, and A. Lisitsa, Eds., Springer Berlin Heidelberg, pp. 111-123.

CAMINADA, M. Strong admissibility revisited. In Computational Models of Argument (2014), S. Parsons, N. Oren, C. Reed, and F. Cerutti, Eds., Frontiers in Artificial Intelligence and Applications, IOS Press, pp. 197-208.

CAMINADA, M. A Discussion Game for Grounded Semantics. In Theory and Applications of Formal Argumentation (Cham, 2015), E. Black, S. Modgil, and N. Oren, Eds., Springer International Publishing, pp. 59-73.

CAMINADA, M., AND DUNNE, P. Strong admissibility revisited: Theory and applications. Argument & Computation 10, 3 (2019), 277-300. Publisher: IOS Press.

CAMINADA, M., SÁ, S., ALCÂNTARA, J., AND DVOŘÁK, W. On the equivalence between logic programming semantics and argumentation semantics. International Journal of Approximate Reasoning 58 (2015), 87-111. Special Issue of the Twelfth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2013).

CAMINADA, M. W. A., DVOŘÁK, W., AND VESIC, S. Preferred semantics as socratic discussion. Journal of Logic and Computation 26, 4 (02 2014), 1257-1292.

CAYROL, C., DOUTRE, S., AND MENGIN, J. Dialectical proof theories for the credulous preferred semantics of argumentation frameworks. In Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU). Berlin: Springer, 2001, pp. 668-679.

CAYROL, C., DOUTRE, S., AND MENGIN, J. On Decision Problems Related to the Preferred Semantics for Argumentation Frameworks. Journal of Logic and Computation 13, 3 (06 2003), 377-403.

CERUTTI, F., GAGGL, S., THIMM, M., AND WALLNER, J. Foundations of implementations for formal argumentation. In Baroni et al. [2], pp. 689-768.

CHESÑEVAR, C. I., AND SIMARI, G. R. Modelling Inference in Argumentation through Labelled Deduction: Formalization and Logical Properties. Logica Universalis 1, 1 (Jan. 2007), 93-124.

CHESÑEVAR, C., SIMARI, G., AND GODO, L. Computing dialectical trees efficiently in possibilistic defeasible logic programming. In Proceedings of the 8th International LPNMR Conference (2005), Springer, pp. 158-171.

COSTE-MARQUIS, S., DEVRED, C., AND MARQUIS, P. Symmetric argumentation frameworks. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty (Berlin, Heidelberg, 2005), L. Godo, Ed., Springer Berlin Heidelberg, pp. 317-328.

CRAVEN, R., AND TONI, F. Argument graphs and assumption-based argumentation. Artificial Intelligence 233 (2016), 1-59.

CYRAS, K., FAN, X., SCHULZ, C., AND TONI, F. Assumption-based argumentation: Disputes, explanations, preferences. FLAP 4, 8 (2017).

DOUTRE, S., AND MENGIN, J. On sceptical versus credulous acceptance for abstract argument systems. In Logics in Artificial Intelligence (Berlin, Heidelberg, 2004), J. J. Alferes and J. Leite, Eds., Springer Berlin Heidelberg, pp. 462-473.

DUNG, P., KOWALSKI, R., AND TONI, F. Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170, 2 (2006), 114-159.

DUNG, P. M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 2 (1995), 321-357.

DVOŘÁK, W., AND DUNNE, P. Computational problems in formal argumentation and their complexity. In Baroni et al. [2], pp. 631-688.

FAN, X., AND TONI, F. A general framework for sound assumption-based argumentation dialogues. Artificial Intelligence 216 (2014), 20-54.

GROSSI, D. Abstract argument games via modal logic. Synthese 190 (2012), 5-29.

JAKOBOVITS, H., AND VERMEIR, D. Robust semantics for argumentation frameworks. Journal of Logic and Computation 9, 2 (04 1999), 215-261.

MODGIL, S., AND CAMINADA, M. Proof theories and algorithms for abstract argumentation frameworks. In Argumentation in Artificial Intelligence , I. Rahwan and G. Simari, Eds. Springer Berlin Heidelberg, 2009, pp. 105-129.

NOFAL, S., ATKINSON, K., AND DUNNE, P. Algorithms for decision problems in argument systems under preferred semantics. Artificial Intelligence 207, 1 (2014), 23-51.

POLLOCK, J. Knowledge and Justification. Princeton University Press, Apr. 2016.

ROOS, N. A Semantic Tableau Method for Argument Construction. In Artificial Intelligence and Machine Learning (Cham, 2021), M. Baratchi, L. Cao, W. A. Kosters, J. Lijffijt, J. N. van Rijn, and F. W. Takes, Eds., Springer International Publishing, pp. 122-140.

SAKAMA, C., AND RIENSTRA, T. Representing Argumentation Frameworks in Answer Set Programming. Fundamenta Informaticae 155, 3 (Jan. 2017), 261-292. Publisher: IOS Press.

SHAMS, Z., AND OREN, N. A two-phase dialogue game for skeptical preferred semantics. In Logics in Artificial Intelligence (Cham, 2016), L. Michael and A. Kakas, Eds., Springer International Publishing, pp. 570-576.

SMULLYAN, R. First-Order Logic. Dover Publications, 1995.

THIMM, M., CERUTTI, F., AND VALLATI, M. Skeptical reasoning with preferred semantics in abstract argumentation without computing preferred extensions. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence , IJCAI-21 (8 2021), Z.-H. Zhou, Ed., International Joint Conferences on Artificial Intelligence Organization, pp. 2069-2075. Main Track.

TONI, F. A generalised framework for dispute derivations in assumption-based argumentation. Artificial Intelligence 195 (2013), 1-43.

VREESWIJK, G., AND PRAKKEN, H. Credulous and sceptical argument games for preferred semantics. In Proceedings of the JELIA 2000 (Berlin, Heidelberg, 2000), Springer, pp. 239-253.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Manuscrito: Revista Internacional de Filosofia

Downloads

Não há dados estatísticos.