Banner Portal
Géométrie de l’espace-temps et nature de la physique: quelques reflexions historiques et épistémologiques
PDF

Como Citar

BOI, Luciano. Géométrie de l’espace-temps et nature de la physique: quelques reflexions historiques et épistémologiques. Manuscrito: Revista Internacional de Filosofia, Campinas, SP, v. 23, n. 1, p. 31–97, 2016. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8644831. Acesso em: 27 abr. 2024.

Resumo

Nous analysons le développement mathématique et la signification épistémologique du mouvement de géométrisation de la physique théorique, à partir des travaux fondamentaux d’E. Cartan et de H. Weyl jusqu’aux théories de jauge non-abéliennes récentes. Le principal propos de cet article est d'étudier ces développements qui ont été inspirés par les tentatives de résoudre l'un des problèmes centraux de la physique théorique au siècle dernier, c’est-à-dire comment arriver à concilier la relativité générale et la théorie quantique des champs dans un cadre théorique unitaire du monde physique. Ces développements ont produit un changement conceptuel profond concernant tout particulièrement la façon de concevoir les rapports entre structures mathématiques et phénomènes physiques. Nous mettons l’accent sur les points suivants : (i) plutôt que de simplement s’appliquer aux phénomènes, les mathématiques sont impliquées dans leur constitution, autrement dit, les phénomènes sont autant d’effets qui émergent de la structure géométrique de l’espace-temps ; (ii) la structure géométrique et topologique de l’espace-temps est à l’origine de la dynamique de ce dernier; (iii) les symétries « internes » dictent les différentes interactions entre forces et entre particules ; (iv) l’invariance (locale) de jauge est un principe « universel » régissant les forces fondamentales et les interactions entre les champs de matière.
PDF

Referências

ARNOWITT, R. and NATH, P. (Eds.) Gauge Theories and Modern Field Theories, MIT Press, Cambridge, Mass., 1976.

ATIYAH, M.F. and BOTT, R. “The Yang-Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London, A308 (1982), 523-615.

ATIYAH, M.F. Geometry of Yang-Mills Fields, Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa 1979.

ATIYAH, M.F., JONES, J.D.S. “Topological aspects of Yang-Mills theory”, Commun. Math. Phys., 61 (1978), 97-118.

ATIYAH, M.F. “Topological Quantum Field Theories”, Institut des Hautes Etudes Scientifiques, Publications Mathématiques, 68 (1988), 175-186. BECKER, O. “Beiträge zur phänomenologischen Begründung der Geometrie und ihrer physikalischen Anwendung”, Jahrbuch für Philosophie und phänomenologische Forschung, IV, 1923.

BENNEQUIN, D. “Questions de physique galoisienne”, in Passion des formes. Dynamique qualitative, sémiophysique et intelligibilité, à René Thom, ENS Editions Fontenay St-Cloud, 1994, 311-410.

BOI, L. (1992) “L’espace: concept abstrait et/ou physique; la géométrie entre formalisation mathématique et étude de la nature”, in 1830-1930: A Century of Geometry. Epistemology, History and Mathematics, L. Boi et al. (Eds.), Springer, Heidelberg-Berlin, 1992, pp. 65-90.

———. (1995) Le problème mathématique de l’espace. Une quête de l’intelligible, Springer, Heidelberg-Berlin, 1995.

———. (forthcoming) “The space-curvature-theory of matter from Riemann and Clifford to Weyl and Wheeler”, Studies in History and Philosophy of Science, forthcoming.

———. (1998) “A trip through spacetime theory and the geometrization of theoretical physics: from B. Riemann to H. Weyl and beyond”, Preprint Institute for Advanced Study, Princeton, april 1998.

BOURGUIGNON, J.-P., LAWSON, H.B., Jr. “Stability and isolation phenomena for Yang-Mills fields”, Commun. Math. Phys., 79 (1980), 189-230.

———. (1982) “Yang-Mills Theory: Its Physical Origins and Differential Geometric Aspects”, in The Ann. Math. Studies: Seminar on Differential Geometry, S.-T. Yau (ed.), Princeton Univ. Press, 1982, 395-421. BOUTOT, A. “Mathématiques et ontologie: les symétries en physique.

Les implications épistémologiques du théorème de Nœther et des théories de jauge”, Revue philosophique, nº 3, 1990, 481-519.

CARTAN, É. “Sur les variétés à connexion affine et la théorie de la relativité généralisée”, Ann. l’École Nor. Sup., 40 (1923), 325-412.

———. “La géométrie des groupes de transformations”, J. Math. Pures Appli., 6 (1927), 11-119.

———. Œuvres complètes, III (1), Gauthier-Villars, Paris, 1955.

CASSIRER, E. Substanzbegriff und Funktionsbegriff (Berlin, 1910), Wissenschaftliche Buchgesellschaft, Darmstadt, 1969.

CHATELET, G. “Intuition géométrique et intuition physique”, CISM, Courses and Lectures, 305, Springer-Verlag, Berlin-Heidelberg, 1988, 100-114.

CHERN, S.S. and SIMONS, J. Characteristic forms and geometrical invariants, Ann. Math., 99 (1974), 48-69.

CHERN, S.S. Selected Papers, Vol. III, Springer-Verlag, New York, 1989.

———. Topics in Differential Geometry, Institute for Advanced Study, Princeton, 1951.

———. Selected Papers, Springer-Verlag, New York, 1978.

CLIFFORD, W.K. Lectures and Essays I, Macmillan and Co., London, 1879.

CONNES, A. Noncommutative geometry, Academic Press, New York, 1994.

———. Noncommutative geometry and reality, J. Math. Phys., 36, 11 (1995), 6194-6231. CONNES, A. ROVELLI, C. “Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories”, Preprint, IHES/M/94/36, Bures-sur-Yvette, pp. 1-25.

DE BROGLIE, L. Matière et Lumière, Albin Michel, Paris, 1937.

———. Continu et discontinu en Physique moderne, A. Michel, Paris, 1941.

DEWITT, B. “The space-time approach to quantum field theory”, in Relativity, Groups and Topology II, B.S. DeWitt and R. Stora (Eds.), North-Holland, Amsterdam, 1984, 381-738.

DIRAC, P.A. The Principles of Quantum Mechanics, Oxford Univ. Press, New York, 4th ed. revised, 1958.

DONALDSON, S. “An application of gauge theory to the topology of four manifolds”, J. Differential Geom., 18 (1983), 269-287.

DONALDSON, S.K. “Connections, cohomology and the intersection forms of 4-manifolds”, J. Differential Geom., 24 (1986), 275-342.

EHLERS, J. The Nature and Structure of Spacetime, in The Physicist’s Conception of Nature, Proceedings of a Symposium, International Center for Theoretical Physics (Trieste 1972), Edited by J.

Mehra, D. Reidel, Dordrecht-Boston, 1973, 71-91.

EINSTEIN, A. “Die formale Grundlage der allgemeine Relativitätstheorie”, Preussische Akademie der Wissenschaften zu Berlin, Sitzungsberichte (1914), 831-839.

EINSTEIN, A., und GROSSMANN, M. “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation”, Z. Math. Phys., 62 (1913), 225-261.

FORGACS, P. and MANTON, N.S. “Space-Time Symetries in Gauge Theories”, Commun. Math. Phys., 72 (1980), 15. FREED, D.S., Uhlenbeck, K.K. Instantons and Four-Manifolds, Springer, New York 1991.

FRÖHLICH, J. “Spontaneously broken and dynamically enhanced global and local symmetries”, in Non-Perturbative Quantum Field Theory. Mathematical Aspects and Applications, Selected Papers of Jürg Fröhlich, World Scien. Publ., London, 1992, pp. 193- 212.

GAUTHIER, Y. “La logique interne du discours scientifique.

Géométrie et physique”, Cahiers du département de philosophie, Université de Montréal, no 95-04, 1995, pp. 1-24.

GEROCH, R. General Relativity, in Proc. Symp. Pure Mathematics, Part 2: Differential Geometry, Ed. by S.S. Chern and R. Osserman, Amer. Math. Soc., Providence, 1975, 401-414.

GROMOV, M. “Pseudo-holomorphic curves in symplectic manifolds”; Invent. Math., 82 (1985), 307-347.

HELGASON, S. Differential Geometry, Lie Groups and Symmetric Space, Academic Press, New York, 1978.

HUSSERL, E. Husserliana – Gesammelte Werke, vol. XXI: Studien zur Arithmetik und Geometrie (textes de 1886-1901), herausgegeben von I. Strohmeyer, Martinus Nijhoff, The Hague, 1983.

ILIOPOULOS, J. “Unified Theories of Elementary Particle Interactions”, Contemp. Phys., 21 (2), 1980, 159-183.

ISHAM, C.J. Quantum Gravity - An Overview, in Quantum Gravity 2, Edited by C.J. Isham, R. Penrose and D.W. Sciama, Clarendon Press, Oxford, 1981, 1-61.

———. “Topological and global aspects of quantum theory”, in Relativity, Groups and Topology II, B.S. DeWitt & R.Stora (Eds.), North-Holland, Amsterdam, 1984, 1059-1290. ITZYKSON, C., ZUBER, J.B. Quantum Field Theory, McGraw-Hill, New York, 1980.

JACKIW, R. Topological Investigations of Quantized Gauge Theories, in Relativity, Groups and Topology II, Les Houches, Session XL, Edited by B.S. DeWitt and R. Stora, North-Holland, Amsterdam, 1984, 221-331.

JAFFE, A. “Renormalization”, in Seminar on Differential Geometry, Ed. by S.-T. Yau, Ann. Math. Studies, Princeton Univ. Press, 1982, 507- 523.

JAMMER, M. The conceptual development of quantum mechanics, Amer. Inst. Phys., New York, 1989.

KERSZBERG, P. “Of Exact and Inexact Essences in Modern Physical Science”, in Phenomenology of Natural Science, L. Hardy and L. Embree (eds.), Kluwer Acad. Publ., Amsterdam, 1992.

KIBBLE, T.W.B. “Geometrization of Quantum Mechanics”, Commun. Math. Phys., 65 (1979), 189-201.

KOBAYASHI, S., NOMIZU, K. Foundations of Differential Geometry, Vols. I and II, Interscience Publishers, New York, 1963.

KOBAYASHI, S. “Theory of connections”, Ann. Matem. Pura Appl., 43 (1957), 119-194.

LACHIEZE-REY, M., LUMINET, J.-P. “Cosmic Topology”, Physics Rep., 254 (1995), 135-214.

LARGEAULT, J. Principes classiques d’interprétation de la nature, J. Vrin, Paris, 1988.

LIE, S. Theorie der Transformationsgrupen, 3 vols, Teubner, Leipzig, 1888- 1890.

LOCHAK, G. La géométrisation de la physique, Flammarion, Paris, 1994. LURÇAT, F. “Space and Time: A privileged Ground for Misundertandings Between Physics and Philosophy”, in Philosophy, Mathematics and Modern Physics, E. Rudolph and I.-O. Stamatescu (Eds.), Springer, Heidelberg, 1994.

MALAMENT, D. “Gravity and Spatial Geometry”, in Logic, Methodology and Philosophy of Science VII, Barcan Marcus et al., eds., NorthHolland, Amsterdam, 1986, 405-411.

MANIN, Y.I. Gauge Field Theory and Complex Geometry, Sprringer-Verlag, Berlin Heidelberg, 1988.

———. Mathematics and Physics, Birkhäuser, Boston, 1982.

———. New Dimensions in Geometry, “Lect. Notes in Math.”, F.

Hirzebruch, J. Schwermer and S. Suter (eds.), Springer, Heidelberg, 1985, 59-101.

MARZKE, R.F., WHEELER, J.A. “Gravitation as geometry–I: The geometry of space-time and the geometrodynamics standard meter”, in Gravitation and Relativity, H.-Y. Chiu and W.F. Hoffmann (eds.), W.A. Benjamin, Inc., New York, 1964, 40-64.

MAXWELL, J.C. Treatise on Electricity and Magnetism, 2 vols, Clarendon Press, Oxford, 1873.

MILNOR, J., and STASHEFF, J. Characteristic Classes, Ann. Math.Studies, No. 76, Princeton Univ. Press, Princeton, 1974.

MILNOR, J. Lectures on h-cobordism, Princeton Univ. Press, Princeton 1965.

MINKOWSKI, H. Raum und Zeit, Teubner, Leipzig, 1908.

MISNER, C.W., Wheeler J. A. “Classical Physics as Geometry”, Ann.

Phys., 2 (1957), 525-603. NIEUWENHUIZEN, P. van, An Introduction to Simple Supergravity and the Kaluza-Klein Program, in Relativity, Groups and Topology II, Les Houches, Ed. by B.S. DeWitt & R. Stora, North-Holland, Amsterdam, 1984, 823-932.

PENROSE, R. “Physical Space-Time and Nonrealizable CRStructures”, in The Mathematical Heritage of Henri Poincaré, Proceedings, Edited by F.E. Browder, Vol. 39 (1983), Part 1, Amer. Math. Soc., 401-422.

———. “The Twistor Programme”, Rep. Math. Phys., 12 (1977), 65-76.

PETITOT, J. “Actuality of Transcendental Aesthetics for Modern Physics”, in 1830-1930: A Century of Geometry, L. Boi et al. (Eds.), Springer-Verlag, Heidelberg, 1992, 239-263.

POINCARE, H. Œeuvres, Vols. 1-11, Gauthier-Villars, Paris, 1916- 1956.

RICHARD, H.C., RALPH, H.F. Introduction to Knot Theory, Springer, New York, 1977.

RIEMANN, B. Gesammelte mathematische Werke, wissenschaftlicher Nachlaß und Nachträge/Collected Papers, nouv. éd. par R. Narasimhan, Springer/Teubner, Berlin/Leipzig, 1990.

ROVELLI, C. Outline of a generally covariant quantum field theory and a quantum theory of gravity, J. Math. Phys., 36, 11 (1995), 6529-6547.

SALAM, A. “Gauge unification of fundamental forces”, Rev. Modern Phy., 92 (1980), 525-536.

SCHEIBE, E. “Invariance and Covariance”, in Scientific Philosophy Today, Essays in Honor of Mario Bunge, Edited by J. Agassi & R.S. Cohen, Reidel, Dordrecht, 1982, 311-331.

SCHWARZ, A.S. Quantum Field Theory and Topology, Springer, BerlinHeidelberg, 1993. SCHWARZ, H. Superstring Theory, Physics. Reports, 89 (1982), 223-322.

SCHWINGER, J. “Gauge theories of vector particles”, in Theoretical Physics, Lectures presented at the Seminar on Theoretical Physics (Trieste, août 1962), sous la direction d’A. Salam, International Atomic Energy Agency, Vienne 1963, 89-134.

SINGER, I.M. Some Problems in the Quantization of Gauge Theories ans String Theories, in Proceedings Hermann Weyl, 48 (1987), Amer. Math. Soc., 199-218.

SOURIAU, J.-M. Géométrie et Relativité, Hermann, Paris, 1964.

STAMATESCU, I.-O. On Renormalization in Quantum Field Theory and the Structure of Space-Time, in Philosophy, Mathematics and Modern Physics – A Dialogue, E. Rudolph and I.-O. Stamatescu (Eds.), SpringerVerlag, Berlin-Heidelberg, 1994, 67-91.

STEENROD, N. The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951.

TAUBES, C.H. Moduli spaces and homotopy theory, in Proc. Symp. Pure Math., vol. 48: The Mathematical Heritage of H. Weyl, R.O. Wells, Jr.Ed., Amer. Math. Soc., Providence, 1987, 301-315.

———. Self-dual Yang-Mills connections on non-self-dual 4-manifolds, J. Differential Geom., 17 (1982), 139-170.

THOM, R. “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28 (1954), pp. 17-86.

———. “Les symétries brisées en physique macroscopique et la mécanique quntique”, in Apologie du logos, Hachette, Paris, 1990.

TORRETTI, R. Relativity and Geometry, Pergamon Press, Oxford, 1983.

TRAUTMAN, A. Fiber Bundles, Gauge Fields, and Gravitation, in General Relativity and Gravitation, Vol. 1, Ed. by A. Held, Plenum Press, New York 1980, 287-307. TSUN, T.S. “A Yang-Mills Structure for String Field Theory”, in The Interface of Mathematics and Particle Physics, Edited by D.G. Quillen, G.B. Segal, and S.T. Tsou, Clarendon Press, Oxford, 1990, 135- 142.

WARD, R.S. On self-dual gauge fields, Phys. Lett., 61A (1977), 81-82.

WEIMBERG, S. “Conceptual foundations of the unified theory of weak and electromagnetic interactions”, Rev. Modern Phys., 52 (3), 1980, 515-523.

WEYL, H. and BRAUER, R. “Spinors in n dimensions”, Ameri. J. Math., 57 (1935), 425-449.

———. “Elektron und Gravitation”, Z. Phys., 56 (1929), 330-352.

———. Gesammelte Abhandlungen, Vol. 2, Ed. by K. Chandrasekharan, Springer, Berlin-Heidelberg, 1968.

———. “Gravitation und Elektrizität”, Sitz. Ber. Königl. Preuss. Akad. Wiss. Berlin, 26 (1918), 465-480.

———. The Theory of Groups and Quantum Mechanics (1931), new ed. Dover, New York, 1950.

WHEELER, J.A. Geometrodynamics, Italian Phys. Soc., Vol. I, Academic Press, New York, 1962.

WITTEN, E. “An interpretation of classical Yang-Mills theory”, Phys. Letters, 77 B (1978), 394-398.

———. “Free Fermions on an Algebraic Curve”, in Proceedings Hermann Weyl, 48 Amer. Math. Soc., Providence, 1987, 329-344.

———. “Search for a Realistic Kaluza-Klein Theory”, Nuclear Phys., B186 (1981), 412.

———. “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661-692. ———. “Topological Quantum Field Theory”, Commun. Math. Phys., 117 (1988), 353-386.

WU, T.T. and YANG, C.N. “Concept of non-integrable phase factors and global formulation of gauge fields”, Phys. Rev., D12 (1975), 3845-3857.

YANG, C.N., MILLS, R.L. “Conservation of Isotopic Spin and Isotopic Gauge Invariance”, Phys.Rev., 96, 1 (1954), 191-195.

YAU, S.T. (ed.), Mathematical Aspects of String Theory, World Scientific, 1987.

Downloads

Não há dados estatísticos.