The enamel organic matrix: structure and function

Authors

  • Alexandre Ribeiro Espírito Santo Piracicaba Dental School, State University of Campinas
  • Sérgio Roberto Peres Line Piracicaba Dental School, State University of Campinas

DOI:

https://doi.org/10.20396/bjos.v4i13.8641819

Keywords:

Dental enamel. Extracellular matrix. Amelogenesis. Dental enamel proteins. Dental enamel proteinases

Abstract

Dental enamel is the most mineralized tissue in the vertebrate body and contains the largest known biologically formed hydroxyapatite crystals. Its formation occurs extracellularly through the collaboration of a proteic transient framework (the enamel organic matrix), which controls hydroxyapatite crystal growth, morphology and orientation. This matrix is deposited with a small amount of mineral during the secretory stage of amelogenesis. The organic components begin to be degraded in the transition stage and are extensively corrupted, and almost entirely replaced by the inorganic crystallites during maturation stage. The present paper reviews current knowledge on the structural biology of the enamel organic matrix.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Alexandre Ribeiro Espírito Santo, Piracicaba Dental School, State University of Campinas

Possui Graduação (2002) em Odontologia pela UFBA, Mestrado (2005) e Doutorado (2008) em Biologia Buco-Dental com área de concentração em Histologia e Embriologia pela UNICAMP. Atualmente é Professor Adjunto 4 e Chefe do Departamento de Biomorfologia do Instituto de Ciências da Saúde da UFBA. Tem experiência na área de Histologia, desenvolvendo projetos com a colaboração da UNICAMP acerca do comportamento de células e matrizes extracelulares de tecidos bucais em processos normais e patológicos. É professor permanente do Programa de Pós-Graduação em Biociências do Instituto Multidisciplinar em Saúde da UFBA.

Sérgio Roberto Peres Line, Piracicaba Dental School, State University of Campinas

has graduation at Odontologia by Universidade Estadual de Campinas (1985) , Ph.D. at Patologia Experimental e Comparada by Universidade de São Paulo (1989) and Postdoctorate by National Institute Of Health (1991) . Currently is Servidor público ou celetista of Universidade Estadual de Campinas, Membro de corpo editorial of Journal of Applied Oral Science (Impresso), Membro de corpo editorial of Brazilian Journal of Oral Sciences (Impresso) e of Faculdade de Odontologia de Piracicaba-UNICAMP. Has experience in the area of Odontology. Focused, mainly, in the subjects: Laminina, Matriz extracelular, Menbrana Basal, Metaloproteases. 

References

Eisenmann DR. Amelogenesis. In: Ten Cate AR, editor. Oral Histology: development, structure and function. 5th ed. Saint Louis: Mosby; 1998. p. 197-217.

Paine ML, Snead ML. Protein interactions during assembly of the enamel organic extracellular matrix. J Bone Miner Res. 1997; 12: 221-7.

Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol. 1999; 126: 270-99.

Moradian-Oldak J, Iijima M, Bouropoulos N, Wen HB. Assembly of amelogenin proteolytic products and control of octacalcium phosphate crystal morphology. Connect Tissue Res. 2003; 44: 58-64.

Aoba T, Moreno EC. The enamel fluid in the early secretory stage of porcine amelogenesis: chemical composition and saturation with respect to enamel mineral. Calcif Tissue Int. 1987; 41: 86-94.

Paine ML, White SN, Luo W, Fong H, Sarikaya M, Snead ML.

Regulated gene expression dictates enamel structure and tooth function. Matrix Biol. 2001; 20: 273-92.

Robinson C, Briggs HD, Aktinson PJ, Weatherell JA. Matrix and mineral changes in developing enamel. J Dent Res. 1979; 58: 871-80.

Bronckers AL, Bervoets TJ, Lyaruu DM, Woltgens JH. Degradation of hamster amelogenins during secretory stage of enamel formation in organ culture. Matrix Biol. 1995; 14: 533-41.

Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MU. Properties of dissociatively extracted foetal tooth matrix proteins. I. Principle molecular species in developing bovine enamel. J Biol Chem. 1980; 255: 9760-8.

Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. 1995; 6: 84-108.

Fincham AG, Luo W, Moradian-Oldak J, Paine ML, Snead ML, Zeichner-David M. Enamel biomineralization: the assembly and dissassembly of the protein extracellular organic matrix. In: Teaford MF, Meredith-Smith M, Ferguson MWJ. Editors. Development, function and evolution of teeth. Cambridge: Cambridge University Press; 2000. p. 37-61.

Simmer JP, Hu JC. Expression, structure, and function of enamel proteinases. Connect Tissue Res. 2002; 43: 441-9.

Carter J, Smillie AC, Shepherd MG. Purification and properties of a protease from developing porcine dental enamel. Arch Oral Biol. 1989; 34: 195-202.

Denbesten PK, Heffernan LM. Enamel proteases in secretory and maturation enamel of rats ingesting 0 and 100 ppm of fluoride in drinking water. Adv Dent Res. 1989; 3: 199-202.

Moradian-Oldak J, Simmer PJ, Sarte PE, Zeichner-David M, Fincham AG. Specific cleavage of a recombinant murine amelogenin at the carboxy-terminal region by a proteinase fraction isolated from developing bovine tooth enamel. Arch Oral Biol. 1994; 39: 647-56.

Fukae M, Tanabe T, Uchida T, Lee SK, Ryu OH, Murakami C et al. Enamelysin (matrix metalloproteinase-20): localization in the developing tooth and effects of pH and calcium on amelogenin hydrolysis. J Dent Res. 1998; 77: 1580-8.

Cotrim P, de Andrade CR, Line S, de Almeida OP, Coletta RD. Expression and activity of matrix metalloproteinase-2 (MMP- 2) in the development of the rat first molar tooth germ. Braz Dent J. 2002; 13: 97-102.

Cheng L, Lei JQ, Zhu QQ, Wang HH, Shu R. Cloning of human amelogenin gene encoding mature peptide. Shanghai Kou Qiang Yi Xue. 2004; 13: 126-9.

Snead ML, Zeichner-David M, Chandra T, Robson KJ, Woo SL, Slavkin HC. Construction and identification of mouse amelogenin cDNA clones. Proc Natl Acad Sci USA. 1983; 80: 7254-8.

Gibson CW, Golub E, Abrams W, Shen G, Ding W, Rosenbloom J. Bovine amelogenin message heterogeneity: alternative splicing and Y-chromosomal gene transcription. Biochemistry. 1992; 31: 8384-8.

Mao Z, Shay B, Hekmati M, Fermon E, Taylor A, Dafni L et al. The human tuftelin gene: cloning and characterization. Gene. 2001; 279: 181-96.

Deutsch D, Palmon A, Fisher LW, Kolodny N, Termine JD, Young MF. Sequencing of bovine enamelin (‘tuftelin’) a novel acidic enamel protein. J Biol Chem. 1991; 266: 16021-8.

Bashir MM, Abrams WR, Rosenbloom J. Molecular cloning and characterization of the bovine tuftelin gene. Arch Oral Biol. 1997; 42: 489-96.

Dodds A, Simmons D, Gu TT, Zeichner-David M, MacDougall M. Identification of murine tuftelin cDNA. J Dent Res. 1996; 75: 72.

Hu C-C, Fukae M, Uchida T, Qian Q, Zhang CH, Ryu OH et al. Sheathlin: cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res. 1997; 76: 648-57.

Hu C-C, Simmer JP, Bartlett JD, Qian Q, Zhang C, Ryu OH et al. Murine enamelin: cDNA and derived protein sequences. Connect Tissue Res. 1998; 39: 47-62.

Hu C-C, Qian Q, Zhang C, Simmer JP. Cloning of human enamelin. In: Robinson C, Goldberg M, editors. Chemistry and biology of mineralized tissues: Proceedings of the Sixth International Conference [abstract 82]. Vittel: American Academy of Orthopaedic Surgeons; 1998.

Toyosawa S, Fujiwara T, Ooshima T, Shintani S, Sato A, Ogawa Y et al. Cloning and characterization of human ameloblastin gene. Gene. 2000; 256: 1-11.

Krebsbach PH, Lee SK, Matsuki Y, Kozac C, Yamada KM, Yamada Y. Full-length sequence, localization, and chromosome mapping of ameloblastin: a novel tooth-specific gene. J Biol Chem. 1996; 271: 4431-5.

Simmons D, Gu TT, Krebsbach PH, Yamada Y, MacDougall M. Identification and characterization of a cDNA for mouse ameloblastin. Connect Tissue Res. 1998; 39: 3-12; discussion 63-7.

Moradian-Oldak J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol. 2001; 20: 293-305.

Moradian-Oldak J, Tan J, Fincham AG. Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin self-association. Biopolymers. 1998; 46: 225-38.

Wen HB, Moradian-Oldak J, Fincham AG. Modulation of apatite crystal growth on Bioglass by recombinant amelogenin. Biomaterials. 1999; 20: 1717-25.

Simmer JP, Lau EC, Hu C-C, Bringas P, Santos V, Aoba T et al. Isolation and characterization of a mouse amelogenin expressed in E-coli. Calcif Tissue Int. 1994; 54: 312-9.

Aoba T, Tanabe T, Moreno EC. Function of amelogenins in porcine enamel mineralization during secretory stage of amelogenesis. Adv Dent Res. 1987; 1: 252-60.

Shaw WJ, Campbell AA, Paine ML, Snead ML. The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem. 2004; 279: 40263-6.

Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N. Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol. 2002; 21: 197-205.

Warshawsky H. Organization of crystals in enamel. Anat Rec. 1989; 224: 242-62.

Fincham AG, Moradian-Oldak J, Diekwisch TGH, Layaruu DM, Wright JT, Bringas P et al. Evidence for amelogenin “nanospheres” as functional components of secretory stage enamel matrix. J Struct Biol. 1995; 115: 50-9.

Uchida T, Tanabe T, Fukae M, Shimizu M, Yamada M, Miake K et al. Immunochemical and immunohistochemical studies using antisera against porcine 25 kDa amelogenin, 89 kDa enamelin and the 13-17 kDa nonamelogenins, on immature enamel of pig and rat. Histochemistry. 1991; 96: 129-38.

Gibson CW, Yuan Z-A, Hall B, Longenecker G, Chen E, Thyagarajan T et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2001; 276: 31871-5.

Paine ML, Wang H-J, Snead ML. Amelogenin self-assembly and the role of the proline located within the carboxyl-teleopeptide. Connect Tiss Res. 2003; 44 (Suppl. 1): 52-7.

Ravassipour DB, Hart PS, Ritter AV, Yamauchi M, Gibson C, Wright JT. Unique enamel phenotype associated with amelogenin gene (AMELX) codon 41 point mutation. J Dent Res. 2000; 79: 1476-81.

Snead ML, Lau EC, Zeichner-David M, Fincham AG, Woo SL, Slavkin HC. DNA sequence for cloned cDNA for murine amelogenin reveals the amino acid sequence for enamel specific protein. Biochem Biophys Res Commun. 1985; 129: 812-8.

Simmer JP, Snead ML. Molecular biology of the amelogenin gene. In: Robinson C, Kirkham J, Shore R. Editors. Dental enamel: formation to destruction. Boca Raton: CRC Press; 1995. p. 59- 84.

Lench NJ, Winter GB. Characterization of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum Mut. 1995; 5: 252-9.

Collier PM, Sauk JJ, Rosenbloom J, Yuan ZA, Gibson CW. An amelogenin gene defect associated with human X-linked amelogenesis imperfecta. Arch Oral Biol. 1997; 42: 235-42.

Paine ML, Zhu D-H, Luo W, Bringas PJ, Goldberg M, White SN et al. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol. 2000; 132: 191-200.

Hart PS, Hart TC, Simmer JP, Wright JT. A nomenclature for Xlinked amelogenesis imperfecta. Arch Oral Biol. 2002; 47: 255- 60.

Snead ML. Amelogenin protein exhibits a modular design: implications for form and function. Connect Tissue Res. 2003; 44 (Suppl. 1): 47-51.

Paine ML, Lei Y-P, Dickerson K, Snead ML. Altered amelogenin self-assembly based on mutations observed in human X-linked amelogenesis imperfecta (AIH1). J Biol Chem. 2002; 277: 17112-6.

Paine ML, Luo W, Zhu D-H, Bringas PJ, Snead ML. Functional domains for amelogenin revealed by compound genetic defects. J Bone Miner Res. 2003; 18: 466-72.

Li W, Gibson CW, Abrams WR, Andrews DW, Denbesten PK. Reduced hydrolysis of amelogenin may result in X-linked amelogenesis imperfecta. Matrix Biol. 2001; 19: 755-60.

Ravindranath MHR, Moradian-Oldak J, Fincham AG. Tyrosyl motif in amelogenin binds N-acetyl-D-glucosamine. J Biol Chem. 1999; 274: 2464-71.

Akita H, Fukae M, Shimoda S, Aoba T. Localization of glycosylated matrix proteins in the secretory porcine enamel and their possible functional roles in enamel mineralization. Arch Oral Biol. 1992; 37: 953-62.

Ravindranath HH, Chen LS, Zeichner-David M, Ishima R, Ravindranath RM. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem Biophys Res Commun. 2004; 323: 1075-83.

Bouropoulos N, Moradian-Oldak J. Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. J Dent Res. 2004; 83: 278-82.

Hu JC-C, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med. 2003; 14: 387-98.

Fukae M, Tanabe T. Nonamelogenin components of porcine enamel in the protein fraction free from the enamel crystals. Calcif Tissue Int. 1987; 40: 286-93.

Tanabe T, Aoba T, Moreno EC, Fukae M, Shimuzu M. Properties of phosphorylated 32 kDa nonamelogenin proteins isolated from porcine secretory enamel. Calcif Tissue Int. 1990; 46: 205-15.

Uchida T, Tanabe T, Fukae M, Shimizu M. Immunocytochemical and immunochemical detection of a 32 kDa nonamelogenin and related proteins in porcine tooth germs. Arch Histo Cytol. 1991; 54: 527-38.

Yamakoshi Y. Carbohydrate moieties of porcine 32kDa enamelin. Calcif Tissue Int. 1995; 56: 323-30.

Yamakoshi Y, Pinheiro FH, Tanabe T, Fukae M, Shimizu M. Sites of asparagine-linked oligosaccharides in porcine 32 kDa enamelin. Connect Tissue Res. 1998; 39: 39-46.

Fukae M, Tanabe T, Murakami C, Dohi N, Uchida T, Shimizu M. Primary structure of porcine 89 kDa enamelin. Adv Dent Res. 1996; 10: 111-8.

Kida M, Ariga T, Shirakawa T, Oguchi H, Sakiyama Y. Autosomaldominant hypoplastic form of amelogenesis imperfecta caused by an enamelin gene mutation at the exon-intro boundary. J Dent Res. 2002; 81: 738-42.

Osborn JW. The three-dimentional morphology of tufts in human enamel. Acta Anat. 1969; 73: 481-9.

Palamara J, Phakey PP, Rachinger WA, Orams HJ. Ultrastructure of spindles and tufts in human dental enamel. Adv Dent Res. 1989; 3: 249-57.

Robinson C, Shore RC, Kirkham J. Tuft protein: its relationship with the keratins and the developing enamel matrix. Calcif Tissue Int. 1989; 44: 393-8.

Robinson C, Lowe NR, Weatherell JA. Amino acid composition, distribution and origin of ‘tuft’ protein in human and bovine dental enamel. Arch Oral Biol. 1975; 20: 29-42.

Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J et al. Control of ameloblast differentiation. Int J Dev Biol. 1995; 39: 69-92.

Zeichner-David M, Vo H, Tan H, Diekwisch T, Berman B, Thiemann F et al. Timing of the expression of enamel gene products during mouse tooth development. Int J Dev Biol. 1997; 41: 27-38.

Paine CT, Paine ML, Luo W, Okamoto CT, Lyngstadaas SP, Snead ML. A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem. 2000; 275: 22284-92.

Paine CT, Paine ML, Snead ML. Identification of tuftelin- and amelogenin-interacting proteins using the yeast two-hybrid system. Connect Tissue Res. 1998; 38: 257-67.

Paine ML, Krebsbach PH, Chen LS, Paine CT, Yamada Y, Deutsch D et al. Protein-to-protein interactions: criteria defining the assembly of the enamel organic matrix. J Dent Res. 1998; 77: 496-502.

Luo W, Wen X, Wang HJ, MacDougall M, Snead ML, Paine ML. In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs. 2004; 177: 212-20.

Fukae M, Tanabe T. 45Ca labeled proteins found in porcine developing dental enamel at an early stage of development. Adv Dent Res. 1987; 1: 286-93.

Cerny R, Slaby I, Hammarström L, Wurtz T. A novel gene expressed in rat ameloblasts codes for proteins with cell biding domains. J Bone Miner Res. 1996; 11: 883-91.

McDougall M, Simmons D, Gu TT, Forsman-Semb K, Mardh CK, Mesbah M et al. Cloning, characterization and immunolocalization of human ameloblastin. Eur J Oral Sci. 2000; 108: 303-10.

Murakami C, Dohi N, Fukae M, Tanabe T, Yamakoshi Y, Wakida K et al. Immunochemical and immunohistochemical study of 27 and 29 kDa calcium binding proteins and related proteins in the porcine tooth germ. Histochem Cell Biol. 1997; 107: 485- 94.

Fong CD, Slaby I, Hammarström L. Amelin: an enamel related protein, transcribed in the cells of epithelial root sheath. J Bone Miner Res. 1996; 11: 892-8.

Lee SK, Krebsbach PH, Matsuki Y, Nanci A, Yamada KM, Yamada Y. Ameloblastin expression in rat incisor and human tooth germs. Int J Dev Biol. 1996; 40: 1141-50.

McDougall M, DuPont BR, Simmons D, Reus B, Krebsbach P, Karrman C et al. Ameloblastin gene (AMBN) maps within the critical autosomal dominant amelogenesis imperfecta region at chromosome 4q21. Genomics. 1997; 41: 115-8.

Paine ML, Wang HJ, Luo W, Krebsbach PH, Snead ML. A transgenic animal model resembling amelogenesis imperfecta related to ameloblastin overexpression. J Biol Chem. 2003; 278: 19447-52.

Tanabe T, Fukae M, Uchida T, Shimuzu M. The localization and characterization of proteinases for the inicial cleavage of porcine amelogenin. Calcif Tissue Int. 1992; 51: 213-7.

Eastoe JE. Enamel protein chemistry: past, present and future. J Dent Res. 1979; 58B: 753-64.

Robinson C, Kirkham J. Dynamics of amelogenesis as revealed by protein compositional studies. In: Butler WT, editor. The chemistry and biology of mineralized tissues. Birmingham: EBSCO Media; 1985. p. 248-63.

Bartlett JD, Simmer JP. Proteinases in developing dental enamel. Crit Ver Oral Biol. 1999; 10: 425-41.

Bartlett JD, Simmer JP, Xue J, Margolis HC, Moreno EC. Molecular cloning and mRNA tissue distribution of a novel matrix mettaloproteinase isolated from porcine enamel organ. Gene. 1996; 183: 123-8.

Llano E, Pendás AM, Knäuper V, Sorsa T, Salo T, Salido E et al. Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry. 1997; 36: 15101- 8.

Denbesten PK, Punzi JS, Li W. Purification and sequencing of a 21 kDa and 25kDa bovine enamel metalloproteinase. Eur J Oral Sci. 1998; 106: 345-9.

Caterina NC, Shi J, Sun X, Qian Q, Yamada S, Liu Y et al. Cloning, characterization, and expression analysis of mouse enamelysin. J Dent Res. 2000; 79: 1697-703.

Bartlett JD, Ryu OH, Xue J, Simmer JP, Margolis HC. Enamelysin mRNA displays a developmentally defined pattern of expression and encodes a protein which degrades amelogenin. Connect Tissue Res. 1998; 39: 405-13.

Caterina JJ, Skobe Z, Shi J, Ding Y, Simmer JP, Birkedal-Hansen H et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2002; 277: 49598-604.

Ryu OH, Fincham AG, Hu C-C, Zhang C, Qian Q, Bartlett JD et al. Characterization of recombinant enamelysin activity and cleavage of recombinant pig and mouse amelogenin. J Dent Res. 1999; 78: 743-50.

Li W, Machule D, Gao C, DenBesten PK. Activation of recombinant bovine matrix metalloproteinase-20 and its hydrolysis of two amelogenin oligopeptides. Eur J Oral Sci. 1999; 107: 352-9.

Thompsom MW, Mciness RR, Willard HF. Genetics in Medicine. 5th ed. Philadelphia: WB Saunders; 1991. p. 56.

Tanabe T. Purification and characterization of proteolytic enzymes in porcine immature enamel. Tsurumi U Dent J. 1984; 10: 443-52.

Simmer JP, Ryu OH, Qian Q, Zhang C, Cao X, Sun X. Cloning and characterization of a cDNA encoding human EMSP1. In: Goldberg M, Robinson C, editors. Chemistry and biology of mineralized tissues: Proceedings of the Sixth International Conference, Vittel, France, 1998. Vittel: American Academy of Orthopaedic Surgeons; 2000. p. 205-8.

Hu C-C, Zhang C, Sun X, Yang Y, Cao X, Ryu O et al. Characterization of the mouse and human PRSS17 genes, their relationship to other proteases, and expression in developing incisors. Gene. 2000; 251: 1-8.

Simmer JP, Fukae M, Tanabe T, Yamakoshi Y, Uchida T, Xhu J et al. Purification, characterization and cloning of enamel matrix serine proteinase 1. J Dent Res. 1998; 77: 377-86.

Moradian-Oldak J, Leung W, Tan J, Fincham AG. Effect of apatite crystals on the activity of amelogenin degrading enzymes in vitro. Calcif Tissue Int. 1998; 39: 131-40.

Okamura K. Localization of serum albumin in dentin and enamel. J Dent Res. 1983; 62: 100-4.

Limeback H, Sakarya H, Chu W, MacKinnon M. Serum albumin and its acid hydrolysis peptides dominate preparations of mineral-bound enamel proteins. J Bone Miner Res. 1989; 4: 235-41.

Strawich E, Seyer J, Glimcher MJ. Immuno-identification of two non-amelogenin proteins of developing bovine enamel isolated by affinity chromatography. Further proof that tooth enamelins are mainly serum proteins. Connect Tissue Res. 1993; 29: 163-9.

Robinson C, Brookes SJ, Kirkham J, Bonass WA, Shore RC. Crystal growth in dental enamel: the role of amelogenins and albumin. Adv Dent Res. 1996; 10: 179-80.

Yuan ZA, Collier PM, Rosenbloom J, Gibson CW. Analysis of amelogenin mRNA during bovine tooth development. Arch Oral Biol. 1996; 41: 205-13.

Kinoshita Y. Incorporation of serum albumin into the developing dentine and enamel matrix in the rabbit incisor. Calcif Tissue Int. 1979; 29: 41-6.

Shore RC, Robinson C, Kirkham J, Brookes SJ. Structure of developing enamel. In: Robinson C, Kirkham J, Shore RC, editors. Dental enamel, formation to destruction. Boca Raton: CRC Press; 1995. p. 135-50.

Shapiro IM, Amdur BH. Enamel matrix pigmentation in the developing bovine tooth. Arch Oral Biol. 1965; 10: 1015-8.

Goldberg M, Vermelin L, Mostermans P, Lécolle S, Septier D, Godeau C et al. Fragmentation of the distal portion of Tome’s processes of secretory ameloblasts in the forming enamel of rat incisors. Connect Tissue Res. 1998; 38: 159-69.

Smith CE, Chen WY, Issid M, Fazel A. Enamel matrix protein turnover during amelogenesis: basic biochemical properties of short-lived sulfated enamel proteins. Calcif Tissue Int. 1995; 57: 133-44.

Downloads

Published

2015-11-18

How to Cite

1.
Espírito Santo AR, Line SRP. The enamel organic matrix: structure and function. Braz. J. Oral Sci. [Internet]. 2015 Nov. 18 [cited 2022 Dec. 3];4(13):716-24. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8641819

Issue

Section

Literature Reviews

Most read articles by the same author(s)